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Bounds on the rates of statistical divergences and mutual information via stochastic thermodynamics
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Statistical divergences are important tools in data analysis, information theory, and statistical physics, and there
exist well-known inequalities on their bounds. However, in many circumstances involving temporal evolution,
one needs limitations on the rates of such quantities instead. Here, several general upper bounds on the rates of
some f-divergences are derived, valid for any type of stochastic dynamics (both Markovian and non-Markovian),
in terms of information-like and/or thermodynamic observables. As special cases, the analytical bounds on the
rate of mutual information are obtained. The major role in all those limitations is played by temporal Fisher
information, characterizing the speed of global system dynamics, and some of them contain entropy production,
suggesting a link with stochastic thermodynamics. Indeed, the derived inequalities can be used for estimation
of minimal dissipation and global speed in thermodynamic stochastic systems. Specific applications of these
inequalities in physics and neuroscience are given, which include the bounds on the rates of free energy and
work in nonequilibrium systems, limits on the speed of information gain in learning synapses, as well as the
bounds on the speed of predictive inference and learning rate. Overall, the derived bounds can be applied to any
complex network of interacting elements, where predictability and thermodynamics of network dynamics are of
prime concern.
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I. INTRODUCTION

Statistical divergences, or distances, known as
f-divergences, are commonly used to quantify the difference
between two probability distributions [1,2]. The most popular
special cases of these divergences are the Renyi divergence
[1], the Tsallis divergence [3], and the Kullback-Leibler
(KL) divergence [4], which is a limiting case of the former
two (for a review, see [5]). In statistical physics, KL and
Tsallis divergences have prominent roles and have been
shown to relate to information gain and other important
physical quantities, such as entropy production, work, and
other observables [6–9]. In computer science, and recently in
machine learning, KL has been used, among other things, in
assessing coding accuracy and efficiency [10,11]. Moreover,
f-divergences have many applications in classic information
theory [12], and in the emerging field of information geometry
[13]. There are many inequalities relating different types of
divergences and inequalities bounding them from above
[2,14]. However, virtually all of these relations and bounds
apply only to static (stationary) situations. Since physical
quantities generally depend on time, probability distributions
describing them are often time-dependent. Consequently,
in real physical systems, statistical divergences can also
change in time, and their variability can provide important
information about the predictability of a probabilistic
system’s dynamics. It is known that for isolated stochastic
systems with Markov dynamics (either of master equation or
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Fokker-Planck equation types), all f-divergences decrease
monotonically with time between a time-dependent state
probability distribution and its equilibrium distribution [1,15–
19], which can be interpreted as a loss of information in
autonomously relaxing systems [10]. However, no such
simple relation exists for statistical divergences between two
arbitrary time-dependent distributions.

The goal of this paper is to shed some light on more gen-
eral conditions of this type by determining the fundamental
bounds on the rates of popular f-divergences for arbitrary
probability distributions, and to relate these bounds to known
observables. The obtained bounds may have practical appli-
cations, as it is often difficult to calculate exactly the rates
of statistical divergences for a system at hand. Moreover, and
more importantly, such limits may have a conceptual meaning,
especially with regard to stochastic and information thermo-
dynamics (e.g., see [8,9,20–22]), when we interpret stochastic
f-divergences as generalized information gains [10]. Indeed,
the inequalities found here for the rates of statistical diver-
gences have a similar flavor to several inequalities discovered
recently in stochastic thermodynamics linking physical ob-
servables with information, entropy production, and the speed
of global dynamics [23–27].

In this work, two types of bounds on the rates of Tsallis,
Renyi, and Kullback-Leibler divergences are derived. The
first type is very general and consists of two inequalities
related solely to kinematic characteristics. The second type
is more restrictive, as it applies only to Markov dynamics
for probabilities obeying a master equation, and it consists
of four inequalities involving both kinematic and thermo-
dynamic observables. These results are then used to derive
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general bounds on the rate of mutual information between
two stochastic variables. As an example, a driven one-step
Markov process is used to illustrate the sharpness and ranking
of the obtained bounds. These bounds can be used naturally
for determining lower speed limits on stochastic dynamics and
minimal dissipation. Various other, more specific, applications
are also presented, ranging from physics to neuroscience.
These applications involve the limits on the rates of free en-
ergy in nonequilibrium thermodynamic systems, as well as the
bounds on the speed of information gain, predictive inference,
and learning rate in neural systems.

II. PRELIMINARIES

A. Statistical divergences and useful relations

Consider a physical system that has internal states labeled
by index n, and which can be described by two time-
dependent probability distributions pn(t ) and qn(t ). Although
it is not essential for the arguments below, it is convenient to
think about qn(t ) as a true (reference) probability distribution
of the system stochastic dynamics, and about pn(t ) as its
estimation or prediction. Before we introduce f-divergences,
let us first define a helpful quantity, which can be called the
α-coefficient Cα (p||q) between the distributions p and q (also
known as the Chernoff α-coefficient or divergence [28]),

Cα (p||q) =
〈(

p

q

)α−1
〉

p

, (1)

where α is an arbitrary real number, and the symbol
〈(p/q)

α−1〉p =∑n pn(t )( pn(t )
qn(t ) )

α−1
, which means averaging

with respect to probability distribution p. Note that equiva-
lently Cα = 〈(p/q)α〉q, which implies Cα (p||p) = 1 for all α,
and also C0(p||q) = C1(p||q) = 1. (The focus is on discrete
states, but the results are also valid for continuous variables
through replacing sums by integrals, and such transformations
are done below occasionally.) The α-coefficient provides a
core for basic f-divergences, and thus it can be of interest in
itself.

