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A quantum random-walk model is established on a one-dimensional periodic lattice that fluctuates between
two possible states. This model is defined by Lindblad rate equations that incorporate the transition rates between
the two lattice states. Leveraging the system’s symmetries, the particle velocity can be described using a finite set
of equations, even though the state space is of infinite dimension. These equations yield an analytical expression
for the velocity in the long-time limit, which is employed to analyze the characteristics of directed motion.
Notably, the velocity can exhibit multiple inversions, and to achieve directed motion, distinct, nonzero transition
rates between lattice states are required.
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I. INTRODUCTION

Directed motion of particles in systems subjected to de-
terministic or stochastic unbiased driving forces has garnered
significant and continuous attention [1–3]. This phenomenon,
commonly called ratchet effect, has found important ap-
plications in physics [1], chemistry [2], biology [3,4], and
nanotechnology [5]. The ratchet effect has not only been
studied in systems composed of particles but has also been
analyzed in extended systems [6]. From a theoretical per-
spective, significant efforts have been made to unravel the
underlying mechanisms behind the emergence of directed
motion [1,3]. To make directed motion possible, it has been
shown that specific spatiotemporal symmetry and supersym-
metry conditions must be broken [7]. Another intriguing
phenomenon, frequently observed in these systems, is the
reversal of current direction when a system parameter varies
[8–11].

The ratchet effect, which was originally analyzed in
classical systems, was later extended to the quantum do-
main [4,12,13]. Specifically, research has demonstrated that
quantum phenomena, such as tunneling and wave-packet
dispersion, can either enhance the ratchet current [14] or
lead to a reduction in transport efficiency [15]. A crucial
factor contributing to ratchet behavior is the violation of
time-reversal symmetry [16,17]. This can be accomplished,
for example, through the irreversibility of dissipative effects.
In this context, investigations have been conducted into the
quantum dynamics of a particle in an asymmetric potential
with Ohmic [18] and super-Ohmic dissipation [16]. It is also
worth mentioning spin ratchets [19], with a particular empha-
sis on dissipative spin ratchets [20,21], where the violation
of time-reversal symmetry is attributed to both dissipative
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effects and external magnetic fields. The ratchet effect has also
been studied in the absence of dissipation where the system
follows Hamiltonian dynamics (see, e.g., Ref. [22]). In this
case, the particle is typically subjected to potentials that break
certain symmetries, as seen in the flashing ratchet potential
considered in Ref. [23], the delta-kicked model in Ref. [24],
and the Bose-Hubbard model in Ref. [25]. These types of
potentials can be created, for example, using optical lattices
[23,26,27]. Furthermore, these systems have also been used
to study the relationship between many-body quantum chaos
and entanglement in quantum ratchet systems [28], as well
as the emergence of directed transport in interacting chaotic
systems [29].

Experimental investigations of quantum ratchets have been
continually carried out since one of the original proposals
involving a SQUID device [30]. For instance, in Ref. [31],
the observation of a polarization-sensitive magnetic quan-
tum ratchet current was reported, where the direction and
magnitude are determined by the orientation of the electric
field. In another study [14], a scattering quantum ratchet was
demonstrated, involving a directional flow of electrons in a
two-dimensional electron gas. Furthermore, Ref. [32] pre-
sented an electronic quantum ratchet in graphene layers. In
addition to these, quantum ratchets have also been realized in
optical systems, as seen in the case of a delta-kicked photonic
quantum ratchet [33] and Bose-Einstein condensates in an
optical lattice [27].

To gain a deeper understanding of the physics underlying
the ratchet effect, it is advantageous to develop simplified
models that retain the essential characteristics of the phe-
nomenon under study and enable the extraction of analytical
solutions [10,34]. In particular, in Ref. [10] it is introduced
a classical, one-dimensional random-walk model that allows
the analytical study of the inversion of directed motion in
a spatially symmetric fluctuating lattice. In this paper, we
consider a quantum version of that model where some of the
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classical transitions between neighboring sites are replaced
with coherent transitions. The objective of our study is to
determine what different physical phenomena appear due to
the quantum effects associated with the coherent transitions.
Notably, it is found that multiple inversions of directed motion
appear, a phenomenon that is absent in the classical case
analyzed in Ref. [10]. The evolution of the system considered
here is mathematically described using Lindblad rate equa-
tions [25,35], which implies a non-Markovian evolution for
the system under study. Our model allows us to derive an
analytical expression for the long-time limit of the particle’s
velocity. This holds particular appeal because non-Markovian
systems are typically amenable only to numerical treatment.
The analytical solution for the velocity enables us to examine
the circumstances under which directed motion exists and
multiple current reversals occur. To obtain the analytical ex-
pression for the velocity, the approach for classical master
equations presented in Ref. [36] is extended to Lindblad rate
equations. Using this extension, the infinite number of equa-
tions describing the evolution of the matrix elements of the
system density operator is reformulated in terms of a finite
number of equations that can be solved analytically.

