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We show that numerical linked cluster expansions (NLCEs) based on sufficiently large building blocks allow
one to obtain accurate low-temperature results for the thermodynamic properties of spin lattice models with
continuous disorder distributions. Specifically, we show that such results can be obtained computing the disorder
averages in the NLCE clusters before calculating their weights. We provide a proof of concept using three
different NLCEs based on L, square, and rectangle building blocks. We consider both classical (Ising) and
quantum (Heisenberg) spin- 1

2 models and show that convergence can be achieved down to temperatures that
are up to two orders of magnitude lower than the relevant energy scale in the model. Additionally, we provide
evidence that in one dimension one can obtain accurate results for observables such as the energy down to their
ground-state values.
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I. INTRODUCTION

Disorder, resulting from lattice impurities, distortions, or
vacancies, can alter the properties of materials in a drastic
fashion. For example, noninteracting electrons in the presence
of disorder can exhibit Anderson localization [1]. In spin
models, the focus of our work, quenched disorder—affecting
the spin exchange interactions—can lead to frustration and
spin glasses. Frustration can preclude spin ordering as the
temperature is decreased and, below a critical temperature
whose value depends on the specific model, a spin glass may
form [2–4].

The effect of disorder on the thermodynamic properties of
quantum spin models remains a challenging topic of current
research. Because of frustration, computational approaches
such as quantum Monte Carlo techniques suffer from the sign
problem, which prevents accessing low-temperature regimes
in large system sizes [5–7]. Because of the exponential growth
of the Hilbert space in quantum systems, exact diagonalization
calculations are limited to small system sizes and, due to
finite-size effects, it is difficult to make predictions for the
behavior of thermodynamic quantities in the thermodynamic
limit. Those general limitations for quantum systems with
frustration are compounded with the fact that, whenever dis-
order is present, one needs to carry out calculations for many
realizations of disorder and then average over them.

In this work, we show that numerical linked-cluster
expansions (NLCEs) can be used to obtain accurate low-
temperature results for the thermodynamic properties of
classical and quantum spin models with continuous disorder
distributions. Previous studies have already shown that NL-
CEs can be used to obtain accurate results for bimodal [8,9]
and multimodal [10,11] disorder distributions and that in-
creasing the number of modes in properly selected multimodal
disorder distributions can be used to approximate the results
for continuous disorder distributions [10,11]. Our goal here is
to show that NLCEs based on large building blocks, such as

Ls, squares, and rectangles can be used to carry out direct sam-
plings of continuous disorder distributions to produce accurate
results for thermodynamic properties at low temperatures.

NLCEs were originally introduced to study the thermody-
namic properties of translationally invariant lattice models in
the thermodynamic limit [12–14]. They have been broadly
used to study clean spin and fermion models since then,
see, e.g., Ref. [15] and references therein. As pointed out in
Ref. [8], the same NLCEs that are used for translationally
invariant systems can be used for bimodal (or multimodal) dis-
order distributions because the equations defining the linked
cluster expansion are linear and averaging over all possible
disorder realizations (which are exponentially many but finite
for any finite cluster) restores translational symmetry.

The same applies, in principle, to continuous disorder
distributions. However, for continuous distributions, it is im-
possible to carry out the exact disorder averages except for
small clusters. Averages over finite numbers of disorder re-
alizations carry statistical errors that result in a divergence
of the NLCEs for the commonly used bond and site expan-
sions introduced in Refs. [12,13]. Divergences occur because
computing the weights of large clusters in such expansions
involves subtracting weights of exponentially many smaller
subclusters, whose statistical errors add up. An alternative
way to proceed is to carry out subtractions directly for any
given disorder realization on any given cluster (there are no
statistical errors in that case) and then average over disorder
realizations for that cluster [16,17]. This is computationally
very demanding and has yet to be successfully implemented in
the context of thermodynamic properties of quantum models
with continuous disorder distributions at finite temperature
(see Ref. [18] for ground-state calculations).

Here we show that one can overcome the challenges gener-
ated by the statistical errors, once again, a consequence of the
finite number of disorder realizations that can be computed
in models with continuous disorder distributions, using NL-
CEs with large building blocks. In such NLCEs, the number
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of clusters grows slowly enough that by solving exactly the
smallest clusters and controlling the statistical errors of the
clusters that cannot be solved exactly, one can carry out cal-
culations that converge at low temperatures both for classical
and quantum spin models. In some cases we find convergence
all the way to the ground state. We consider three different
NLCEs based on building blocks larger than bonds and sites:
a restricted version of the L expansion introduced recently
in Ref. [15], the NLCE based on corner-sharing squares in-
troduced in Ref. [13], and the rectangle NLCE introduced in
Refs. [17,19,20].

The presentation is organized as follows. The spin- 1
2 Ising

and Heisenberg Hamiltonians studied in this work are intro-
duced in Sec. II. A brief review of NLCEs, the resummation
algorithms used, and the observables that we calculate is
provided in Sec. III. To build up to our work in the two-
dimensional (2D) square lattice, in Sec. IV we use the linked
cluster theorem to find a closed form expression for the ther-
modynamic properties of the 1D Ising model with an arbitrary
disorder distribution, as well as NLCEs to numerically study
the 1D Heisenberg model in the presence of a uniform disor-
der distribution. The specific expansions used here in 2D—the
restricted L, the square, and the rectangle expansions—are
discussed in Sec. V. In Sec. VI, we compare results obtained
using those three expansions against site-expansion results
reported in Ref. [9] for the Ising and Heisenberg models
with a bimodal disorder distribution. The results for the Ising
and Heisenberg models with uniform disorder distributions
are reported in Sec. VII. We conclude with a summary and
discussion of our results in Sec. VIII.

