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Finite-size and finite-time scaling for kinetic rough interfaces
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We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in height-
height correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)]
to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying
dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the
critical exponents and the scaling functions, eventually establishing the universality class accurately. The finite-
size scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration,
we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic
version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen
model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model
belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.

DOI: 10.1103/PhysRevE.109.054130

I. INTRODUCTION

The phenomenon of kinetic surface roughening (a dynam-
ically growing rough surface or interface) occurs in diverse
contexts, and it has been a topic of much interest, particularly
in nonequilibrium statistical physics, in advancing theoretical
understanding [1–4]. Typical instances include fluid flow in
porous media [5], the spreading of fracture cracks [6,7], and
fungal growth [8]. In condensed matter physics, the study of
the thin-film growth formed by particle deposition processes
(for example, molecular-beam epitaxy [9–11]) seems impor-
tant technologically.

Strikingly, many systems of kinetic surface roughening ex-
hibit scaling features. Determining the universality class of the
model has been a crucial aspect. A set of independent critical
exponents characterizing the scaling properties of the rough
surface determines the universality class. The most familiar
classes are random deposition, Edwards-Wilkinson (EW) [12]
and Kardar-Parisi-Zhang (KPZ) [13–19]. Several discrete sur-
face roughening models have been introduced and examined
in the past to uncover the underlying mechanisms. Random
deposition with surface relaxation or growth preferred at local
minima [20,21] represents a discrete model of the EW class,
while several models (Eden [22], ballistic deposition [23],
and restricted solid on solid [24]) belong to the KPZ class.
The interface between turbulent phases in liquid crystal films
[25,26] also falls into the KPZ class. Najem et al. [27] studied
the morphology of urban skylines for which the roughness
properties are commensurate with the EW and KPZ classes.
Fujimoto et al. [28] examined the interface dynamics in the
strongly interacting one-dimensional Bose gas and found that
the high-filling case corresponds to the EW class.

*Corresponding author: jnu.avinash@gmail.com

While surface roughening remains one aspect, several
other properties have been of concern. For example, the distri-
bution of width [29], the maximal height [30], the density of
extrema [31], the cycling effects [32], and the maximal spatial
persistence [33].

Let h(x, t ) be the height profile of a fluctuating interface on
a one-dimensional substrate with 1 � x � L. The commonly
used characterization of the height profile is the global inter-
face width

w(t, L) = 〈[h(x, t ) − h̄(t )]2〉1/2. (1)

The overline in Eq. (1) represents the average over all sites x,
and the angular brackets 〈·〉 denote the ensemble average over
different realizations. For the scale-invariant rough interface,
the global interface width exhibits the Family-Vicsek dynamic
scaling ansatz [23]

w(t, L) = tχ/z f [L/ξ (t )]. (2)

The correlation length varies as ξ (t ) ∼ t1/z, where z denotes
the dynamical exponent. The scaling function f (u) in Eq. (2)
assumes a form

f (u) ∼
{

uχ , u � 1,

constant, u � 1,
(3)

where χ is the roughness exponent that characterizes the
stationary regime ξ (t ) � L. The growth exponent β = χ/z
describes the short-time behavior of the interface.

In many growth models, it was found that while the lo-
cal width (and height-height correlation) behave similarly to
Eq. (2) as w(t, l ) = tβ fl [l/ξ (t )] (measured in windows of size
l � L), the scaling function differs from Eq. (3) as

fl (u) ∼
{

uχloc, u � 1,

constant, u � 1.
(4)

In Eq. (4), the local roughness exponent χloc is an indepen-
dent exponent [34,35]. This intriguing feature is the so-called
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anomalous roughening and has been of much interest [36–39].
López suggested that the anomalous features emerge from the
nontrivial dynamics of the mean square local slope 〈(∇h)2〉 ∼
t2κ with χloc = χ − zκ [34]. Recent studies showed anoma-
lous behavior in a class of kinetic rough interfaces externally
driven by long-time correlated noise [40–42].