The structure of the remaining sections in this paper is
as follows. In Sec. II, we introduce the model under inves-
tigation. The derivation of the Lindblad rate equations that
describe the system’s evolution is provided in Appendix A.
Section III examines the symmetries of the system, and in
Sec. IV, we establish the equations that describe the evolution
of the velocity and its long-time behavior. Certain technical
details required for deriving these equations can be found in
Appendix B. Section V explores the key properties of the
particle velocity in the long-time limit. Finally, in Sec. VI, we
present a summary and draw conclusions based on the aspects
covered in this study.

II. DESCRIPTION OF THE MODEL

Consider a quantum system composed of a particle that can
be found at any site of the set P = { jL : j ∈ Z}, with L a
given length and Z the set of integers (see Fig. 1). Let | j〉 be
the quantum state associated with the position jL. These kets
form an orthonormal basis {| j〉 : j ∈ Z} for the state space of
the particle. The set P constitutes a one-dimensional lattice of
sites that has two possible states denoted by +1 and −1. The
lattice fluctuates randomly between these two states following
a Markovian dichotomic process, with γ± being the transition
rates from state ±1 to ∓1. Consequently, the probability that
the lattice sojourns in the state ±1 for a span of time τ and
then changes to the state ∓1 in the time interval between τ and
τ + dτ is given by γ±e−γ±τ dτ (see Ref. [37]). Therefore, the
mean residence times at the lattice states ±1 are T± = γ −1

± .
As sketched in Fig. 1, in the lattice state +1 there are

coherent transitions between the state vectors |3 j + 1〉 and
|3 j + 2〉 at a frequency ω. The corresponding sites (3 j + 1)L
and (3 j + 2)L are called nonabsorbing. In addition, there are
incoherent transitions from |3 j + 1〉 and |3 j + 2〉 to |3 j〉 and
|3 j + 3〉, respectively, at a rate �. No transitions are possible
from state vectors of the form |3 j〉 to any other states and, for
this reason, the sites 3 jL are called absorbing. In Fig. 1, the
absorbing sites are depicted as crosses and the nonabsorbing

FIG. 1. Sketch of the two possible states ±1 of the lattice under
which the particle can move. The absorbing sites are depicted as
crosses, while the nonabsorbing ones as solid circles. The horizontal
axis appears in units of the distance L between consecutive positions.
The rate � of the incoherent transitions, the frequency ω of the co-
herent transitions, and the rates γ± at which the lattice state changes
are also illustrated.

as solid circles. The lattice state −1 is obtained by invert-
ing the lattice state +1 with respect to any site of the form
(3 j − 1)L. Alternatively, it can be obtained by translating the
lattice state +1 by (3 j + 1)L to the right or, equivalently,
by (3 j + 2)L to the left. Observe that both lattice states are
periodic with period 3L and invariant under inversions about
the absorbing sites.

In terms of the jump operators Rj = | j + 1〉〈 j|, with j ∈
Z, the above-described dynamics in each lattice state can be
modeled by the superoperators

L±· = − i

h̄
[H±, ·] + D±·, (1)

where [·, ·] denotes the commutator, the Hamiltonians H± are
given by

H± = h̄ω
∑
k∈Z

(R3k±1 + R†
3k±1), (2)

and the dissipators D± are defined by

D+· = �
∑
k∈Z

[
R†

3k · R3k + R3k+2 · R†
3k+2

− 1

2
{R3kR†

3k + R†
3k+2R3k+2, ·}

]
, (3)

D−· = �
∑
k∈Z

[
R3k · R†

3k + R†
3k+1 · R3k+1

− 1

2
{R†

3kR3k + R3k+1R†
3k+1, ·}

]
, (4)

with {·, ·} the anticommutator. The first term on the righthand
side of Eq. (1) is responsible for the coherent evolution as-
sociated with the Hamiltonians H± in Eq. (2). It describes
coherent, tunnelinglike transitions between those states asso-
ciated with neighboring, nonabsorbing sites. By contrast, the
second term, involving the dissipators D± in Eqs. (3) and
(4), gives rise to incoherent transitions to the states associated
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FIG. 2. Sketch illustrating a possible optical trapping potential
for the experimental realization of the lattice states described in
Fig. 1. The figure also depicts some relevant quantities characterizing
the optical trapping potential. Specifically, E and E ′ represent the
ground-state energies of the localized states around the nonabsorbing
and absorbing sites, respectively, ω denotes the tunneling frequency
between adjacent nonabsorbing sites, and � indicates the incoherent
transition rate from a nonabsorbing site to an absorbing one. The in-
coherent rate for the reverse transition is given by �e−�E/(kB�), where
�E = E − E ′, kB is the Boltzmann constant, and � is the absolute
temperature of the thermal reservoir. If kB� � �E , the incoherent
rate for the reverse transition becomes negligible compared to �.

with the absorbing sites. Notice that L± have the form of a
generator of a quantum dynamical semigroup [38].