Two major f-divergences, Tsallis Tα and Renyi Rα , be-
tween p and q distributions are expressed in terms of the
α-coefficient as [5]

Tα (p||q) = Cα (p||q) − 1

α − 1
(2)

and

Rα (p||q) = ln Cα (p||q)

α − 1
, (3)

which implies a simple relationship between them as Rα =
ln (1 + (α − 1)Tα )/(α − 1). When Tα (p||q) and Rα (p||q) are
close to 0, then the probability distribution p approximates or
predicts the distribution q very well.

In the limit α �→ 1, Tsallis and Renyi divergences both tend
to KL divergence DKL, known also as relative entropy [10],
i.e., T1 = R1 = DKL(p||q) =∑n pn(t ) ln pn(t )

qn(t ) . For α = 1/2,
we obtain T1/2 as a Hellinger distance, while for α = 2 our
T2 is the Pearson χ2-divergence.

In our derivations, we will also need two inequali-
ties. The first is the stochastic version of the generalized

Hölder inequality, which for m arbitrary stochastic variables
X1, X2, . . . , Xm takes the form [29]

〈|X1 · · · Xm|〉 � 〈|X1|1/λ1〉λ1 · · · 〈|Xm|1/λm〉λm , (4)

where λi are positive real numbers such that
∑m

i=1 λi = 1, the
symbol | · · · | means the absolute value, and 〈· · · 〉 denotes
averaging with respect to some probability distribution. The
equality in Eq. (4) is achieved when there are proportional-
ities between all the rescaled variables, i.e., when |Xi|1/λi =
ci|X1|1/λ1 for every i = 2, . . . , m, where ci are some posi-
tive (possibly time-dependent) coefficients. When m = 2 and
λ1 = λ2 = 1/2, Eq. (4) becomes a classic Cauchy-Schwarz
inequality.

The second useful inequality relates arithmetic and ge-
ometric means to the so-called logarithmic mean of two
positive numbers x and y, and it reads [30]

√
xy � x − y

ln(x) − ln(y)
� x + y

2
. (5)

With Eqs. (1)–(5), we have all the necessary ingredients to
derive the upper bounds on the rates of f-divergences.

B. Rates of statistical divergences.

Because of the relations (1)–(3), the rates of Tsallis and
Renyi divergences can be expressed in terms of the rate of the
α-coefficient. For that reason, and because calculations are a
little easier for Cα , below we focus on the temporal rate of
Cα and its bounds. The bounds for the rates of Tα and Rα

are obtained as straightforward extensions of the bounds on
dCα/dt .

The temporal rate of Cα (p||q) can be written as

dCα

dt
= α

∑
n

ṗn[(pn/qn)α−1 − Cα]

− (α − 1)
∑

n

q̇n[(pn/qn)α − Cα]

�
∣∣∣∣dCα

dt

∣∣∣∣ � |α|
〈∣∣∣∣ ṗ

p
[(p/q)α−1 − Cα]

∣∣∣∣
〉

p

+ |α − 1|
〈∣∣∣∣ q̇q [(p/q)α − Cα]

∣∣∣∣
〉

q

(6)

where ṗn = d pn/dt , and similarly for q̇n. The notation 〈· · · 〉p

means averaging with respect to distribution pn. In both
bracket terms, we subtracted Cα for convenience (see below),
but this trick does not change the result of summation, as∑

n ṗn =∑n q̇n = 0. In the last inequality we used a well-
known relation x + y � |x + y| � |x| + |y| for arbitrary real
numbers x, y.

Equation (6) enables us to write the upper limit on the rate
of the Kullback-Leibler divergence DKL(p||q), since DKL =
limα �→1(Cα − 1)/(α − 1) and DKL = T1. We have∣∣∣∣dDKL

dt

∣∣∣∣ �
〈∣∣∣∣ ṗ

p

∣∣∣∣
∣∣∣∣ ln
(

p

q

)
− DKL

∣∣∣∣
〉

p

+
〈∣∣∣∣ q̇q
∣∣∣∣
∣∣∣∣
(

p

q

)
− 1

∣∣∣∣
〉

q

,

dDKL/dt � 〈| ṗ/p|| ln(p/q) − DKL|〉p +
〈∣∣∣∣d ln(p/q)

dt

∣∣∣∣
〉

p

, (7)

054126-2



BOUNDS ON THE RATES OF STATISTICAL … PHYSICAL REVIEW E 109, 054126 (2024)

where we used the fact that limα �→1 [(p/q)α−1 − 1]/(α − 1) =
ln(p/q).

Our goal in the next sections is to find upper bounds on
dCα/dt and dDKL/dt , which in effect is equivalent to deter-
mining the limits on the averages in Eqs. (6) and (7). Having
the bounds on dCα/dt , it is easy to obtain the upper limits
on the rates of Tsallis and Renyi divergences, since from
Eqs. (2) and (3) it follows that dCα/dt = (α − 1)dTα/dt and
dCα/dt = (α − 1)e(α−1)Rα dRα/dt .