II. MODEL HAMILTONIANS

We focus on two spin- 1
2 Hamiltonians in the thermody-

namic limit. The first one is the (classical) Ising model

Ĥ =
∑
〈i,j〉

Jij Ŝz
i Ŝz

j , (1)

where Ŝz
i is the z component of the spin- 1

2 operator at site i
and 〈i, j〉 denotes pairs of nearest-neighbors sites. Note that
the interaction strength Jij depends on the pair of sites 〈i, j〉.
We draw Jij from different discrete and continuous disorder
distributions, as specified later.

We also study the (quantum) Heisenberg model,

Ĥ =
∑
〈i,j〉

Jij �̂Si · �̂Sj, (2)

where �̂Si is now the full spin- 1
2 operator at site i. It follows

from the Mermin-Wagner theorem that the Heisenberg model,
which has SU (2) symmetry, can only develop long-range
order at zero temperature. As for the Ising model, we draw Jij
from different discrete and continuous disorder distributions
that are specified later.

III. A SHORT SUMMARY OF NLCEs

NLCEs allow one to calculate finite-temperature properties
of extensive observables for translationally invariant lattice
models in the thermodynamic limit. For an extensive observ-
able O, its corresponding intensive counterpart per lattice site

O ≡ O/N can be computed using the linked cluster theorem,
namely using the following sum over all the connected clus-
ters that can be embedded on the lattice:

O =
∑

c

L(c) × WO(c), (3)

where L(c) counts the number of ways per site that cluster
c can be embedded on the lattice and WO(c) is the weight
of observable O in cluster c. The weights are calculated
recursively via

WO(c) = O(c) −
∑
s⊂c

WO(s), (4)

with WO(c) = O(c) for the smallest cluster.
In NLCEs, one truncates the sum in Eq. (3) to include only

the clusters that can be solved exactly numerically. Conver-
gence at any given temperature T is achieved when the results
of successive orders, which we label using the largest clusters
considered, agree with each other. For unordered phases, the
NLCE results have been shown to approach the thermody-
namic limit results exponentially fast in the NLCE order [21].

Because of the lack of translational invariance in models
with disorder, one may think that completely independent
NLCE calculations need to be carried out for each disorder
realization, so that weights can be properly subtracted. How-
ever, as noted in Ref. [9] in the context of bimodal disorder
distributions, averaging over all possible disorder realizations
restores translational invariance. This, together with the linear
character of the NLCE Eqs. (3) and (4), allows one to use the
exact same expansion as for translationally invariant models.
We use that approach here. Namely, we use Eqs. (3) and (4) af-
ter replacing the expectation values of the observables in each
cluster c by their disorder averages O(c). For discrete disorder
distributions, such as bimodal disorder, the averages can be
computed exactly [9]. For continuous disorder distributions,
we set a maximum value of the normalized standard deviation
for all clusters of any given size and explore the effect that
changing such a maximum (which in general depends on the
cluster size) has on the NLCE results.

Our calculations are carried out in thermal equilibrium in
the grand-canonical ensemble at zero chemical potential, so
that the many-body density matrix has the form

ρ̂ = 1

Z
exp

(
− Ĥ

kBT

)
, with Z = Tr

[
exp

(
− Ĥ

kBT

)]
, (5)

where Ĥ is the model Hamiltonian, kB is the Boltzmann
constant (we set kB = 1), and T is the temperature (which
has units of energy in our convention). We compute three
thermodynamic quantities, the energy E , the entropy S, and
the specific heat Cv , all per site.

To gauge the convergence of the direct sums in Eq. (3),
we calculate the normalized difference for each order l with
respect to the highest-order lmax accessible to us

�l (O) =
∣∣∣∣Olmax − Ol

Olmax

∣∣∣∣. (6)

In order to obtain results at temperatures lower than those
at which the direct sums converge, we use resummation
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techniques. Specifically, we use the following two resumma-
tion techniques [13]:

(i) Wynn’s (ε) algorithm, in which given the original se-
quence {Ol},

ε
(k)
l = ε

(k−2)
l+1 + 1

ε
(k−1)
l+1 − ε

(k−1)
l

,

with ε
(−1)
l = 0, ε

(0)
l = Ol , (7)

where k denotes the number of Wynn resummation “cycles.”
Only even entries ε

(2k′ )
l (with k′ an integer) are expected to

converge to the thermodynamic limit result. We note that the
new sequence generated after two cycles has two fewer terms.
The estimate for an observable after 2k′ cycles is given by

Wynnk′ (O) = ε2k′
lmax−2k′ , (8)

where we call k′ the Wynn resummation “order.”
(ii) The Euler algorithm, which can accelerate the conver-

gence of alternating series. In this algorithm, see Ref. [22],
the only free parameter is the number of terms “k” for which
the direct sum is carried out before the Euler transformation
is used. In what follows whenever we report the results of the
Euler algorithm, Eulerk (O), we specify the value of k used.

For further details about NLCEs and their convergence,
as well as about the resummation techniques used, we refer
readers to the pedagogical introduction in Ref. [22].

IV. ISING AND HEISENBERG MODELS IN 1D

In this section, we study the thermodynamic properties of
the Ising and Heisenberg models with continuous disorder
distributions in 1D. We note that, in 1D, pairs of nearest-
neighbors sites 〈i, j〉 ≡ i, i + 1, i.e., we can parametrize the
bonds Jij with one index and write Ji.

A. Ising model

The (classical) 1D Ising model with a continuous disorder
distribution is exactly solvable for any probability distribution
function (PDF) P(Ji ) [23].

1. Exact solution

For an open chain with N sites, using the traditional
transfer matrix method it is straightforward to calculate the
partition function ZN = 2

∏N−1
i=1 2 cosh(βJi ), where β = 1/T

(we set kB = 1). One can therefore calculate the intensive
quantity ln(ZN )/N and average over the PDF in the limit
N → ∞,

lim
N→∞

[
ln(ZN )

N

]
= lim

N→∞
1

N

N−1∑
i=1

∫
ln[2 cosh(βJi )]P(Ji )dJi

+ lim
N→∞

ln 2

N
. (9)

We therefore have N − 1 identical integrals so, in the thermo-
dynamic limit, the previous equation simplifies to[

ln(ZN )

N

]
= ln 2 +

∫
ln [cosh(βJ )]P(J )dJ. (10)

The free energy is F = − ln(Z )/β so, using Eq. (10), one can
obtain other thermodynamic properties computing derivatives
of the free energy.