In analogy to composite stochastic processes [39], the den-
sity operator of the system, ρ(t ), can be expressed in terms
of two positive operators ρ±(t ) as ρ(t ) = ρ+(t ) + ρ−(t ). The
evolution of these operators is governed by the Lindblad rate
equations

d

dt
ρ±(t ) = L±ρ±(t ) − γ±ρ±(t ) + γ∓ρ∓(t ). (5)

The concept of Lindblad rate equations was initially intro-
duced in Ref. [35] as a means to include non-Markovian
effects in Lindblad-like master equations. Subsequently, it
was further generalized in Ref. [25]. To some extent, the
Lindblad rate equations can be regarded as a quantum version
of the composite stochastic processes introduced in Ref. [39].
In Appendix A, we provide a derivation of Eq. (5) that retains
the spirit presented in Refs. [35,39].

The initial conditions for the Lindblad rate equations in
Eq. (5) depend on the probability p±(t0) that the lattice state
is ±1 at the initial time t0. Specifically, the initial condi-
tions are ρ+(t0) = p+(t0)ρ(t0) and ρ−(t0) = p−(t0)ρ(t0) (see
Appendix A).

A possible experimental implementation of the lattice
states depicted in Fig. 1 could be carried out using optical
trapping potentials. In principle, quite arbitrary forms of trap-
ping potentials can be generated by the fast-scanning of a
focused laser beam [40] or by holographic methods [41]. Any
of the lattice states considered in Fig. 1 would correspond
to a potential of the type depicted in Fig. 2. As seen in this
figure, the absorbing and nonabsorbing sites are represented

by potential wells, with the depth of the absorbing wells much
greater than that of the nonabsorbing ones. We assume that the
system is in contact with a thermal reservoir at a sufficiently
low absolute temperature �. The ground-state energies of
the localized states around the nonabsorbing and the absorb-
ing sites are denoted by E and E ′, respectively. Transitions
between adjacent nonabsorbing sites occur at a rate ω as a
consequence of tunneling between the localized states in the
corresponding wells.

Given the significant disparity between the ground-state
energies E and E ′, the transition between a nonabsorbing site
to its adjacent absorbing site inevitably entails dissipation of
energy, induced by the thermal reservoir. Unlike tunneling
transitions, these incoherent transitions exhibit asymmetry
[38,42]. Specifically, if � represents the incoherent transi-
tion rate from a nonabsorbing site to an absorbing one, then
the corresponding rate for the reverse transition is given by
�e−�E/(kB�). Here, �E = E − E ′ is the energy difference
between the localized ground states associated with the non-
absorbing and the absorbing sites (see Fig. 2) and kB the
Boltzmann constant. As previously suggested, the temper-
ature � is assumed to be significantly lower than �E/kB,
rendering the incoherent transitions allowing departure from
absorbing wells negligible, hence the term absorbing sites.

The random transitions between the two lattice states
shown in Fig. 1 can be implemented by exploiting the pos-
sibility of generating optical trapping potentials dependent on
an internal degree of freedom of the particle upon which they
act [43]. In our scenario, this internal degree of freedom can
be described by a spin with two possible states, denoted as
|+〉 and |−〉. The optical trapping potentials corresponding to
these two states, denoted as U+(x) and U−(x), respectively,
would take shapes similar to that shown in Fig. 2, with the
potential U−(x) displaced a length L to the right relative to
U+(x). For an arbitrary spin state, the potential experienced by
the particle would therefore take the form U+(x) ⊗ |+〉〈+| +
U−(x) ⊗ |−〉〈−|. To induce transitions from the spin state |±〉
to |∓〉, or equivalently from the optical trapping potential
U±(x) to U∓(x), it would suffice to apply π pulses to the
particle. In our case, the time interval τ elapsed between the
application of two consecutive π pulses should be a random
variable with probability density γ±e−γ±τ , where the sign ±
corresponds to the state taken by the spin during the interval
under consideration.

III. SYMMETRY CONSIDERATIONS

In this section, we discuss several symmetry properties
of the superoperators L± that arise as a consequence of the
symmetries of the corresponding states of the lattice. In order
to do this, for any k ∈ Z, we introduce the translation operator
by k units

Tk =
∑
j∈Z

| j + k〉〈 j|, (6)

and the inversion operator about site kL


k =
∑
j∈Z

|2k − j〉〈 j|. (7)
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From these definitions, it is clear that 
k is Hermitian and
unitary and that Tk is a unitary operator that satisfies TjTk =
Tj+k and T †

k = T−k for all j, k ∈ Z.
Recall that both lattice states are spatially periodic with

period 3L and also invariant under inversions about any of the
absorbing sites (see Fig. 1). In addition, the lattice state −1
is obtained by translating the lattice state +1 by (3 j + 1)L
to the right or by inverting it with respect to any lattice sites
of the form (3 j − 1)L (see Fig. 1). The spatial periodicities
of the lattice states ±1 are expressed by the invariance of L±
under the aforementioned translations

L± = T3 jL±T †
3 j, (8)

where we have introduced the translation superoperator
Tk· = Tk · T †

k and its adjoint with respect to the Hilbert-
Schmidt inner product T †

k · = T †
k · Tk . Analogously, the inver-

sion invariances are expressed by

L+ = P3 jL+P3 j (9)

and

L− = P3 j+1L−P3 j+1, (10)

with the inversion superoperator Pk· = 
k · 
k . Finally, the
aforementioned transformations from one lattice state to the
other are represented by

L− = T3 j+1L+T †
3 j+1 (11)

and

L∓ = P3 j−1L±P3 j−1. (12)

Notice that, from the definitions of Tk and Pk , it is clear that
T †

k Tk = TkT †
k = I and P2

k = I, with I the identity superop-
erator.