C. Temporal and relative Fisher information

In the derivation below, we will use the so-called temporal
Fisher information, which is defined for probability distribu-
tion pn as [23,31]

IF (p) =
∑

n

pn

(
ṗn

pn

)2

≡ 〈( ṗ/p)2〉p, (8)

and analogically for the distribution qn. Note that the role
of the control/external parameter is played here by the time.
The quantity IF (p) is usually interpreted as a square of the
speed of global system dynamics described by the distribution
pn [23,31]. For example, if pn is a Poisson distribution with
time-dependent intensity parameter ν, i.e., pn = (νn/n!)e−ν ,
then the temporal Fisher information is IF (p) = (ν̇)2/ν, where
ν̇ is the temporal derivative of ν. This result indicates that√

IF (p) is proportional to the absolute speed of changes in
the intensity parameter.

By a direct extension, we can define relative temporal
Fisher information F (p||q) between two probability distribu-
tions pn and qn as

F (p||q) =
〈(

d ln(p/q)

dt

)2〉
p

≡ 〈( ṗ/p − q̇/q)2〉p. (9)

This is a definition of the relative temporal Fisher informa-
tion, where time is the control parameter. Definition (9) is
the generalization of more standard relative Fisher informa-
tion with a nontemporal control parameter [18,32,33], which,
however, has not received much attention in physics. F (p||q)
can be interpreted as a measure of the relative speeds of
system dynamics described by two different distributions pn

and qn. Additionally, F (p||q) = 0 if and only if pn(t ) =
qn(t ) for all n. To get a more intuitive understanding of
F (p||q), let us take again the Poisson distribution for p and
q with time-dependent intensity parameters ν1 and ν2, re-
spectively. Then it can be shown that F (p||q) = ν1[(ν̇1/ν1) −
(ν̇2/ν2)]2 + (ν̇2/ν2)2(ν1 − ν2)2. This means that F (p||q) is
zero at any given time only when both intensity parameters
and their speeds are equal.

III. GENERAL KINEMATIC BOUNDS ON THE
RATES OF DIVERGENCES

In this section, we derive upper bounds on the rates of Tα ,
Rα , and DKL, which we call the kinematic bounds.

A. Limits on rates of divergences via Fisher information

1. Rates of α-coefficient and Tsallis and Renyi divergences

Application of Eq. (4) for m = 2 and λ1 = λ2 = 1/2, with
X1 = ṗ

p and X2 = [( p
q )

α−1 − Cα] for the first term on the right
in the last line of Eq. (6), and similarly for the second term in
that line, yields

∣∣∣∣dCα

dt

∣∣∣∣ � |α|
√√√√〈( ṗ

p

)2
〉

p

√
〈[(p/q)α−1 − Cα]2〉p

+ |α − 1|
√√√√〈( q̇

q

)2
〉

q

√
〈[(p/q)α − Cα]2〉q. (10)

The ratios 〈( ṗ/p)
2〉p and 〈(q̇/q)

2〉q can be identified with
temporal Fisher information as in Eq. (8). The final step is
to note that

〈[(p/q)α−1 − Cα]2〉p = C2α−1 − C2
α,

〈[(p/q)α − Cα]2〉q = C2α − C2
α. (11)

Interestingly, the above averages correspond to variances of
(pn/qn)α−1 and (pn/qn)α around Cα averaged with respect to
either pn or qn distributions.

After these substitutions, the general upper bound on
dCα/dt is given by∣∣∣∣dCα

dt

∣∣∣∣ � |α|
√

IF (p)
√

C2α−1 − C2
α

+ |α − 1|
√

IF (q)
√

C2α − C2
α. (12)

The right-hand side of this inequality is a kinematic limit set
on the dynamics of the α-coefficient, and it is called the bound
B1 hereafter.

After using transformations in Eqs. (2) and (3), the inequal-
ity (12) allows us to find the upper bounds on the rates of
Tsallis and Renyi divergences, dTα/dt and dRα/dt . They are
given by∣∣∣∣dTα

dt

∣∣∣∣ � |α|
√

IF (p)

√
2

(α − 1)
(T2α−1 − Tα ) − T 2

α

+
√

IF (q)
√

(2α−1)T2α−2(α−1)Tα−(α−1)2T 2
α ,

(13)

and ∣∣∣∣dRα

dt

∣∣∣∣ � |α|
|α − 1|

√
IF (p)

√
e2(α−1)(R2α−1−Rα ) − 1

+
√

IF (q)
√

e[(2α−1)R2α−2(α−1)Rα ] − 1. (14)

Equations (12)–(14) constitute the first major result of this
paper. They imply that the temporal rates of the Tsallis and
Renyi divergence are bounded by the products of the global
rates of system dynamics and various nonlinear combinations
of associated divergences. It is good to keep in mind that
inequalities (12)–(14) have a general character that is indepen-
dent of the nature of dynamics of probabilities, i.e., valid for
both Markovian and non-Markovian dynamics. Moreover, the
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core Eq. (12) is structurally similar to the upper bound on the
average rate of a stochastic observable, recently investigated
[23,24].

In a special case when the distribution q is the steady-
state distribution of p, i.e., q = p∞, we have temporal Fisher
information IF (q) = 0, and Eqs. (13) and (14) simplify con-
siderably. For instance, for α = 2, from Eq. (13) we obtain
the bound on the rate of Pearson divergence as |dT2/dt | �
2
√

IF (p)
√

2(T3 − T2) − T 2
2 .