2. Linked cluster theorem solution

For a single site we only have one configuration, with two
possible states, so the partition function is trivially ln(Z1) =
ln 2. For two sites, the partition function is Z2 = 2(eβJ +
e−βJ ), where J is a random coupling constant chosen from
the PDF P(J ). We then average over all possible J’s to get the
average ln(Z2)

ln(Z2) =
∫

ln[2(eβJ + e−βJ )]P(J )dJ

= ln 2 +
∫

ln(eβJ + e−βJ )P(J )dJ. (11)

For the open chain with three sites, there are two different cou-
pling constants, J1 and J2, drawn from identical independent
PDFs P(J ). The partition function follows

Z3 = 2(eβJ1 + e−βJ1 )(eβJ2 + e−βJ2 ). (12)

Taking the average for ln(Z3), as we did for the two-site chain,
we get

ln(Z3) = ln 2 +
∫

ln(eβJ1 + e−βJ1 )P(J1)P(J2)dJ1dJ2

+
∫

ln(eβJ2 + e−βJ2 )P(J1)P(J2)dJ1dJ2

= ln 2 + 2
∫

ln(eβJ + e−βJ )P(J )dJ. (13)

Such a simple result is a consequence of the factorizable
nature of the partition function in the bond strengths, which
is unique to the Ising model because of the absence of cross
terms. This holds true for chains with an arbitrary number of
bonds N − 1.

We are ready to calculate the weights defined in Eq. (4)

W1 = ln(Z1)= ln(Z1)= ln 2

W2 = ln(Z2) − 2W1 =
∫

ln(eβJ + e−βJ )P(J )dJ − ln(2)

W3 = ln(Z3) − 2W2 − 3W1 =0. (14)

Starting with W3, due to the factorizable nature of the partition
function, the weights for all orders of the NLCE vanish. We
therefore get

ln(Z )

N
=

∑
i

Wi =
∫

ln(eβJ + e−βJ )P(J )dJ

=
∫

ln[2 cosh(βJ )]P(J )dJ, (15)

which is the exact solution, see Eq. (10). Hence, like for the
clean Ising model [21], the linked cluster theorem allows one
to find the exact solution for the 1D Ising model with an
arbitrary disorder distribution.
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B. Heisenberg model

In contrast to the translationally invariant case, the (quan-
tum) 1D Heisenberg model with a continuous disorder
distribution is not exactly solvable [24,25]. We study this
model numerically using NLCEs and focus on the zero-mean
uniform disorder distribution, with PDF

P(x) =
{

1
2J for − J � x � J

0 for |x| > J
. (16)

In 1D models with only nearest-neighbor couplings, there
is one cluster at each order l of the NLCE; an open chain
with l sites. When calculating the lth-order NLCE result for
an observable, Eq. (3) simplifies to Ol = O(l ) − O(l − 1). So
one only needs to calculate observables for two consecutively
cluster sizes in order to get the NLCE result at any given order.
In Fig. 1, we plot NLCE results for the energy E , the entropy
S, and the specific heat Cv vs T for the 1D Heisenberg model
with a uniform disorder distribution. We set J = 1 to be our
energy scale and report results for l = 14 and l = 15. Those
results were obtained carrying out averages over 17.5, 4, and
0.6 million disorder realizations for the chains with 13, 14, and
15 sites, respectively. We also show the corresponding results
for the clean model with J = 1.

For the energy in the presence of disorder [Fig. 1(a)], we
find that the results for l = 14 and l = 15 agree with each
other down to T = 10−3, at which E has become tempera-
ture independent and we essentially obtain the ground-state
energy. This is to be contrasted to the results for the clean
model, for which the results for l = 17 and l = 18 agree with
each other down only to T ≈ 0.2. Disorder, which reduces
correlations, extends the NLCE convergence to lower temper-
atures for all the observables considered here. Resummations
for the clean model do allow one to reproduce the exact
ground-state energy (shown as a horizontal dotted line). For
the entropy in the presence of disorder [Fig. 1(b)], the re-
sults for l = 14 and l = 15 agree with each other down to
T ≈ 10−2, in comparison to T ≈ 0.2 for the clean model.
The contrast between the results in the presence and absence
of disorder make apparent that the relatively high value of
the entropy at T ≈ 10−2 in the former is a consequence of
frustration introduced by the random couplings. In the clean
model, the resummation results indicate that the entropy at
that temperature is vanishingly small. Like for the entropy,
for the specific heat in the presence of disorder [Fig. 1(c)],
the results for l = 14 and l = 15 agree with each other down
to T ≈ 10−2. NLCEs show that there is a well-resolved peak
in the specific heat with a maximum value Cmax

v ≈ 0.23 at
Tm ≈ 0.25. On the other hand, the peak appearing in the clean
model has a maximum Cmax

v ≈ 0.37 at Tm ≈ 0.45. Disorder
reduces the height of that peak and moves it towards lower
temperatures.

Next, we compare convergence errors [see Eq. (6)] to nor-
malized standard deviations,

δc(O) = σc(O)

O(c)
, (17)

where

σc(O) =
√
O2(c) − O(c)

2
, (18)
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FIG. 1. Thermodynamic properties of the 1D Heisenberg model
with a uniform disorder distribution and for the clean Heisenberg
model. We plot the NLCE results for (a) energy E , (b) entropy
S, and (c) specific heat Cv vs T obtained at orders l = 14 and 15
(l = 17 and 18) for the model with disorder (clean model) and
Wynn’s and Euler’s resummation results for the clean model. The
horizontal dotted line in (a) shows the exact result for the ground-
state energy of the clean model, EG = 1/4 − ln 2 ≈ −0.443 [26].

with O(c) being the disorder average of the observable in
cluster c, to gain insights on the temperatures at which lack
of convergence due to the size of the clusters dominates over
statistical errors, and vice versa.