Ramasco et al. [35] observed that a generic scaling the-
ory for the structure factor can reveal the unique dynamical
features, including the anomalous feature. However, to get
data collapse for the dynamical structure factor, the exponents
χ and z need to be known (discussed below). The scaling
analysis of the global and local interface widths can provide
an estimate of the two exponents and a sign of the existence
of anomalous features, respectively. Alternatively, on a double
logarithmic scale, the envelope and individual curve slopes for
the dynamical structure factor can provide an approximate es-
timate of the roughness exponent χ and the spectral roughness
exponent χs, respectively [43]. χs is a remarkable character-
istic for understanding the broad subclass of the underlying
process (discussed below). However, a precise estimate of
the spectral roughness exponent remains missing. Moreover,
a systematic analysis of the scaling feature of the dynamical
structure factor seems lacking. Ramasco et al. [35] examined
the Sneppen model (version A) [44], a self-organized interface
depenning in random media, showing faceted patterns (χs >

χ ) with χs = 1.35. Our analysis, well-supported numerically,
reveals that the precise value of the exponent is χs = 3/2.

In this paper, we employ systematically both finite-size
scaling (FSS) and finite-time scaling (FTS) methods for the
scaling analysis of the dynamical structure factor. A clean
data collapse ensures a precise estimation of the independent
critical exponents that eventually determine the universality
class of the process. We examine a class of self-organized in-
terface models in random media driven by extremal dynamics
as discussed in Ref. [45]. Strikingly, the FSS of the structure
factor provides an alternative description of the anomalous
features. Interestingly, the isotropic version of the model dis-
plays anomalous features (a faceted pattern) and belongs to
the same universality class as that of the Sneppen model.
We also introduce and analyze an anisotropic variant of the
Sneppen model and suggest the model belongs to the tKPZ
universality class [46,47].

More recently, Fontaine et al. [48] explained the existence
of one missing unstable fixed point (with the critical dy-
namical exponent z = 1) associated with the celebrated KPZ
equation in one dimension. Basically, this is the limit of an in-
finite nonlinear coupling known as the tensionless (or inviscid
limit) KPZ equation. In fact, there are three fixed points: one
stable and two unstable. The stable fixed point corresponds to
the KPZ class with z = 3/2. For zero nonlinearity, the KPZ
equation reduces to the EW class (z = 2), which corresponds
to the second unstable fixed point.

The organization of the paper is as follows. In Sec. II,
we present the definition of the models describing rough in-
terfaces evolving in random media with extremal dynamics.
Section III provides the FSS and FTS methods for the dy-
namical structure factor. The numerical results obtained from
simulations for FTS are presented in Sec. IV. Finally, the
paper concludes with a brief discussion in Sec. V.

II. MODELS

Consider a one-dimensional lattice with site labels
1, 2, . . . , L, along with periodic boundary conditions. To each
site, assign the interface height h(x, t ). The time is typically
measured in monolayer units, the number of deposited par-
ticles per unit system size. We also use the same unit. The
model-specific update rules are as follows.

A. Sneppen model (version A)

Sneppen [44] introduced a discrete model of the kinetic
roughening interface in the presence of quenched disorder.
The model is a striking example of a self-organized rough
interface, showing scale invariance in the height profile. Ini-
tially, the interface is flat h(x, t = 0) = 0. To each site, assign
a random pinning force η[x, h(x)], drawn from a uniform
distribution between 0 and 1. The update rules include the
following steps. Choose a site x′ with the smallest pinning
force only among the sites that satisfy the following slope
constraints (Kim-Kosterlitz conditions): [|h(x) + 1 − h(x −
1)| � 1 and |h(x) + 1 − h(x + 1)| � 1]. Then, increase the
height of that site by one unit: h(x′) = h(x′) + 1.

The model produces a rough interface with a faceted pat-
tern. The global width characteristic exponents are z = 1 and
χ = 1, implying that the process shows self-similarity [44].
Although the global interface width characteristic exponents
seem trivial, the analysis of the dynamical structure factor
revealed an unexpectedly nontrivial feature with χs > χ [35].

B. Anisotropic Sneppen model (version A)

We also examine an anisotropic variant of the model. Here,
we implement a different local constraint, h(x + 1) − h(x) �
0. The rest of the dynamical update occurs similarly, as men-
tioned for the Sneppen model. Eventually, the local slope
can have h(x + 1) − h(x) = −1 or � 1. While the process
keeps the two exponents z = 1 and χ = 1 unchanged, the
spectral roughness exponent becomes χs < χ (intrinsically
anomalous). Surprisingly, our analysis suggests that the model
belongs to the tKPZ universality class.