2. An example: Weakly time-dependent exponential distributions

To gain insight about the limit set on the rate of the α-
coefficient in Eq. (12), it is instructive to analyze an explicit
example. Consider two time-dependent continuous distribu-
tions px(x) = ν1e−ν1x and qx(x) = ν2e−ν2x, where ν1 and ν2

are time-dependent but positive. Furthermore, let us assume
that ν1(t ) = ν + ε(� + r1(t )) and ν2(t ) = ν + εr2(t ), where
the parameter ε 	 1, ν and � are time-independent, and
r1(t ) and r2(t ) are arbitrary time-dependent functions. This
parametrization means that ν1(t ) and ν2(t ), and their rates,
differ only slightly (∼ε) at any moment of time. For this
example, we can find explicit simple expressions for all quan-
tities in Eq. (12) to the lowest order in ε (see Appendix A).
From this it follows that the left-hand side of Eq. (12) is
equal to |α(α − 1)|(ε/ν)2|r1 − r2 + �||ṙ1 − ṙ2| + O(ε3), and
the right-hand side is |α(α − 1)|(ε/ν)2|r1 − r2 + �|(|ṙ1| +
|ṙ2|) + O(ε3), where ṙ1, ṙ2 are time derivatives of r1, r2. Thus
the difference between the two sides is set only by the dif-
ference between |ṙ1 − ṙ2| and (|ṙ1| + |ṙ2|), i.e., by the relative
speeds of r1 and r2. The equality of both sides in Eq. (12) is
achieved at the moments when ṙ1 and ṙ2 have the opposite
signs, irrespective of the functional dependence of r1(t ) and
r2(t ).

3. Rate of Kullback-Leibler divergence

From the first line of Eq. (7) and the above considerations,
the upper bound on the rate dDKL/dt immediately follows:∣∣∣∣dDKL

dt

∣∣∣∣�√IF (p)
√

〈ln2(p/q)〉p − D2
KL +

√
IF (q)

√
T2. (15)

The bound (15) involves the mean of the logarithm square,
i.e., 〈ln2(p/q)〉p, which may be difficult to compute in many
practical situations. Therefore, it is good to have an upper limit
on the logarithm in terms of other divergences. Such a limit
is provided by Eq. (5) [see also Eq. (C4)], which implies for
probabilities p and q:

〈ln2(p/q)〉p �
〈(√

p

q
−
√

q

p

)2
〉

p

=
〈

p

q

〉
p

− 1 = T2. (16)

Consequently, dDKL/dt is restricted also by∣∣∣∣dDKL

dt

∣∣∣∣ � √IF (p)
√

T2 − D2
KL +

√
IF (q)

√
T2. (17)

Obviously, the limit set by Eq. (15) is tighter than the one
present in Eq. (17). Moreover, the prominent role in the bound
(17) is played by Pearson divergence T2.

B. Limits on the rates of divergences via relative
Fisher information

The rate dCα/dt in Eq. (6) can be equivalently expressed
as

dCα

dt
=
〈

q̇

q

[(
p

q

)α

− Cα

]〉
q

+ α

〈(
p

q

)α−1

[ ṗ/p − q̇/q]

〉
p

�
√

IF (q)
√

C2α − C2
α + |α|

√
F (p||q)

√
C2α−1, (18)

where we used the Cauchy-Schwarz inequality and the defini-
tion (9) for relative temporal Fisher information. The last line
of Eq. (18) is another kinematic limit set on the dynamics of
the α-coefficient, and it is called the bound B2 below.

Equation (18) gives us the upper bounds on the rate of
Tsallis divergence:∣∣∣∣dTα

dt

∣∣∣∣ � √IF (q)

√
(2α − 1)T2α − 2(α − 1)Tα

(α − 1)2
− T 2

α

+ |α|
|α − 1|

√
F (p||q)

√
2(α − 1)T2α−1 + 1, (19)

and on the rate of Renyi divergence:∣∣∣∣dRα

dt

∣∣∣∣ �
√

IF (q)

|α − 1|
√

e(2α−1)R2α−2(α−1)Rα − 1

+ |α|
|α − 1|

√
F (p||q)e(α−1)(R2α−1−Rα ). (20)

By the same token, from the second line of Eq. (7), the rate
of Kullback-Leibler divergence is limited by∣∣∣∣dDKL

dt

∣∣∣∣ � √IF (p)
√

〈ln2(p/q)〉 − D2
KL +

√
F (p||q)

�
√

IF (p)
√

T2 − D2
KL +

√
F (p||q), (21)

where for the second term on the right we used Eq. (4) for
m = 2 with X1 = 1, X2 = d ln(p/q)

dt , and λ1 = λ2 = 1/2.
Note that the rates dTα/dt , dRα/dt , dDKL/dt and their

bounds in Eqs. (13), (14), (15), (17), and (19)–(21) are all zero
if pn(t ) = qn(t ) for all n, regardless of the temporal depen-
dence of these probabilities. This is because of the properties:
Tα (p||p) = Rα (p||p) = F (p||p) = 0 for all α.

IV. KINEMATIC-THERMODYNAMIC BOUNDS
FOR MARKOV PROCESSES

In this section, we derive bounds on dCα/dt , dTα/dt ,
dRα/dt , and dDKL/dt that involve both kinematic and ther-
modynamic variables. To do this, we need to assume that
the dynamics of both probability distributions, pn and qn, are
Markovian and represented by master equations [34]

ṗn =
∑

k

(wnk pk − wkn pn),

q̇n =
∑

k

(vnkqk − vknqn), (22)

where wkn and vkn are corresponding transition rates for
jumps from n to k states. These aggregate transition rates
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can be composed of several subtransitions corresponding to
distinct underlying physical processes labeled by s, i.e., wkn =∑

s w
(s)
kn and vkn =∑s v

(s)
kn [7].