A property that follows straightforwardly from Eqs. (5) and
(12) is that the operator ρ̃±(t ) = P−1ρ∓(t ) satisfies

d

dt
ρ̃±(t ) = L±ρ̃±(t ) − γ∓ρ̃±(t ) + γ±ρ̃∓(t ). (13)

Hence, ρ̃+(t ) and ρ̃−(t ) satisfy exactly the same equations as
ρ+(t ) and ρ−(t ) but with γ+ and γ− interchanged. The above-
described symmetries of L± are used in the next sections to
anticipate some properties of the system dynamics.

IV. DERIVATION OF THE PARTICLE VELOCITY

We are interested in characterizing the mean velocity of
the particle. In order to do so, we first introduce the position
operator

X = L
∑
j∈Z

j| j〉〈 j|, (14)

whose mean value at time t is given by

〈X 〉(t ) = Tr[Xρ(t )] =
∑
α=±

Tr[Xρα (t )], (15)

where Tr(·) denotes the trace. The mean velocity is then
defined as

v(t ) = d

dt
〈X 〉(t ). (16)

Before establishing a method to calculate v(t ), let us dis-
cuss some consequences of the symmetries described in the
previous section. As mentioned before, the operators ρ̃±(t )
satisfy the same equations as ρ±(t ) but with the rate param-
eters γ+ and γ− interchanged [see Eqs. (5) and (13)]. If the
initial conditions are invariant under inversions about site −L,
i.e., P−1ρ±(0) = ρ±(0), it then follows from the uniqueness
of the solution that ρ̃±(t ; γ−, γ+) = ρ±(t ; γ+, γ−), where the
dependence on the rate parameters γ± has been written ex-
plicitly. Consequently, from the definition in Eq. (15) and
the fact that P−1X = −X − 2LI , with I the identity operator,
it follows that 〈X 〉(t ; γ+, γ−) = −〈X 〉(t ; γ−, γ+) − 2L and,
therefore, v(t ; γ+, γ−) = −v(t ; γ−, γ+). Below it is shown
that the long-time limit of the velocity v∞ = limt→+∞ v(t )
is independent of the initial conditions. Thus, v∞(γ+, γ−) =
−v∞(γ−, γ+) regardless of the initial conditions and, in par-
ticular, v∞ = 0 if γ+ = γ−. As a result, a necessary condition
to have directed motion is that γ+ �= γ−.

Inspired by the approach of Ref. [36], in order to obtain an
explicit expression for v(t ), it is convenient to introduce the
operators

�±(t ) =
∑
j∈Z

T3 jρ±(t ), (17)

which are clearly invariant under translations by 3m units, i.e.,
T3m�±(t ) = �±(t ). In addition, taking into account Eq. (8), it
readily follows that �±(t ) satisfy the same equations as ρ±(t ),
i.e., Eq. (5). In terms of the matrix elements

λ
(±)
j,k (t ) = 〈 j|�±(t )|k〉, (18)

the invariance of �±(t ) under translations by 3m units takes
the form

λ
(±)
j,k (t ) = λ

(±)
j+3m,k+3m(t ). (19)

It should also be noticed that
∑

α=±
∑3

j=1 λ
(α)
j, j (t ) =∑

α=± Tr[ρα (t )] = Tr[ρ(t )] = 1.
Using the evolution equations for ρ±(t ) in Eq. (5), in com-

bination with the properties of �±(t ) discussed above, it can
be verified that

v(t )

L
= �[λ(−)

3,3 (t ) − λ
(−)
2,2 (t ) + λ

(+)
2,2 (t ) − λ

(+)
1,1 (t )]

− 2ωIm[λ(−)
3,2 (t ) + λ

(+)
2,1 (t )], (20)

with Im(z) the imaginary part of the complex number z. For a
detailed derivation of Eq. (20), see Appendix B.

The quantum nature of our model is clearly evidenced
in Eq. (20). Within this equation, two distinct terms of
different nature are present. Firstly, the term vq(t )/L =
−2ωIm[λ(−)

3,2 (t ) + λ
(+)
2,1 (t )] depends on the nondiagonal el-

ements of the partial density operators ρ±(t ), commonly
referred to as coherences. These coherences lack a clas-
sical analog and are inherently quantum. In addition, the
term vc(t )/L = �[λ(−)