In Fig. 2, we plot �14 and δc for the chain clusters with
14 and 15 sites (the two largest ones considered), both for the
energy and the specific heat (the results for the entropy, not
shown, are qualitatively similar to those for the specific heat).
For the energy [Fig. 2(a)], �14(E ) is of the order of (slightly
larger than) the normalized standard deviations for the two
clusters at the temperatures shown. This makes apparent that
the statistical errors are the main errors in the NLCE calcu-
lations of the energy at those temperatures. For the specific
heat, the results in Figs. 2(b) show that the statistical errors
are the main errors only at temperatures T � 0.01 [at the
temperatures at which the NLCE results for orders 14 and 15
are indistinguishable from each other in Fig. 1(c)]. At very low
temperatures T � 0.01, �14(Cv ) becomes much larger than
the statistical errors, which shows that lack of convergence
due to the size of the clusters dominates the error in the NLCE
calculations in that regime (as it does in the clean case).

V. NLCES IN 2D

There are various NLCEs based on different building
blocks that have been used in the literature to study square
lattice models. Here we focus on three schemes. First,
we introduce a restricted L expansion with a significantly
lower number of clusters than the L expansion introduced
in Ref. [15]. We further use the square expansion intro-
duced in Ref. [13] and the rectangle expansion introduced
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FIG. 2. Errors in the NLCE calculations of thermodynamic
properties of the 1D Heisenberg model with a uniform disorder distri-
bution. Differences �14(O), see Eq. (6), and the normalized standard
deviations δc(O), see Eq. (17), for the chain clusters c = 14 and
15 with 14 and 15 sites, respectively. (a) Energy E and (b) specific
heat Cv .

in Refs. [17,19,20]. For comparison, we also show some re-
sults obtained using the site-based expansion introduced in
Ref. [13].

The main advantage of the former three NLCEs is the low
number of clusters that enter in the corresponding expansions
up to relatively large cluster sizes. This allows us to control
the statistical errors of the average over disorder realizations
in each cluster and prevents a significant buildup of those
errors that would result in divergences of the bare sums. In the
following subsections, we briefly introduce those three NLCE
schemes.

A. L expansion

In Ref. [15], we developed “strong” and “weak” embed-
ding versions of an NLCE expansion that uses Ls as building
blocks. We showed that the strong-embedding version (with
all possible Ls connecting the sites present), which generally
involves a smaller number of clusters at each order and hence
has a lower computational cost, was preferable as (i) it has
similar convergence properties as the weak embedding ver-
sion in the high-temperature disordered phase, and (ii) it was
the only L expansion that converged when approaching the
ground state in ordered phases such as the one in the Ising

FIG. 3. Clusters present in the second (2 Ls) and third (3 Ls)
orders of both the strong embedding L and the restricted L expansion.

TABLE I. Total number of clusters (second and third columns)
and the number of topologically distinct clusters (fourth and fifth
columns) in the restricted (R) and unrestricted (U) strong embedding
L expansions, respectively, versus the number of Ls in the clusters
(first column).

Total no. clusters No. top. clusters

No. Ls R U R U

0 1 1 1 1
1 1 1 1 1
2 2 3 1 2
3 5 11 2 6
4 13 41 4 18
5 34 153 7 61
6 90 573 15 202
7 239 2162 30 700
8 636 8238 62 2429
9 1695 31 696 129 8608
10 4522 122 986 268 30 734
11 12 075 NA 562 NA
12 32 265 NA 1178 NA

model. Here, in order to reduce even further the number of
clusters of the strong embedding L expansion, we introduce a
restricted L expansion. In the restricted expansion, the Ls in
the strong embedding NLCE are attached to an existing cluster
by sharing the center site, i.e., no L can share only edge sites
in any given cluster.

Such a restriction on the clusters allowed in the strong em-
bedding L expansion results in more compact (larger weight)
clusters and reduces the number of clusters significantly. In
Fig. 3, we show the clusters with two and three Ls that are
present in the restricted L expansion. The total number of
clusters [which for the L expansion equals the sum of L(c)s
in Eq. (3)] at each order of the restricted L expansion are
shown in the second column of Table I. Those numbers are
to be compared to the total number of clusters in the strong
embedding L expansion [15] shown in the third column. The
fourth and fifth columns in Table I show the total number
of topologically distinct clusters in each expansion, which
are the actual clusters that are diagonalized to compute the
observables as they are the ones with different Hamiltonians.
One can see that there is an exponential reduction of the
number of clusters from the unrestricted to the restricted L
expansion as the number of Ls increases. Clusters with the
same number of Ls are grouped together and the order l of the
expansion is set by the largest number of Ls included in the
NLCE sum.

Among the three main expansions considered in this work,
the L expansion is the one that has the most clusters with any
given number of sites. This means that the L expansion is
the one that best explores the square lattice geometry, and we
expect it to provide the most accurate results at intermediate
and high temperatures.

B. Square expansion

The square expansion is an expansion based on corner-
sharing squares [13]. In Table II one can see that, up to six
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TABLE II. Number of topologically distinct clusters (second
column) and the sum of L(c)s (third column) in the square expansion
versus the number of squares (first column).

No. squares No. top. clusters Sum of L(c)s

0 1 1
1 1 1/2
2 1 1
3 2 3
4 5 19/2
5 11 63/2
6 31 108

squares (a maximum of 19 sites), it involves a very small
number of clusters. Clusters with the same number of squares
are grouped together and the order l of the expansion is set by
the largest number of squares included in the NLCE sum.