A. Bounds of the first kind

1. Rate of α-coefficient

Consider the term 〈| ṗ/p||(p/q)α−1 − Cα|〉p in the last two
lines of Eq. (6). The same steps can be taken for the other
term in that equation, and hence they are omitted here. First,
we make the following decomposition:

〈| ṗ/p||(p/q)α−1 − Cα|〉p = 〈| ṗ/p|1/3| ṗ/p|2/3|(p/q)α−1 −
Cα|〉p. Second, we apply the Hölder inequality (4) in the
latter average with X1 = | ṗ/p|1/3, X2 = | ṗ/p|2/3, and
X3 = |(p/q)α−1 − Cα|, and for λ1 = λ2 = λ3 = 1/3. As
a result, we obtain

〈| ṗ/p||(p/q)α−1 − Cα|〉p

� (IF (p)〈| ṗ/p|〉p〈|(p/q)α−1 − Cα|3〉p)1/3. (23)

The term 〈| ṗ/p|〉p can be limited in two different ways (see
Appendix B). One way involves internal activity Ap in the
system described by distribution p,

〈| ṗ/p|〉p � 2Ap, (24)

where Ap, which also can be called the global average escape
rate, is defined as [26,27,35]

Ap = 1

2

∑
nk

(wnk pk + wkn pn) ≡
∑

n

wn pn = 〈w〉p, (25)

where wn =∑k wkn is the total escape rate from state n.
The second way of bounding 〈| ṗ/p|〉p is through (see Ap-

pendix B)

〈| ṗ/p|〉p �
√

2Ṡp

√
Ap, (26)

where Ṡp is the coarse-grained entropy production rate in the
system, with the distribution p, defined as [7,34,36]

Ṡp = 1

2

∑
nk

(wnk pk − wkn pn) ln
wnk pk

wkn pn
. (27)

The inequality (26) is similar to the so-called speed limit
relation found for the evolution of Markov thermodynamic
systems [25].

The term 〈|(p/q)
α−1 − Cα|3〉p in Eq. (23) is bounded by

[see Eq. (C1) in Appendix C]

〈|(p/q)α−1 − Cα|3〉p � C3α−2 − CαC2α−1. (28)

Combining Eqs. (23), (24), (26), and (28), we obtain either

〈| ṗ/p||(p/q)α−1 − Cα|〉p � (2IF (p)Ap[C3α−2 − CαC2α−1])1/3,

(29)

or

〈| ṗ/p||(p/q)α−1 − Cα|〉p

� (IF (p)
√

2ṠpAp[C3α−2 − CαC2α−1])1/3. (30)

Analogical inequalities can be obtained for the remaining term
in the last line of Eq. (6), with appropriately defined Ṡq and Aq

for the distribution q. Taking all that into account leads to the
limits on the rate of the α-coefficient, as∣∣∣∣dCα

dt

∣∣∣∣ � |α|(2IF (p)Ap(C3α−2 − CαC2α−1))1/3

+ |α − 1|(2IF (q)Aq(C3α − CαC2α ))1/3, (31)

which is a strictly kinematic bound with the right-hand side
called from now on the bound B3, and∣∣∣∣dCα

dt

∣∣∣∣ � |α|(IF (p)
√

2ṠpAp[C3α−2 − CαC2α−1])1/3

+ |α − 1|(IF (q)
√

2ṠqAq[C3α − CαC2α])1/3, (32)

which represents a mixed kinematic-thermodynamic bound
called the bound B4. These two equations constitute the third
major result of this paper. They mean that for Markov dy-
namics dCα/dt can be bounded not only by the global rate of
system dynamics [IF (p), IF (q)], but also by average activities
(Ap, Aq ), and/or the thermodynamic entropy production rates
(Ṡp, Ṡq ). This generally suggests that the kinematic charac-
teristics of the stochastic system are at least as important as
the entropic (energetic) characteristics, in agreement with the
notions in Ref. [37]. Furthermore, the restriction to Markov
dynamics makes the bounds in Eqs. (31) and (32) less general
than the bounds in Eqs. (12) and (18).

2. Rates of Tsallis and Renyi divergences

The inequalities in Eqs. (31) and (32) allow us to write the
corresponding kinematic and thermodynamic bounds on the
rate of Tsallis and Renyi divergences. For dTα/dt we get the
following inequality:

∣∣∣∣dTα

dt

∣∣∣∣ � |α|
|α − 1|2/3

(IF (p)
√

Ap�p[3T3α−2 − 2T2α−1[1 + (α − 1)Tα] − Tα])1/3

+ (IF (q)
√

Aq�q[(3α − 1)T3α − (2α − 1)T2α[1 + (α − 1)Tα] − (α − 1)Tα])1/3, (33)

and for dRα/dt we have ∣∣∣∣dRα

dt

∣∣∣∣ � |α|
|α − 1| (IF (p)

√
Ap�p[e3(α−1)(R3α−2−Rα ) − e2(α−1)(R2α−1−Rα )])1/3

+ (IF (q)
√

Aq�q[e(3α−1)R3α−3(α−1)Rα − e(2α−1)R2α−2(α−1)Rα ])1/3, (34)
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where �γ , with index γ either p or q, is

�γ =
{

4Aγ , K bound,
2Ṡγ , KT bound,

(35)

with K and KT denoting, respectively, purely kinematic and mixed kinematic-thermodynamic bounds.
Equations (33) and (34) are slightly more complicated than the basal Eqs. (31) and (32), chiefly by the presence of various

combinations of Tsallis and Renyi divergences of different order. However, in the case when the distribution of q is a steady-state
distribution of p, the terms proportional to IF (q) vanish, and Eqs. (33) and (34) take simpler forms. For instance, for α = 2, we
obtain the limit on the rate of Pearson divergence as |dT2/dt | � 2(IF (p)

√
Ap�p[3T4 − 2T3(1 + T2) − T2])1/3.