3,3 (t ) − λ
(−)
2,2 (t ) +λ

(+)
2,2 (t ) − λ

(+)
1,1 (t )] de-

pends only on the diagonal elements of ρ±(t ), commonly
referred to as populations. This term can be easily interpreted
through classical arguments of population balance: the par-
ticle advances (retreats) as a portion of the population from
sites immediately to the left (right) of the absorbing sites is
absorbed by them.
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To determine the average velocity in Eq. (20), it is first nec-
essary to solve the evolution equations for the matrix elements
of �±(t ). At first sight, this would involve a system of an in-
finite number of coupled differential equations. Nevertheless,
using the periodicity property in Eq. (19), this infinite system
can be reduced to a finite number of differential equations for
the matrix elements λ

(±)
j,k (t ) with j, k ∈ {1, 2, 3}, i.e., 18 equa-

tions. The explicit form of twelve of these equations is

D−,0λ
(−)
1,1 (t ) = �[λ(−)

3,3 (t ) + λ
(−)
2,2 (t )] + γ+λ

(+)
1,1 (t ),

D−,2λ
(−)
2,2 (t ) = iω[λ(−)

2,3 (t ) − λ
(−)
3,2 (t )] + γ+λ

(+)
2,2 (t ),

D−,2λ
(−)
3,3 (t ) = −iω[λ(−)

2,3 (t ) − λ
(−)
3,2 (t )] + γ+λ

(+)
3,3 (t ),

D+,2λ
(+)
1,1 (t ) = −iω[λ(+)

2,1 (t ) − λ
(+)
1,2 (t )] + γ−λ

(−)
1,1 (t ),

D+,2λ
(+)
2,2 (t ) = iω[λ(+)

2,1 (t ) − λ
(+)
1,2 (t )] + γ−λ

(−)
2,2 (t ),

D+,0λ
(+)
3,3 (t ) = �[λ(+)

2,2 (t ) + λ
(+)
1,1 (t )] + γ−λ

(−)
3,3 (t ),

D−,1λ
(−)
1,2 (t ) = iωλ

(−)
1,3 (t ) + γ+λ

(+)
1,2 (t ),

D−,1λ
(−)
1,3 (t ) = iωλ

(−)
1,2 (t ) + γ+λ

(+)
1,3 (t ),

D−,2λ
(−)
2,3 (t ) = −iω[λ(−)

3,3 (t ) − λ
(−)
2,2 (t )] + γ+λ

(+)
2,3 (t ),

D+,2λ
(+)
1,2 (t ) = −iω[λ(+)

2,2 (t ) − λ
(+)
1,1 (t )] + γ−λ

(−)
1,2 (t ),

D+,1λ
(+)
1,3 (t ) = −iωλ

(+)
2,3 (t ) + γ−λ

(−)
1,3 (t ),

D+,1λ
(+)
2,3 (t ) = −iωλ

(+)
1,3 (t ) + γ−λ

(−)
2,3 (t ), (21)

where we have introduced the differential operators

D±, j = d

dt
+

(
j
�

2
+ γ±

)

for j = 0, 1, 2. The remaining six equations can be obtained
by taking the complex conjugate of the last six equations ap-
pearing in Eq. (21) and using that �±(t ) are Hermitian.

Taking into account the definition of �±(t ), the initial
conditions for the system of differential equations in Eq. (21)
can be obtained from the initial conditions ρ±(0) by λ

(±)
j,k (0) =∑

m∈Z〈 j + 3m|ρ±(0)|k + 3m〉. In addition, by adding the first
six equations of Eq. (21), it can be verified that the derivative
with respect to time of

∑
α=±

∑3
j=1 λ

(α)
j, j (t ) is zero, which is

in accordance with the fact that
∑

α=±
∑3

j=1 λ
(α)
j, j (t ) = 1.

In order to explore the possibility of steady state solutions
λ̃

(±)
j,k of the system of differential equations in Eq. (21), one

just has to take all of the derivatives on the lefthand side of
Eq. (21) equal to zero and replace λ

(±)
j,k (t ) by λ̃

(±)
j,k . This leads

to a homogeneous linear system of algebraic equations with
a solution space of dimension one. The free parameter
that appears can be computed by imposing the condition∑

α=±
∑3

j=1 λ̃
(α)
j, j = 1. The analytical expression obtained is

quite lengthy and, thus, is not included here. In addition, it can
be verified that the real parts of the nonzero eigenvalues of the
coefficient matrix associated with the system of equations in
Eq. (21) are negative. Consequently, regardless of the initial
conditions, in the long-time limit all the solutions λ

(±)
j,k (t ) tend

to the steady-state solution λ̃
(±)
j,k . According to Eq. (20), the

long-time limit of the velocity, v∞, is also well defined and
unique.