C. Rectangle expansion

The rectangle expansion was introduced in Ref. [19] to
calculate entanglement entropies and was used in Ref. [20]
to study quench dynamics in clean systems and in Ref. [17]
to study quench dynamics from inhomogeneous initial states.
The rectangle expansion contains clusters that have a rectan-
gular shape. This limits the number of clusters considerably as
there are only three possible cluster geometries. For clusters
with N sites one can have (i) a chain of N sites; (ii) a rectangle
with N = Nx × Ny sites (for values of N that admit such a
decomposition), where Nx and Ny are the numbers of sites in
x and y, respectively; and (iii) a square with N = N2

x sites for
N = 4, 9, . . . . Squares have L(c) = 1, while all other clusters
have L(c) = 2, making the combinatorics associated with the
rectangle expansion trivial. Clusters with the same number
of sites are then grouped together and the order l of the
expansion is set by the largest number of sites included in the
NLCE sum.

VI. BIMODAL DISORDER DISTRIBUTION

In order to gain an understanding of how the L, the square,
and the rectangle expansions work in the presence of disorder,
in this section we compare our results using those expan-
sions for a bimodal disorder distribution to results obtained
in Ref. [9] using the site expansion. For bimodal disorder,
each Jij can have values ±J with equal probability (we set
J = 1). An advantage of such a distribution (e.g., over the
continuous ones that we study in the next section) is that one
can average over all possible disorder realizations (2b, where
b is the number of bonds) in the finite clusters considered
in the NLCEs so that there are no errors associated to the
sampling.

In Fig. 4, we show site expansion results for the energy
of the 2D Ising model with a bimodal disorder distribution,
along with Euler and Wynn resummation results, reported in
Ref. [9]. The energies from the 13 and 14 orders of the site
expansion agree with each other down to T ≈ 0.3, while the
resummation results agree with each other down to T ≈ 0.2.
This means that the direct sums allow one to compute the

0.1 1 10
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Wy6 S

0.1 1T
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FIG. 4. Energy per site E vs T for the Ising model with a bimodal
disorder distribution. We show results for the restricted L expansion
(L) with 7 and 8 Ls, the unrestricted L expansion [L(U)] with 6 and
7 Ls, the site expansion (S) with 13 and 14 sites, and Wynn’s and
Euler’s resummations of the site expansion. All the site expansion
results are from Ref. [9]. Inset: Restricted L expansion with 7 and
8 Ls, and Wynn’s and Euler’s resummations of the site expansion
(same results and legends as in the main panel) together with the
results for the square expansion (�) with four and five squares, and
the rectangle expansion (R) with 14 and 15 sites.

energies for T � 0.3, and the resummations allow one to
estimate the energies for 0.2 � T � 0.3. We also show in
Fig. 4 results for the L expansions. The energies from the
(unrestricted) strong embedding L expansion with up to 6 and
7 Ls, labeled with a “(U)” in Fig. 4, agree with each other
down to temperatures slightly lower than those at which the
13 and 14 orders of the site expansion agree with each other.
The restricted strong embedding L expansion results with up
to 7 and 8 Ls agree with each other down to slightly lower
temperatures than the other two expansions.

Recall that the number of clusters in the restricted L expan-
sion grows much more slowly than in the unrestricted one as
the number of Ls increases, and this is the reason we can com-
pute one order higher of the former expansion for the results
shown in Fig. 4. Given the excellent convergence properties of
the restricted L expansion, along with the fact that its smaller
number of clusters per order will allow us to reduce the effect
of statistical errors in the subgraph subtractions later when we
study continuous disorder distributions, we focus on that L
expansion in what follows. We will refer to the restricted L ex-
pansion as the L expansion in the rest of this paper. In the inset
in Fig. 4 we compare the Euler and Wynn resummation results
for the site expansion with results for the bare sums obtained
using the L, the square, and the rectangle expansions. They all
agree with each other down to temperatures that are slightly
higher than 0.2, with the L expansion results agreeing with the
resummation ones at lower temperatures than the square and
rectangle expansions. Having the independent results from the
L, the square, and the rectangle expansions will be useful
in the rest of this work to gauge convergence for different
models.
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FIG. 5. Entropy per site S vs T for the Heisenberg model with
a bimodal disorder distribution. We show results for the restricted L
expansion (L) with 6 and 7 Ls, the square expansion (�) with three
and four squares, and the rectangle expansion (R) with 13 and 14
sites, the site expansion (S) with 12 and 13 sites, and Wynn’s and
Euler’s resummations of the site expansion. All the site expansion
results are from Ref. [9].

In Fig. 5, we show site expansion results for the en-
tropy of the 2D Heisenberg model with a bimodal disorder
distribution, along with Euler and Wynn resummation results,
reported in Ref. [9]. The entropies from the 12 and 13 orders
of the site expansion agree with each other down to T ≈ 0.6,
while the resummation results agree with each other down
to T � 0.2. These results make apparent that resummation
techniques can provide accurate estimates of thermodynamic
quantities at significantly lower temperatures (∼3 times lower
in this case) than the direct sums. Remarkably, our results
for the last two orders of the L and the square expansions
agree with each other and with the resummation results for the
site expansion down to T ≈ 0.3. Such an agreement makes
apparent the effectiveness of NLCE expansions based on
Ls and squares in providing converged results at temperatures
that are significantly lower than those at which the direct sums
for the site expansion converge. The results for the last two
orders of the rectangle expansion are close to each other down
to T ≈ 0.3, but they depart from those of the other expansions
at temperatures below T ≈ 0.5. This is an indication that,
below T ≈ 0.5, the rectangle expansion results for the entropy
converge slowly with increasing the order of the expansion.

The results in Fig. 5 highlight the importance of using dif-
ferent NLCE schemes together with resummation techniques
to gauge convergence. In the context of the expansions used
in this work, Fig. 5 makes apparent that we need to be es-
pecially careful with the rectangle expansion results as they
may appear converged at temperatures that they are not. The
departure of the rectangle expansion results from those of
the L and square expansions is likely a consequence of the
fact that, at the orders considered in the rectangle expansion,
chain and ladder clusters are significantly more abundant than
square and close to square ones, i.e., there is a “bias” towards
quasi-1D shaped clusters.