3. Rate of Kullback-Leibler divergence

Now we turn to the rate of Kullback-Leibler divergence, with Eq. (7) as the starting point. Applying the Hölder inequality in
the same way as above, we get

〈| ṗ/p|| ln(p/q) − DKL|〉p � (IF (p)〈| ṗ/p|〉p〈| ln(p/q) − DKL|3〉p)1/3 (36)

and

〈|q̇/q||(p/q) − 1|〉q � (IF (q)〈|q̇/q|〉q〈|(p/q) − 1|3〉q)1/3. (37)

The terms 〈| ṗ/p|〉p and 〈|q̇/q|〉q are restricted by Eqs. (24) and (26) or their analogs.
The bound on 〈|(p/q) − 1|3〉q is obtained immediately from Eq. (C1), with the result

〈|(p/q) − 1|3〉q � C3 − C2 = 2T3 − T2. (38)

Estimating 〈| ln(p/q) − DKL|3〉p requires more transformations. With the help of Eq. (C5) in Appendix C, that term can be
bounded by various α-coefficients as

〈| ln(p/q) − DKL|3〉p � e−3DKL/2C5/2 − e−DKL/2C3/2 − eDKL/2C1/2 + e3DKL/2C−1/2. (39)

Combining Eqs. (7), (24), (26), and (36)–(39), we obtain the limit on the rate of KL divergence,∣∣∣∣dDKL

dt

∣∣∣∣ � (IF (q)
√

Aq�q[2T3 − T2])1/3 + (IF (p)
√

Ap�p[e−3DKL/2C5/2 − e−DKL/2C3/2 − eDKL/2C1/2 + e3DKL/2C−1/2])1/3, (40)

where the quantities �p and �q are given by Eq. (35). As can be seen, apart from similar terms to those in Eqs. (33) and (34), the
upper bound contains also various exponents of DKL. More broadly, one can interpret the kinematic-thermodynamic bounds in
Eqs. (33), (34), and (40) that the predictability of the system dynamics is associated with its levels of dissipation and dynamical
agitation. The smaller these two factors are, the better is the prediction of the dynamics.

B. Bounds of the second kind

In this section we derive a second, alternative, thermodynamic-kinematic bound on the rate of statistical divergences.
Consider the first line of Eq. (6). We can substitute for ṗn and q̇n in this equation their Master equation dynamics given by

Eq. (22). This leads to∣∣∣∣dCα

dt

∣∣∣∣ � |α|
∑

nk

|wnk pk − wkn pn||(pn/qn)α−1 − Cα| + |α − 1|
∑

nk

|vnkqk − vknqn||(pn/qn)α − Cα|. (41)

The first term on the right proportional to |α| can be limited again in two different ways [see Eq. (B6) in Appendix B]:∑
nk

|wnk pk − wkn pn||(pn/qn)α−1 − Cα| � √
�p/2(

√
IF (p) + 2

√
〈w2〉p)1/2〈[(p/q)α−1 − Cα]4〉1/4

p , (42)

where 〈w2〉p =∑n w2
n pn is the second moment of total escape rate.

Moreover, by a direct computation we have

〈[(p/q)α−1 − Cα]4〉p = C4α−3 − 4CαC3α−2 + 6C2
αC2α−1 − 3C4

α. (43)

Combining Eqs. (41)–(43), and applying the same reasoning for the second term in Eq. (41), we obtain two upper bounds on
the rate of the α-coefficient depending on the value for �:∣∣∣∣dCα

dt

∣∣∣∣ � |α|√�p/2(
√

IF (p) + 2
√

〈w2〉p)1/2
(
C4α−3 − 4CαC3α−2 + 6C2

αC2α−1 − 3C4
α

)1/4

+ |α − 1|√�q/2(
√

IF (q) + 2
√

〈v2〉q)1/2
(
C4α − 4CαC3α + 6C2

αC2α − 3C4
α

)1/4
. (44)
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TABLE I. Summary of the inequalities for the rates of divergences. �γ is equal either 4Aγ or 2Ṡγ .

Divergence
Bound type Equation

B1
Chernoff |Ċα| � |α|√IF (p)

√
C2α−1 − C2

α + |α − 1|√IF (q)
√

C2α − C2
α

Tsallis |Ṫα| � |α|√IF (p)[ 2
(α−1) (T2α−1 − Tα ) − T 2

α ]
1/2

+ √
IF (q)[(2α − 1)T2α − 2(α − 1)Tα − (α − 1)2T 2

α ]
1/2

Renyi |Ṙα| � |α|
|α−1|

√
IF (p)[e2(α−1)(R2α−1−Rα ) − 1]

1/2 + √
IF (q)[e[(2α−1)R2α−2(α−1)Rα ] − 1]

1/2

Kullback-Leibler |ḊKL| � √
IF (p)

√
T2 − D2

KL + √
IF (q)

√
T2

B2
Chernoff |Ċα| �

√
IF (q)