Substituting the steady-state solution λ̃
(±)
j,k in Eq. (20), one

obtains after a lengthy calculation that

v∞
ωL

= 3�(1 − �2)γ̃ 2�̃F

G
, (22)

where we have introduced the dimensionless parameters � =
(γ+ − γ−)/γ , γ̃ = γ /ω, and �̃ = �/ω, with γ = γ+ + γ−,
and the dimensionless quantities

F = −�̃3(2γ̃ + �̃)[(5 − �2)γ̃ 2 + 10γ̃ �̃ + 4�̃2]

− 4�̃[8�2γ̃ 3 + 10(1 + �2)γ̃ 2�̃ + 16γ̃ �̃2 + 7�̃3]

+ 32[(1 + �2)γ̃ 2 + γ̃ �̃ − �̃2] + 64 (23)

and

G = �̃5(γ̃ + �̃)2(2γ̃ + �̃)[4�̃2 + 12γ̃ �̃ + (9 − �2)γ̃ 2]

+ 8�̃3(γ̃ + �̃)[(9 + 7�2)γ̃ 4 + 3(13 + 3�2)γ̃ 3�̃

+ 2(29 + 2�2)γ̃ 2�̃2 + 36γ̃ �̃3 + 8�̃4]

+ 4�̃[2(5 + 22�2 + 5�4)γ̃ 5

+ (127 + 122�2 + 7�4)γ̃ 4�̃ + 4(103 + 37�2)γ̃ 3�̃2

+ (583 + 73�2)γ̃ 2�̃3 + 384γ̃ �̃4 + 96�̃5]

+ 32[3(1 − �4)γ̃ 4 + 2(13 + 7�2)γ̃ 3�̃

+ (71 + 17�2)γ̃ 2�̃2 + 80γ̃ �̃3 + 32�̃4]

+ 64[3(1 − �2)γ̃ 2 + 16γ̃ �̃ + 16�̃2]. (24)

Notice that the denominator G is always a positive quantity
because |�| � 1.

In order to simplify the above complex expression, two
asymptotic behaviors of interest can be considered. These
asymptotic behaviors correspond to the cases where the co-
herent frequency ω dominates over the incoherent rates γ

and �, or viceversa. Formally, these correspond to taking
either of the limits γ̃ , �̃ → 0 or γ̃ , �̃ → ∞, while keeping
g = �̃/γ̃ = �/γ fixed. In the first case (i.e., for γ , � � ω),
one obtains

v∞
ωL

∼ 3�(1 − �2)�̃

(1 + 4g)(3 + 4g) − 3�2
, (25)

while in the second (i.e., for γ , � 
 ω), one finds

v∞
ωL

∼ 3�(1 − �2)[�2 − 5 − 2g(5 + 2g)]

�̃(1 + g)2[(3 + 2g)2 − �2]
. (26)

It is worth observing that v∞ can be alternatively expressed
in terms of the mean residence times T± by setting γ± = T −1

±
in the definitions of � and γ̃ . In particular, � can be in-
terpreted as the difference of the mean residence times over
their sum � = (T− − T+)/(T− + T+), and γ as the sum of
the reciprocals of the mean residence times γ = T −1

+ + T −1
− .

In particular, T+ = T− implies that � = 0 and, consequently,
that the mean average velocity cancels. In addition, if T+ 

T− or T+ � T−, then � ≈ −1 or � ≈ +1, respectively, and
the mean average velocity also tends to cancel.
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FIG. 3. Classification of points (�̃, γ̃ ) according to the number
of directed-motion inversions exhibited by v∞ as a function of �.
The cyan-shaded area specifies the region where inversions of di-
rected motion occur for three values of �. Outside this region the
only inversion occurs for � = 0. The curves bounding the cyan-
shaded area from above and from below arise from the conditions
F (γ̃ , �̃, 0) = 0 and F (γ̃ , �̃, 1) = 0, respectively, with F defined in
Eq. (23). The red asterisk, the black cross, and the blue plus sign
indicate the values of (�̃, γ̃ ) considered in Fig. 4.

V. ANALYSIS OF THE LONG-TIME LIMIT VELOCITY

According to Eq. (22), v∞ is an odd function of � and,
consequently, vanishes when � = 0. This corroborates the
symmetry arguments presented in Sec. IV, where it was
shown that v∞(γ+, γ−) = −v∞(γ−, γ+) and, therefore, dif-
ferent transition rates are necessary to obtain directed motion.
In addition, v∞ also vanishes when � = ±1, which implies
that both transition rates γ± must be nonzero to have directed
motion. This is so because, in the absence of repetitive fluc-
tuations between the two lattice states, the absorbing sites
eventually trap the particle avoiding its motion.

In addition to the previously mentioned values of �, di-
rected motion can also be canceled for those values of �, if
any, for which F = 0. The function F depends on γ̃ , �̃, and
�2, i.e., F = F (γ̃ , �̃,�2).

Since F is a first-degree polynomial in �2, there is always
a value �2

c that vanishes F . According to the definition of
�, only the values �2

c between 0 and 1 are acceptable. In
Fig. 3, the cyan-shaded area depicts the region of points (γ̃ , �̃)
for which �2

c ∈ (0, 1). For each point in this region there
exist three values of � where inversion of directed motion
occurs, namely, � = 0 and � = ±�c. Outside of this region
inversion of directed motion occurs only for � = 0. The
boundaries of this region are implicitly defined by the condi-
tions F (γ̃ , �̃, 1) = 0 and F (γ̃ , �̃, 0) = 0, which correspond,
respectively, to �2

c = 1 and �2
c = 0. These conditions are

polynomial equations of degree three in γ̃ and can be solved
analytically to obtain the dependence of γ̃ on �̃ for the curves
that parametrize these boundaries. In particular, condition
F (γ̃ , �̃, 1) = 0 yields γ̃1(�̃) = 2(1 − �̃2)/�̃, which is the
curve that bounds the shaded area from below in Fig. 3. The
curve γ̃0(�̃) obtained from solving condition F (γ̃ , �̃, 0) = 0
bounds the shaded area from above. The analytical expression