VII. CONTINUOUS DISORDER DISTRIBUTION

Next, we study the thermodynamic properties of the 2D
Ising and Heisenberg models with continuous disorder dis-
tributions. Our focus is on the case in which the distribution
of disorder is uniform, as defined in Eq. (16). In contrast
to the case of bimodal disorder considered in the previous
section, for a continuous disorder distribution it is not possible
to compute the exact disorder averages for all the clusters
used in any given NLCE. Hence, central to our discussions in
what follows will be how to properly deal with the statistical
errors generated by the finite number of disorder realizations
sampled to compute the disorder averages.

A. Ising model

Let us first consider the Ising model with the uniform disor-
der distribution in Eq. (16). To show the effect that decreasing
δc [see Eq. (17)] has in our NLCE calculations, in Fig. 6
we plot NLCE results for the energy obtained using the L,
square, rectangle, and site expansions (from top to bottom,
respectively), when δc(E ) � ε at T ∼ 1 in all clusters in the
expansion. We note that as the size of the clusters increases,
because of self-averaging, to achieve the same value of δc(E )
we need to consider smaller numbers of disorder realizations.

The left (right) panels in Fig. 6 show results when
ε = 5 × 10−3 (ε = 10−4). For ε = 5 × 10−3 (left panels in
Fig. 6), see Tables III and IV for the number of disorder
realizations used, the results for different orders of the ex-
pansions differ at temperatures T > 1, which are sufficiently
high for convergence to be achieved given the cluster sizes
considered in all the expansions shown, i.e., the lack of
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FIG. 6. Energy per site vs T for the square lattice Ising model
with a uniform disorder distribution. The first row shows results for
the L (L) expansion, with 4, 5, and 6 Ls. The second row shows
results for the square (�) expansion with three, four, and five squares.
The third row shows results for the rectangle (R) expansion with
13, 14, and 15 sites. The fourth row shows results for the site (S)
expansion with five, six, and seven sites. The left column shows
results for ε = 5 × 10−3, and the right column shows results for
ε = 10−4.
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TABLE III. Number of disorder realizations used to obtain the
results in Fig. 6 for the L, square (�), and site expansions. The
numbers, for ε = 5 × 10−3 (ε = 10−4, in parenthesis), are shown in
units of 103 (106).

Order L � Site

0 Exact Exact NA
1 30(100) 15(120) Exact
2 20(80) 7.5(100) 50(30)
3 7.5(55) 3.75(40) 40(30)
4 7.5(28) 3(5.5) 30(24)
5 7(18) 2.5(1.7) 20(18)
6 4(5.5) NA 10(15)
7 NA NA 4.5(8)

convergence observed at those temperatures is a consequence
purely of the statistical errors introduced in the averages over
finite numbers of disorder realizations. We find the rectangle
expansion to be the least affected by those statistical errors for
clusters with up to ∼15 sites. This is a result of the simple
structure of the subgraph subtraction for this expansion, e.g.,
as for the 1D expansion considered in Sec. IV B, there is no
accumulation of errors for the chain clusters involved in the
rectangle expansion. On the other hand, the site expansion
results are strongly affected by the statistical errors even for
clusters that have about one-half the number of sites of those
in the other expansions.

For ε = 10−4 (right panels in Fig. 6), see Tables III and IV
for the number of disorder realizations used, the results for the
L, the square, and the rectangle expansions agree at tempera-
tures T > 1 and are very close to each other at temperatures
0.1 � T � 1. The site-expansion results, on the other hand,
still do not agree with each other at temperatures T > 1. Since
statistical errors of the order of 10−4 require averages over
millions of disorder realizations (see Tables III and IV), the
lack of convergence of the (low) seventh order of the site
expansion makes apparent that such an expansion is not suit-
able to study models with continuous disorder distributions by
averaging over finite numbers of disorder realizations.

In order to improve convergence by reducing the effect
of statistical errors even further, we note that the number of

TABLE IV. Number of disorder realizations used to obtain the
results in Fig. 6 for the rectangle expansion. The numbers for
ε = 5 × 10−3 and ε = 10−4 are shown in the second and third
columns, respectively.

Order ε = 5 × 10−3 ε = 10−4

1 Exact Exact
2–6 105 6 × 107

7 105 5.5 × 107

8 105 4 × 107

9 105 2.8 × 107

10 105 2 × 107

11 5 × 104 1.8 × 107

12 104 107

13 3 × 103 5.5 × 106

14 2.5 × 103 4 × 106

15 2 × 103 1.7 × 106
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FIG. 7. Thermodynamic properties of the square lattice Ising
model with a uniform disorder distribution. (a) Energy E , (b) entropy
S, and (c) specific heat Cv per site vs T obtained using the L (L),
the square (�), and the rectangle (R) expansions. We report results
for the highest two orders computed of each NLCE scheme. Insets:
Normalized differences, see Eq. (6), for (a) E at T = 0.01, (b) S at
T = 0.1, and (c) Cv at T = 0.2 vs l for the same expansions used in
the main panels.

subclusters of any given cluster that belongs to order l in-
creases exponentially with l , with most of the smallest clusters
appearing in the larger clusters. Since the number of clusters
also grows exponentially with l , the statistical errors of the
smallest clusters compound rapidly as the order of the expan-
sion increases. Hence, it is essential to reduce the statistical
errors in the smallest clusters as much as possible. To achieve
this, in this work, we compute the exact disorder averages for
all clusters with up to five sites. Namely, for such clusters,
we compute all observables symbolically and then calculate
the exact disorder averages by integrating over the continuous
disorder distribution. This means that, in what follows, the
disorder averages are computed exactly for clusters with one
and two Ls in the L expansion, for one square in the square
expansion, and for chains with one through five sites and
the square with four sites in the rectangle expansion. For
higher orders of these expansions, the number of disorder
realizations used is about 10 times the ones reported between
parentheses in Table III and in the right column of Table IV.