√
C2α − C2

α + |α|√F (p||q)
√

C2α−1

Tsallis |Ṫα| �
√

IF (q)[ (2α−1)T2α−2(α−1)Tα

(α−1)2 − T 2
α ]

1/2 + |α|
|α−1|

√
F (p||q)[2(α − 1)T2α−1 + 1]

1/2

Renyi |Ṙα| �
√

IF (q)
|α−1|

√
e(2α−1)R2α−2(α−1)Rα − 1 + |α|

|α−1|
√

F (p||q)e(α−1)(R2α−1−Rα )

Kullback-Leibler |ḊKL| � √
IF (p)

√
T2 − D2

KL + √
F (p||q)

B3,B4
Chernoff |Ċα| � |α|(IF (p)

√
Ap�p[C3α−2 − CαC2α−1])1/3 + |α − 1|(IF (q)

√
Aq�q[C3α − CαC2α])1/3

Tsallis |Ṫα| � |α|
|α−1|2/3 (IF (p)

√
Ap�p[3T3α−2 − 2T2α−1[1 + (α − 1)Tα] − Tα])

1/3

+(IF (q)
√

Aq�q[(3α − 1)T3α − (2α − 1)T2α[1 + (α − 1)Tα] − (α − 1)Tα])
1/3

Renyi |Ṙα| � |α|
|α−1| (IF (p)

√
Ap�p[e3(α−1)(R3α−2−Rα ) − e2(α−1)(R2α−1−Rα )])

1/3

+(IF (q)
√

Aq�q[e(3α−1)R3α−3(α−1)Rα − e(2α−1)R2α−2(α−1)Rα ])
1/3

Kullback-Leibler |ḊKL| � (IF (q)
√

Aq�q[2T3 − T2])
1/3 + (IF (p)

√
Ap�p)

1/3

×[e−3DKL/2C5/2 − e−DKL/2C3/2 − eDKL/2C1/2 + e3DKL/2C−1/2]
1/3

B5,B6

Chernoff |Ċα| � |α|√�p/2(
√

IF (p) + 2
√

〈w2〉p)
1/2

(C4α−3 − 4CαC3α−2 + 6C2
αC2α−1 − 3C4

α )
1/4

+|α − 1|√�q/2(
√

IF (q) + 2
√

〈v2〉q )
1/2

(C4α − 4CαC3α + 6C2
αC2α − 3C4

α )
1/4

Tsallis
Renyi

Kullback-Leibler |ḊKL| � √�p/2(
√

IF (p) + 2
√

〈w2〉p)
1/2

(e−2DKLC3 − 4e−DKLC2 + 6 − 4eDKL + e2DKLC−1)
1/4

+√�q/2(
√

IF (q) + 2
√

〈v2〉q )
1/2

(3T4 − 8T3 + 6T2 )
1/4

This equation is an alternative to Eqs. (31) and (32), though a
little more complicated, and it combines a purely kinematic
bound called B5 (for � = 4A) with a mixed kinematic-
thermodynamic bound called B6 (for � = 2Ṡ). Note that in
the steady state for both probability distributions p and q, all
the terms dCα/dt , Ṡp, Ṡq, IF (p), and IF (q) are zero, but 〈w2〉p

and 〈v2〉p are nonzero.
The corresponding bounds on the rates of Tsallis and Renyi

divergences can be obtained straightforwardly from Eq. (44),
using transformation in Eqs. (2) and (3). The resulting in-
equalities are similar to Eq. (44), although more elaborate
due to a more complicated combination of α-coefficients.
Below, instead, we provide an explicit bound on the rate of
KL divergence, which takes the form

∣∣∣∣dDKL

dt

∣∣∣∣ � √�p/2(
√

IF (p) + 2
√

〈w2〉p)1/2

× (〈[ln(p/q) − DKL]4〉p)1/4

+√�q/2(
√

IF (q) + 2
√

〈v2〉q)1/2

× (3T4 − 8T3 + 6T2)1/4, (45)

where 〈[ ln(p/q) − DKL]
4〉p can be bounded as [see Eq. (C6)

in Appendix C]

〈[ln(p/q) − DKL]4〉p � e−2DKLC3 − 4e−DKLC2 + 6

− 4eDKL + e2DKLC−1. (46)

Together Eqs. (44)–(46) constitute the fourth major result
of this work. They imply that the rate of information gain
about the system dynamics is restricted by both thermody-
namic and kinematic characteristics, both of the true system
(probabilities q) and its estimator (probabilities p).

V. COMPARISON OF THE BOUNDS:
ONE-STEP DRIVEN PROCESS

In Table I, all the derived bounds on the rates of statistical
divergences are summarized.

Next, we check the quality of the six upper bounds on
dCα/dt , denoted by B1–B6 and represented by Eqs. (12),
(18), (31), (32), and (44), respectively. We choose a specific
example of a stochastic dynamical system known as the one-
step Markov jump process (known also as the birth-and-death
process) with N + 1 states [38]. We consider two versions of
this system: one driven by periodic stimulation, and another
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FIG. 1. Rate of α-coefficient in comparison to its various upper
bounds as functions of time for α = 2, corresponding to Pearson
divergence. The solid line (blue) corresponds to the exact value of
|dC2/dt | and was computed from Eq. (6). Upper bounds on |dC2/dt |,
i.e., B1–B6 are shown as a dashed (red) line for B1; a dotted (black)
line for B2; crosses (purple) for B3; diamonds (green) for B4; circles
(light blue) for B5; and pluses (yellow) for B6. Note that the best
estimates for |dC2/dt | are given by the kinematic bounds B1 (dashed
line) and B2 (dotted line), but the former is closer to the actual value
of |dC2/dt |. The bound B5 provides a poor estimate and is mostly
out of scale. Parameters used are a = a0 = 3.0, b0 = 1.0, g = 0.7,
ω = 1.2, and N = 9.