As seen from Fig. 1, the height profile for the anisotropic
case does not satisfy the space inversion symmetry (x →
−x). When the dynamics change from the isotropic to the
anisotropic Sneppen model, a transition occurs from a sub-
class with a faceted pattern to a subclass with an intrinsic
anomalous feature for the kinetic roughening interfaces. The
lack of spatial inversion symmetry implies a change in the
universality class.

C. Isotropic Maslov-Zhang model (version B)

Maslov and Zhang [45] introduced and solved a model
of self-organized criticality with a preferred direction. The
model is an anisotropic variant of the Zaitsev model [49].
They also suggested physically relevant interface dynamics
in random media (quenched disorder) belonging to the same
universality class. Our interest is in a variant of the roughening
interface model.

In the isotropic version of the model, F (x) = A[h(x + 1) −
2h(x) + h(x − 1)] + η[x, h(x)] determines the local force.
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FIG. 1. For the Sneppen model, the typical height profiles at two
values of time (in monolayers) with L = 28 for (a) isotropic and
(b) anisotropic dynamical rules.

Here A is the relative strength of the elastic force, and
η[x, h(x)] is a random pinning strength drawn from a uniform
distribution between 0 and 1. We use A = 1 in simulations.
Initially, the interface is a groove: h(x = 2i − 1, t = 0) = 1
and h(x = 2i, t = 0) = 0, where i = 1, 2, . . . , L/2. At each
site, the slope is h(x + 1, t ) − h(x, t ) = ±1. The local min-
imum occurs at the value nc(x) = h(x + 1, t ) − 2h(x, t ) +
h(x − 1, t ) = 2. In general, nc can be −2, 0, or 2. The update
occurs as h(x′) = h(x′) + 2, where the site x′ corresponds
to the sites with nc = 2 and having the largest value of the
quenched disorder η(x, h), or simply the maximum force lo-
cation for nc(x) + η(x, h). We call it the Maslov-Zhang model
(version B-1), or (MZB-1). As numerically shown below, the
model belongs to the same universality class as the Sneppen
model.

It is useful to emphasize that while the Sneppen model
follows the slope constraints (Kim-Kosterlitz conditions), the
MZB-1 model has the restrictions of the single-step (SS)
model [50]. While the height in the SS model increases by
2 with probability p if nc(x) = 2, it decreases by 2 with
probability 1 − p if nc(x) = −2. The SS model belongs to EW
or KPZ for p = 1/2 or p 
= 1/2, respectively [51]. Interest-
ingly, it is possible to obtain exact results for the SS model
in one dimension since there exists a map with the kinetic
Ising model [50,52] and the asymmetric simple exclusion
process [53].

D. Maslov-Zhang model (version B)

In the anisotropic version of the model (say, MZB-2), the
local driving force acting on a site x is F (x) = A[h(x + 1) −
h(x)] + η[x, h(x)]. We again use A = 1 and the same initial
condition as mentioned for the isotropic version of the model.
Only two height gradients, h(x + 1) − h(x) = ±1, are pos-
sible. Updates occur similarly at a site where the force has

maximum strength. The suggested exponents are z = 1 and
χ = 1/2 [45]. As shown below, the model does not exhibit
anomalous features. However, the dynamical exponent takes
a slightly different value.

III. SCALING ANALYSIS FOR STRUCTURE FACTOR

We devote this section to introducing the reader to
the Ramasco et al. theory of generic kinetic surface
roughening [35], which will be used in the rest of
the paper to explain the numerical results. In terms of
the Fourier transform of the height function, ĥ(k, t ) =
L−1/2 ∑

x[h(x, t ) − h̄(t )] exp(ikx), one can write an expres-
sion for the dynamical structure factor (or power spectrum)
S(k, t ) = 〈ĥ(k, t )ĥ(−k, t )〉. This also reveals the height-height
correlation G(l, t ) = 4/L

∑
2π�k�π/a0

[1 − cos(kl )]S(k, t ) ∝∫ π/a0

2π/L (dk/2π )[1 − cos(kl )]S(k, t ), where a0 is the lattice

spacing [35]. If we fix the time t , h̄(t ) becomes constant,
implying that the structure factor of h or h − h̄ remains the
same.