In Fig. 7, we plot the energy E , the entropy S, and the
specific heat Cv for the square lattice Ising model with a
uniform disorder distribution. We show results for the highest
two orders computed for the L, the square, and the rectangle
expansions. For E [see Fig. 7(a)], the results for all expansions
are indistinguishable from each other at temperatures down to
T = 10−2, at which E appears to saturate at the ground-state
value (it is independent of T at the lowest temperatures). For
S [see Fig. 7(b)], small differences between the results for
different expansions are seen for T � 0.1, but all the results
converge towards S = 0 as T → 0 as expected. Similarly,
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for Cv [see Fig. 7(c)], small differences are seen below the
maximum that occurs at Tm ≈ 0.2. The maximum of Cv for the
uniform disorder distribution occurs at a temperature lower
than that [T (b)

m ≈ 0.4] at which the maximum develops for
bimodal disorder in Ref. [9].

The insets in Fig. 7 show how the normalized difference
for each observable, see Eq. (6), behaves with increasing the
order l of each expansion at a suitably chosen temperature
(a temperature at which no differences are visible between the
two orders of the NLCE in the main panels). The temperatures
chosen are T = 0.01 [inset in Fig. 7(a)], T = 0.1 [inset in
Fig. 7(b)], and T = 0.2 [inset in Fig. 7(c)]. In agreement with
NLCE results obtained for translationally invariant models in
earlier works [15,21], one can see that for all observables
and all NLCEs considered here the normalized differences
decrease exponentially with l before saturating due to the
statistical errors at large l . As expected, given the faster con-
vergence of NLCEs with increasing T , we find that the order l
at which such a saturation occurs decreases as the temperature
increases (not shown).

The results in Fig. 7 make apparent that using a finite
number of disorder realizations in the context of NLCEs with
large building blocks, such as Ls, squares, or rectangles allows
us to obtain accurate results for the Ising model with a uniform
disorder distribution down to T ≈ 10−2, at which the energy
is nearly independent of the temperature, and the entropy
and the specific heat are vanishingly small. In Appendix,
we report numerical results for the energy of the 2D square
lattice Ising model with a continuous disorder distribution
whose mean is nonzero. Those results are qualitatively similar
to the ones reported in Fig. 7(a), and they agree with Monte
Carlo results for the same model and disorder distribution
reported in Ref. [10].

B. Heisenberg model

Next, we discuss our results for the most challenging model
considered in this work. Namely, the square lattice Heisenberg
model [see Eq. (2)] with a uniform disorder distribution with
zero mean [see Eq. (16)]. This model is frustrated and it is very
challenging to study at low temperature using quantum Monte
Carlo simulations because of the sign problem. In Fig. 8, we
show results for the highest two orders of the L, the square,
and the rectangle expansions for the energy E , the entropy S,
and the specific heat Cv . For the energy [see Fig. 8(a)], the
results for the three expansions are very close to each other
down to T ≈ 0.2, at which E can be seen to begin to plateau to
a temperature-independent value. For S [see Fig. 8(b)], all the
results are also very close to one another down to T ≈ 0.2. For
Cv [see Fig. 8(c)], the results from different expansions depart
from each other at temperatures T ≈ 0.4, below which a max-
imum appears to develop. Like for the entropy of the Heisen-
berg model with bimodal disorder in Fig. 5, the L and square
expansions are the closest ones for all observables in Fig. 8.

In the insets in Fig. 8, we contrast the L expansion results
for the uniform disorder distribution to those obtained using
the same expansion for the clean case. The effect of disorder
in the square lattice can be seen to be qualitatively similar to
that discussed in chains in the context of Fig. 1. Disorder in-
creases the energies and entropies at all temperatures, as well

FIG. 8. Thermodynamic properties of the square lattice Heisen-
berg model with a uniform disorder distribution. (a) Energy E ,
(b) entropy S, and (c) specific heat Cv per site vs T obtained using
the L (L), the square (�), and the rectangle (R) expansions. We report
results for the highest two orders computed of each NLCE scheme.
The insets contrast the results for the uniform disorder distribution to
the corresponding ones in the clean case. For both sets of results the
calculations were done using the L expansion.

as displaces the specific heat peak towards lower temperatures
and reduces its height. In the presence of disorder, one can also
see that the NLCE results for all observables converge at lower
temperatures than in the clean case. This highlights a strength
of NLCEs for systems with disorder, which in general have
shorter correlations. For systems with disorder, NLCEs can
provide accurate results to lower temperatures than for their
clean counterparts.

We applied Wynn and Euler resummation techniques to
the NLCE results obtained for the square lattice Heisenberg
model with a uniform disorder distribution. For all our ob-
servables within the rectangle expansion, Wynn’s algorithm
appears to extend the convergence to significantly lower
temperatures than the direct sums. Unfortunately, since we
have so few orders for the L and the square expansions, none
of the resummation algorithms considered extended signifi-
cantly the convergence of the corresponding direct sums. In
Fig. 9, we compare the results of the highest order of the L
and the square expansions (6 L and 4 �, respectively) against
those obtained for the highest two orders of Wynn’s algorithm
applied to the rectangle expansion results.