FIG. 4. Dimensionless steady-state velocity v∞/(ωL) in Eq. (22)
as a function of � for γ̃ = 10 and �̃ = 0.1 (red solid line), 0.35
(black dotted line), 0.6 (blue dot-dashed line). The corresponding
points (γ̃ , �̃) are shown in Fig. 3 as a red asterisk, a black cross, and
a blue plus sign.

for γ̃0(�̃) is very lengthy and, for that reason, is not included
here. Since γ̃ � 0, one conclusion that readily follows from
the above expression for γ̃1(�̃) is that inversion of directed
motion for � �= 0 occurs only when �̃ < 1.

In order to illustrate the inversion of directed motion, Fig. 4
shows the dependence of the dimensionless long-time veloc-
ity v∞/(ωL) on the parameter �. The values of γ̃ and �̃

have been chosen to lie in the three different regions shown
in Fig. 3. These values are depicted in Fig. 3 as a red as-
terisk, a black cross, and a blue plus sign. Notice that the
black dotted curve exhibits inversion of directed motion at
three values of �, while the red solid and blue dot-dashed
curves present inversion only at � = 0. Moreover, observe
that v∞ has opposite signs on the red solid and blue dot-
dashed curves. Specifically, �v∞ � 0 if (γ̃ , �̃) lies to the
left of the cyan-shaded area in Fig. 3, whereas �v∞ � 0 if
(γ̃ , �̃) lies to the right of the aforementioned area. Notice that,
in the asymptotic limits in Eqs. (25) and (26), the multiple
inversions of directed motion disappear. This is so because for
these asymptotic expressions to be valid both γ̃ and �̃ have
to be simultaneously much greater or much smaller than 1.
This condition is clearly not fulfilled in the cyan-shaded area
depicted in Fig. 3.

VI. CONCLUSIONS

In summary, this paper presented a simple quantum
random-walk model on a one-dimensional periodic lattice
that fluctuates between two distinct states. The mathematical
framework for this model is rooted in Lindblad rate equa-
tions, which encompass the transition rates between the lattice
states. Despite the system’s infinite-dimensional state space,
the inherent periodic symmetry of the problem enables us to
describe the time evolution of the particle velocity through
a finite set of differential equations. These equations yield
concise, analytical expressions for the long-time velocity
behavior.
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The simplicity of the derived analytical expression for the
velocity in the long-time limit has enabled us to conduct a
comprehensive investigation of the characteristics of directed
motion. In particular, some of these properties emerge as
direct consequences of the system’s symmetries. The resul-
tant velocity of the particle and the complexities observed,
including multiple changes in motion direction, stem from the
interplay between the quantum and semiclassical terms, vq(t )
and vc(t ), composing the velocity in Eq. (22). These intrica-
cies are notably absent in the fully classical model analyzed
in Ref. [10].

Finally, it is important to mention that, although the model
presented in this work is quite simple, we are confident
that some of the techniques presented here can be extended
to more complex quantum models. Specifically, the use of
the Lindblad rate equations proposed in this work opens up
new perspectives for the study of other fluctuating quantum
systems.
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APPENDIX A: DERIVATION OF THE LINDBLAD
RATE EQUATIONS (5)

Let us consider a quantum system evolving according to
the Lindblad equation

d

dt
ρ(t ) = Lη(t )ρ(t ), (A1)

where the generator Lη(t ) depends on a dichotomic Markov
process η(t ) that can take the values ±1. For simplicity, we
write ± instead of ±1 when ±1 appears as a subscript or
superscript, so that L± ≡ L±1. The process η(t ) is described
by the master equation

∂

∂t
p(α, t |α0, t0) = γ−α p(−α, t |α0, t0) − γα p(α, t |α0, t0),

(A2)

where p(α, t |α0, t0) is the conditional probability that η(t ) =
α given that η(t0) = α0, and γα is the transition rate from the
value α to −α. In the above expression, the parameters α and
α0 can take the values ±1.

A realization of the process η(t ) in the time interval [t0, t]
can be characterized by giving its final value, more specifi-
cally, α = limt ′→t− η(t ′) and the time instants, if any, at which
changes in value occur. These time instants are assumed to
be listed in increasing order, i.e., t0 < t1 < t2 < · · · < tn < t ,
and arranged in a vector τn = (t1, t2, . . . , tn). For notational
convenience, we define τ0 as a vector with no components.