A. FSS for S(k, N, L)

For kinetic rough interfaces, the dynamical structure factor
is typically a function of the growth time and the system
size in the growth regime. To understand the detailed scaling
features comprehensively, we apply both the FSS and FTS
methods. We first show the results for the FSS for a fixed
value of the growth time (in monolayers). The structure fac-
tor remains constant for the low-wave number regime and a
power law ∼1/k2χs+1 in the nontrivial regime. Interestingly,
the structure factor remains independent of the system size,
even for anomalous rough interfaces. We checked this numer-
ically for rough interfaces belonging to different classes, for
example, EW, KPZ, and the isotropic (or anisotropic) Snep-
pen model (cf. Fig. 2). If we only consider the growth time
as the number of deposited particles N , the structure factor
clearly depends on L even in the high wave-number regime
for anomalous processes. Mathematically, one can interpret
the system size-independent feature as

S(k, N, L) = S(k, t ), with t = N/L,

for fixed growth time (in monolayers). As t is constant, the
structure factor is only a function of the wave number. If the
spectral roughness exponent χs is different from the roughness
exponent χ , the underlying process has an anomalous feature.

B. FTS for S(k, t )

Varying the time t in the growth regime, the structure factor
S(k, t ) as a function of the wave number k shows typically two
distinct regimes. Below a cutoff of k � k0 ∼ L−1 ∼ t−1/z, the
power remains independent of k but increases with time as
∼t a. In the nontrivial wave number regime k � k0, the struc-
ture factor, in general, can show scaling in both arguments
∼1/k2χs+1 and ∼t b. Now, we can write an expression for
the structure factor as a function of the two arguments (wave
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FIG. 2. The FSS of the structure factor for the Sneppen model,
with the system sizes L = 211, 212, . . . , 220. The lower (upper)
curves correspond to the isotropic (anisotropic) update rule with the
spectral roughness exponent 2χs + 1 = 4 (2). The dashed straight
line guides the slope. Since χs 
= χ = 1, the rough interfaces are
anomalous. The growth time (in monolayers) is t = 24. Each curve
is ensemble averaged over a 2 × 103 independent realization of the
rough interfaces.

number and time) [35,37]

S(k, t ) ∼
{

t a, k � t−1/z,

t b/k2χs+1, t−1/z � k � 1/2.
(5)

As proposed in the previous studies, the structure factor
shown in Eq. (5) (in one dimension) follows the scaling ansatz

S(k, t ) = k−(2χ+1)G(kt1/z ) = t (2χ+1)/zH (u), (6)

where the scaling functions in Eq. (6) are

G(u) ∼
{

u2χ+1, if u � 1,

u2(χ−χs ), if u � 1,
(7a)

H (u) ∼
{

constant, if u � 1,

u−(2χs+1), if u � 1.
(7b)

Since G(u) = u2χ+1H (u), the two scaling functions are
complementary. This implies that for one physical prop-
erty S(k, t ), one scaling function suffices for its complete
characterization.

Comparing Eqs. (5) and (6), it is easy to recognize the
exponents a and b in terms of the conventional exponents z,
χ , and χs as

a = (2χ + 1)/z, (8)

and

b = 2(χ − χs)/z. (9)

Equation (8) also suggests the dynamical exponent satisfy a
scaling relation

z = 1/(a − 2β ).

Equation (9) also implies simple conditions for different
subclasses [35]

b = 0 ⇒ χs = χ

{
if χs < 1 ⇒ Family Vicsek,

if χs > 1 ⇒ super rough,

b > 0 ⇒ χs < χ ⇒ intrinsic anomalous,

b < 0 ⇒ χs > χ ⇒ faceted pattern.

Notice that the time t considered here is such that the global
interface width corresponds to the growth regime. It is easy to
note that no trace of the spectral roughness exponent appears
in the global width

w2(t ) =
∫

dkS(k, t ) = t
(2χ+1)

z

∫
H (u)

d (kt1/z )

t1/z

∼ t
2χ

z ∼ t2β.

Because of this, the structure factor is the most relevant
characterization and provides subtle details of the underly-
ing process. Numerically, it is easy to determine the scaling
function H (u ∼ kt1/z ) = t−aS(k, t ). We only require the two
critical exponents a and z = 1/(a − 2β ). One can easily es-
timate the two exponents by examining the scaling behavior
of the power in the low-wave number component and the
square of the global interface width as a function of time.
Replacing t → Lz in Eqs. (5) or (6), one can immediately
obtain the global interface width as w2 ∼ L2χ , which consis-
tently reflects the scaling behavior of the structure factor in
the stationary regime.