For the energy [see Fig. 9(a)], the resummation results are
very close to each other down to T = 10−2, and we see a clear
plateau for temperatures between T = 10−2 and T = 10−1,
so we expect the resummation results to be accurate all the
way down to the ground-state energy. For the entropy [see
Fig. 9(b)], the resummation results agree with each other
down to T ≈ 0.04, which is nearly an order of magnitude
lower than that at which the direct sums agree with one
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FIG. 9. Thermodynamic properties of the square lattice Heisen-
berg model with a uniform disorder distribution. (a) Energy E ,
(b) entropy S, and (c) specific heat Cv per site vs T . We show results
for the highest order of the L and square expansions already shown
in Fig. 8, along with results of Euler’s algorithm for the L (L) and the
square (�) expansions, and of Wynn’s algorithm for the rectangle
(R) expansion.

another. Finally, given the behavior of the direct sums of the
rectangle expansion for the specific heat in Fig. 8(c), which
appear to develop a maximum at lower temperatures than the
L and square expansions, we find the most striking resumma-
tion results to be the ones for this observable. The resumma-
tion results for the rectangle expansion in Fig. 9(c) depart from
those of their corresponding direct sums [shown in Fig. 8(c)]
below T ≈ 0.4. Those resummation results are very close to
the direct sums for the square expansion down to T ≈ 0.2, and
very close to each other down to T ≈ 0.06. The results for the
direct sums and the resummations in Fig. 8(c) suggest that a
maximum occurs in the specific heat at Tm ≈ 0.3.

VIII. SUMMARY AND DISCUSSION

We have shown that NLCEs based on sufficiently large
building blocks allow one to obtain accurate low-temperature
results for the thermodynamic properties of spin models with
continuous disorder distributions in the square lattice. We
used three NLCE schemes here, the restricted L, the square,
and the rectangle expansions, and carried out the disorder
averages directly on the NLCE clusters before computing
their weights. We contrasted our results against those obtained
using the site expansion, for which it was not possible to
control the statistical errors because of the large number of
clusters involved in low orders of the expansion. We advance
that a similar approach can be used to study models with con-
tinuous disorder distributions in other lattice geometries, such
as the triangular and kagome lattices, for which triangle-based
expansions are readily available [13,15].

We also showed that for the Ising model with an arbi-
trary disorder distribution in 1D, the linked cluster theorem

provides an alternative way (to the traditional transfer matrix
method) to obtain the exact analytical result for thermody-
namic properties. For the Heisenberg model with a uniform
disorder distribution in 1D, we provided evidence that NLCEs
allow one to obtain the energy all the way down to the ground-
state value, and the entropy and specific heat at temperatures
that are about two orders of magnitude smaller than the value
of J used to set the width of the disorder distribution.
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APPENDIX: CONTINUOUS DISORDER DISTRIBUTIONS
WITH NONZERO MEAN

In this Appendix, we report additional results obtained us-
ing the L, the square, and the rectangle expansions for continu-
ous disorder distributions that have a nonzero mean. We select
those distributions, and their corresponding parameters, to be
those for which site expansion and Monte Carlo results were
reported in Ref. [10]. The site expansion results in Ref. [10]
were obtained using multimodal disorder distributions. The
results in this Appendix allow one to contrast that approach to
ours, with which we obtain results at lower temperatures.

1. Ising model

For the Ising model, which being a classical model can
be studied using Monte Carlo simulations, we consider the
bond strengths in Eq. (1) to be of the form Jij = 1 + J Rij,
with J = 1.5 and Rij drawn from the uniform distribution
[−1, 1]. In contrast to the case considered in the main text,
this distribution exhibits more antiferromagnetic bonds than
ferromagnetic ones. In Fig. 10, we show the energy per site vs
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FIG. 10. Energy E per site vs T for the square lattice Ising model
with a uniform disorder distribution with nonzero mean (see text).
We report results for the highest two orders of the L (L), square
(�), and rectangle (R) expansions along with the Monte Carlo (MC)
results reported in Ref. [10].
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the temperature from the highest two orders we computed of
the L, the square, and the rectangle expansion. We contrast our
results to those of Monte Carlo simulations from Ref. [10].
In agreement with the multimodal NLCE results for the site
expansion reported there (see Fig. 2 in Ref. [10]), the results
of our direct sums for the L, the square, and the rectangle
expansions agree with the Monte Carlo ones at intermediate
and high temperature (T � 0.5). An advantage of the L, the
square, and the rectangle expansions over the site expansion
results in Ref. [10] is that the former exhibit direct sums
that allow us to compute the energy all the way down to the
ground-state energy.

2. Heisenberg model

For the Heisenberg model, we consider the bond strengths
in Eq. (2) to be of the form Jij = 1 + J Rij, with J = 1 and
Rij drawn from the uniform distribution [−1, 1]. For this se-
lection of the disorder distribution, the model is not frustrated
(Jij � 0, i.e., all the bonds remain antiferromagnetic) so accu-
rate results can be obtained at all temperatures using quantum
Monte Carlo (QMC) simulations. In Fig. 11, we show the
energy per site vs the temperature from the highest two orders
we computed of the L, the square, and the rectangle expansion.
We contrast our results to those of QMC simulations (using
the stochastic series expansions technique) from Ref. [10].
Additionally, in the inset of Fig. 11, we show results obtained
using the highest two orders of Wynn’s resummation for the
rectangle expansion.

Figure 11 shows that the results of the direct sums for the
highest order of the L, the square, and the rectangle expansion
agree with each other and with the QMC results down to
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FIG. 11. Energy E per site vs T for the square lattice Heisenberg
model with a uniform disorder distribution with nonzero mean (see
text). We report results for the highest two orders of the L (L),
square (�), and rectangle (R) expansions along with the Monte Carlo
(QMC) results reported in Ref. [10]. Inset: Results from Wynn’s
resummation of the rectangle expansion, Euler’s resummations of the
L and square expansions, and the Monte Carlo (QMC) results (same
results and legends as in the main panel) reported in Ref. [10].

T ≈ 0.5, which is about one half of the temperature at which
the multimodal NLCE results for the site expansion agree
with the QMC ones in Fig. 5 in Ref. [10]. Like resumma-
tions in Ref. [10], in the inset in Fig. 11 one can see that
Wynn’s resummations of the rectangle expansion extend the
agreement of the NLCE results with the QMC ones to lower
temperatures, T � 0.3 in our case.
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