The probability of a realization with no changes in value is
given by

P[t0,t]
0 (α, τ0) = e−(t−t0 )γα p(α, t0), (A3)

where p(α, t0) is the probability that the process η(t ) takes the
value α at time t0. In this case, the density operator at time t is

ρ0(t ; α, τ0) = e(t−t0 )Lαρ(t0), (A4)

where ρ(t0) is the density operator at the initial time t0. The
probability density of a realization ending in α with n � 1
changes in value is

P[t0,t]
n (α, τn) = e−(t−tn )γα

n∏
j=1

γα j e
−(t j−t j−1 )γα j p(α1, t0), (A5)

where α j = (−1)n+1− jα is the value of η(t ) just before the jth
change. In this case, the density operator at time t is given by

ρn(t ; α, τn) = e(t−tn )Lα

n∏
j=1

e(t j−t j−1 )Lα j ρ(t0), (A6)

where the product of the superoperators must be taken in the
order

∏n
j=1 F j = Fn · · ·F1. Notice that the following recur-

rence relations hold for n � 1:

P[t0,t]
n (α, τn) = γ−αe−(t−tn )γα P[t0,tn]

n−1 (−α, τn−1) (A7)

and

ρn(t ; α, τn) = e(t−tn )Lαρn−1(tn; −α, τn−1). (A8)

The density operator at time t , ρ(t ), is obtained after an
average over all realizations, i.e.,

ρ(t ) =
∑
α=±1

ρα (t ), (A9)

where

ρα (t ) = ρ0(t ; α, τ0)P[t0,t]
0 (α, τ0)

+
∞∑

n=1

∫ t

t0

dτnρn(t ; α, τn)P[t0,t]
n (α, τn), (A10)

and we have introduced the notation
∫ t

t0
dτn =∫ t

t0
dtn

∫ tn
t0

dtn−1· · ·
∫ t2

t0
dt1.

Taking into account the recurrence relations in Eqs. (A7)
and (A8), it can be verified that Eq. (A10) can be expressed as

ρα (t ) = e−(t−t0 )γα p(α, t0)e(t−t0 )Lαρ(t0)

+
∫ t

t0

dt ′γ−αe−(t−t ′ )γα e(t−t ′ )Lαρ−α (t ′). (A11)

Taking the derivative of Eq. (A11) with respect to t , the
evolution equations (5) are finally obtained. In addition, from
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the integral equation (A11), it readily follows that the initial
conditions for these equations are ρα (t0) = p(α, t0)ρ(t0).

APPENDIX B: DERIVATION OF EQ. (20)

Every integer n can be expressed in the form n = j + 3k
with j ∈ {1, 2, 3} and k ∈ Z. Therefore, using the translation
superoperator T3k , one can write

Tr[Xρ±(t )] = L
∑
n∈Z

n〈n|ρ±(t )|n〉

= L
3∑

j=1

∑
k∈Z

( j + 3k)〈 j + 3k|ρ±(t )| j + 3k〉

= L
3∑

j=1

∑
k∈Z

( j − 3k)〈 j|T3kρ±(t )| j〉. (B1)

Taking the derivative of the above expression with respect to
time and using the evolution equations for ρ±(t ) in Eq. (5),
as well as the definitions of the expected value of the position
and the velocity in Eqs. (15) and (16), one obtains that

v(t ) = L
∑
α=±

3∑
j=1

∑
k∈Z

( j − 3k)〈 j|T3kLαρα (t )| j〉. (B2)

From the invariance of L± with respect to translations by 3k
units in Eq. (8) and the definition of the operators �±(t ) in
Eq. (17), it then follows that

v(t )

L
=

∑
α=±

3∑
j=1

∑
k∈Z

( j − 3k)〈 j|LαT3kρα (t )| j〉 = A + B,

(B3)

where

A =
∑
α=±

3∑
j=1

j〈 j|Lα�α (t )| j〉 (B4)

and

B = −3
∑
α=±

∑
k∈Z

k
3∑

j=1

〈 j|LαT3kρα (t )| j〉. (B5)

To evaluate A and B one has to apply the definitions of the
superoperators L± in Eqs. (1)–(4) and the periodicity of the
matrix elements of �±(t ) in Eq. (19). It can then be verified
from straightforward calculations that

A = �[2λ
(+)
1,1 (t ) + λ

(+)
2,2 (t ) − 2λ

(−)
3,3 (t ) − λ

(−)
2,2 (t )]

− 2ωIm[λ(+)
2,1 (t ) + λ

(−)
3,2 (t )] (B6)

and

B = −3�
∑
k∈Z

k[〈4|T3kρ+(t )|4〉 − 〈1|T3kρ+(t )|1〉

+ 〈0|T3kρ−(t )|0〉 − 〈3|T3kρ−(t )|3〉]. (B7)

Taking into account the definition of the translation superoper-
ators, it is clear that 〈4|T3kρ+(t )|4〉 = 〈1|T3(k−1)ρ+(t )|1〉 and
〈0|T3kρ−(t )|0〉 = 〈3|T3(k+1)ρ+(t )|3〉. A change of summation
index in Eq. (B7) leads to the result B = −3�[λ(+)

1,1 (t ) −
λ

(−)
3,3 (t )]. By adding the above results for A and B, the expres-

sion for the velocity in Eq. (20) is finally obtained.
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