IV. NUMERICAL RESULTS FOR FTS

Figures 3 and 4 display the properties of the dynamical
structure factor and its analysis using FTS for the Snep-
pen model. Table I presents the estimated critical exponents.
Similarly, we studied the MZB-1 and MZB-2 models. Clean
data collapse excellently supports the numerically estimated
exponents within the statistical error. Our results are con-
sistent with Refs. [35,44] that suggest z = 1 and χ = 1 for
the Sneppen model. This implies that a = (2χ + 1)/z = 3
and 2β = 2χ/z = 2. Further, our finer numerical results [cf.
Fig. 3(b)] suggest b = −1. Eventually, the spectral roughness
exponent is χs = χ − bz/2 = 3/2, which differs slightly from
the previously estimated value of 1.35 [35]. We also get the
same set of exponents for the MZB-1 model, indicating that
the two models belong to the same universality class.

Similarly, the critical exponents for the anisotropic Snep-
pen model are z = 1, χ = 1, and χs = 1/2 (cf. Figs. 5 and 6),
implying the model shows intrinsically anomalous behavior.
More recently, Rodríguez-Fernández et al. [46] provided a
direct numerical simulation of the tKPZ equation

∂t h = λ

2
(∂xh)2 + η(x, t ), (10)

which shows intrinsic anomalous behavior with z = 1, χ =
1, and χs = 1/2. Here, λ is the nonlinearity parameter, and
η(x, t ) denotes uncorrelated Gaussian noise in space-time
with zero mean. One can describe the space derivative of
the height profile u = ∂xh by the inviscid stochastic Burger
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TABLE I. A summary of the critical exponents characterizing the dynamical structure factor properties. For the Sneppen model, the first
column presents the expected theoretical exponents.

Exponent Sneppen model [35] MZB-1 Anisotropic Sneppen model MZB-2

b −1 −0.98(1) −1.00(1) 1 0.99(1) 0
2β 2 1.98(1) 1.98(1) 2 1.96(1) 1.71(4)
z = 1/(a − 2β ) 1 1.03(2) 1 1.01(2) 1 1.04(2) 0.59(4)
χ = βz 1 1.02(3) 1 1.00(3) 1 1.02(3) 0.51(7)
χs = χ − bz

2 1.5 1.53(4) 1.35 1.50(4) 0.5 0.51(2) 0.51(7)

equation

∂t u = λu∂xu + ∂xη(x, t ).

Assuming u as a rough interface, they examined its dynamical
structure factor and found z = 2/3, χ = 1/3, and χs = −1/2.
They also examined the stochastic Korteweg–de Vries (KdV)
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FIG. 3. For the Sneppen model. (a) The structure factor S(k, t )
after an evolution time t (in monolayers) for the rough profile h(x, t ),
with L = 216. The arrows mark the effect of increasing growth time.
(b) A clean plot of tS(k, t ) versus k shows the absence of time
dependence in the nontrivial k regime, or S(k, t ) ∼ 1/t .

equation (an important model of weakly nonlinear waves)

∂t u = c∂3
x u + u∂xu + ∂xη(x, t ),
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FIG. 4. In the Sneppen model. (a) At a fixed wave number k, the
time scaling of power (�) ∼t a for k � k0 and the power (�) ∼t b for
k � k0. The symbol (•) corresponds to the square of the global width
Â w2(t ) ∼ t2β . Straight lines are the best-fit curves. (b) The scaling
function for the structure factor H (u) ∼ t−aS(k, t ), with an argument
u ∼ kt1/z. We show data collapse using theoretically expected values
for the two critical exponents a = 3 and 2β = 2. Here, the typical
characteristic exponents are z = 1, χ = 1, and χs = 3/2.
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which one can get from

∂t h = c∂3
x h + (∂xh)2/2 + η(x, t ), (11)

with u = ∂xh. Here, c is a parameter. Interestingly, they ob-
served that the height profile corresponding to the stochastic
KdV equation also belongs to the same universality class as
that of the tKPZ equation in one dimension. Similarly, the
stochastic KdV equation and the inviscid stochastic Burger
equation belong to the same universality. Our results suggest
that the anisotropic Sneppen model and the tKPZ equa-
tion seem to share the same universality class.

For the MZB-2 model, the expected exponents, as men-
tioned in Ref. [45] are z = 1 and χ = 1/2. However, our
numerical result (not shown) suggests (χs = χ < 1), with
z ≈ 0.6 and χ ≈ 1/2.

Figure 7 shows the scaling function for the global interface
width w(t, L) for both dynamical rules of the Sneppen model.
We find that w(t, L) behaves exactly in the same manner
for both models, with z = 1 and χ = 1. However, the global
interface width is not able to capture the anomalous features,
despite the fact that the models belong to different universality
classes.
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FIG. 6. Same as Fig. 4 for the anisotropic Sneppen model. Here,
z = 1, χ = 1, and χs = 1/2.

V. CONCLUSION

We employed both finite-size and finite-time scaling
methods for examining the dynamical structure factor of
anomalous rough interfaces. We emphasized that the method
can accurately determine the universality features (the crit-
ical exponents and the scaling functions). In particular, we
applied the methods to a class of discrete models (the Seppen
model and the Maslov-Zhang model) of rough interfaces in
the presence of quenched disorder driven by extremal dynam-
ics. Interestingly, the finite-size scaling analysis reveals the
structure factor remains independent of system size for fixed
growth times (in monolayers). This also offers an alternative
way to characterize the anomalous rough interfaces.

Finally, we emphasize the system-specific findings of our
simulation studies. (i) The MZB-1 model shows faceted pat-
terns (χs > χ ), with z = 1, χ = 1, and χs = 3/2. Strikingly,
the model belongs to the same universality class as that of
the Sneppen model. (ii) We also introduced an anisotropic
variant of the Sneppen model. The model shows an intrin-
sically anomalous feature (χs < χ ), with z = 1, χ = 1, and
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FIG. 7. Data collapse of the squared global interface width for
the Sneppen model, with z = 1 and χ = 1. The three regimes,
namely, the random deposition growth t � 1, the nonlinear growth
regime 1 � t � Lz, and the saturation regime t � Lz are clearly
distinguishable. The time is measured in monolayers. The lower
(upper) curves belong to isotropic (anisotropic) dynamics.

χs = 1/2, and seems to belong to the tKPZ class or the height
profile corresponding to the stochastic KdV equation [46].
(iii) In particular, the MZB-2 model has been of interest in
the context of a solvable model of self-organized criticality
(SOC) [45]. Although the MZB-2 model exhibits Family-
Vicsek scaling (χ = χs < 1) with z ≈ 0.6 and χ ≈ 1/2, the
dynamical exponent significantly differs from the previously
argued value z = 1 [45]. Therefore, the MZB-2 model does
not belong to the same universality class as the SOC model
discussed in Ref. [45]. We also examined several discrete
models of the standard universality classes and consistently
found the applicability of the FSS and FTS methods. In
fact, the approach is general and applicable to a wide range
of rough surfaces or interfaces. Although the methods can
enhance our understanding significantly, the entire set of

physical features that determine anomalous behavior needs
further exploration.

Córdoba-Torres et al. experimentally studied the kinetic
roughening of dissolving polycrystalline pure iron and found
that the surface images exhibit two growth regimes [54]. In
regime I, which has initial dissolution charges up to 4.5 C,
the metal surface displays an intrinsic anomalous roughen-
ing. Regime II corresponds to the thick film limit, and the
metal surface has a high morphological anisotropy. In regime
II, one-dimensional interfaces along the orthogonal direction
to the anisotropy show anomalous roughening with faceted
features [54].

It is well known that the KPZ equation remains invari-
ant under Galilean transformation, yielding a scaling relation
χ + z = 2 [2]. The same relationship seems to hold for the
Sneppen model (cf. Table I). However, the space inversion
symmetry x → −x is broken in the anisotropic Sneppen
model [cf. Fig. 1(b)], and the same happens for the height
process for the KdV equation because of an odd derivative
term in space [cf. Eq. (11)]. Since the height process for the
KdV equation belongs to the tKPZ universality class [46],
the class should not respect the space inversion symmetry.
However, this is unclear from Eq. (10). We infer that although
the anisotropic Sneppen model has quenched noise and the
tKPZ class has Gaussian noise, both have some common fea-
tures: large nonlinearity, the scaling relation χ + z = 2, and
possibly a lack of space-inversion symmetry.

Importantly, only two exponents are independent for the
models studied here. For the Sneppen model and MZB-1,
χ + z = 2 implies that z and χs are independent exponents.
Although the MZB-2 model does not follow the scaling rela-
tion, there are two independent exponents, z and χ , as χs = χ .
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