relaxing to its steady state. For the driven case, the probability
pn of being in state n is described by the following master
equation:

ṗn = wn,n−1 pn−1 + wn,n+1 pn+1 − (wn−1,n + wn+1,n)pn,

for n = 1, . . . , N − 1, and for the boundary probabilities
we have ṗ0 = w0,1 p1 − w1,0 p0 and ṗN = wN,N−1 pN−1 −
wN−1,N pN , with the transition rates wn−1,n = a0n, wn+1,n =
b(t )(N − n), where the time-dependent oscillating rate b(t ) =
b0(1 + g[cos(ωt ) + 1]). The parameters a0 and b0 are, respec-
tively, the amplitudes of the downhill and uphill transitions,
and oscillations of b(t ) are controlled by amplitude g and
frequency ω.

For the relaxing case, we have the same structure of the
master equation as above, but we denote the corresponding
probabilities as qn, with the time-independent transition rates
vn−1,n = wn−1,n and vn+1,n = b0(N − n). In both cases, the
same initial condition on the probabilities was used, i.e.,
pi(0) = qi(0) = 1

N+1 for all i = 0, 1, . . . , N , which means
that initially all the states are equally likely.

For this system we compute numerically the α-coefficient
Cα (p||q) and its time derivative, as well as all B1–B6 bounds
on dCα/dt . Overall, the best estimate for |dCα/dt | is provided
by the bound B1, and the discrepancy between the two is very
small as time progresses (Figs. 1 and 2). The bounds B2, B4,
and B6 compete for second place, but their ranking changes
dynamically. Their mutual relationship depends also on the
order α (compare Figs. 1 and 2). The kinematic bounds B3
and B5 are rather weak, especially B5, which does not fit into

0 2 4 6 8 10 12
time  (arb. units)

0

0.2

0.4

0.6

0.8

|d
C

1/
2

/d
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FIG. 2. The same as in Fig. 1 but for α = 1/2, corresponding to
Hellinger distance. Again the bound B1 gives the best estimate, but
the accuracy for some other bounds is different from that in Fig. 1.
Notably, the bounds B4 (diamonds) and B6 (pluses) provide often
better estimates than the bound B2 (dotted line). The same labels
used and parameters are as in Fig. 1.

the scale of Figs. 1 and 2. This suggests that purely kinematic
bounds for Markov processes obeying the master equation do
not capture well the rates of statistical divergences.

The superiority of the general kinematic bound B1
[Eq. (12)] follows from two facts. The first is that its derivation
involves a minimal number of mathematical transformations,
i.e., fewer consecutive inequalities on the way are required,
and thus fewer inaccuracies are introduced. The second reason
is more subtle and it concerns the number of constraints on the
physical variables appearing in the bounds, which have to be
satisfied to make the bounds good estimates of |dCα/dt |. The
larger the number of constraints, the less likely the bound will
be reached. To be more specific, let us compare the bound
B1 with the bounds B3 and B4. The bound B1 is derived
from Hölder inequality [Eq. (4)] for m = 2, i.e., only two
variables are involved. Consequently, this inequality becomes
an equality when only one constraint relating the two variables
is satisfied (|X1|1/λ1 ∼ |X2|1/λ2 ). The equality in the Hölder
inequality corresponds to the saturation of the bound B1. On
the other hand, the bounds B3 and B4 [Eqs. (31) and (32)]
are derived from Eq. (4) with m = 3 variables. To achieve
equality in Eq. (4) in this case requires two constraints on
these three variables (|X1|1/λ1 ∼ |X2|1/λ2 ∼ |X3|1/λ3 ), which is
much more restrictive on the dynamics of these variables than
in the former case. As a result, the bounds B3 and B4 are
more difficult to reach, and their values deviate significantly
from the actual value of |dCα/dt |.

It is also interesting to consider why the bound B3 is much
less accurate than the bound B4, given that they both follow
from a similar derivation scheme with m = 3 in the Hölder
inequality. Since the bounds B3 and B4 differ only by the
factor �γ in Eq. (35), the fact that B3 gives much larger
values than B4 means that entropy production Ṡγ is smaller
than activity Aγ . This seems reasonable because Ṡγ can be
close to 0 for systems close to equilibrium, while activity
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Aγ is always strictly positive and can be large regardless of
the distance from equilibrium [37]. Thus, in this particular
case, having more information about the system (both ac-
tivity and entropy production rather than activity only), is
more advantageous and produces a tighter bound. This is
similar to the case of the improved thermodynamic uncer-
tainty relation [22,27]. However, this is not a general rule,
as the case of B1 bound versus B3, B4 bounds shows. For
the former bound we have less specific information about
the system, and yet that bound is shown to perform the
best.

VI. APPLICATIONS OF INEQUALITIES FOR THE RATES
OF DIVERGENCES

The above inequalities for the upper bounds of various di-
vergences can be used in different circumstances encountered
in physics and interdisciplinary research. Having the bound
on the module of divergence rate Ḋα (= dDα/dt), where Dα

is either Tsallis Tα or Renyi divergence Rα , allows us to find
the discrepancy between Dα at different time moments. In
particular, because of the general relationship

Dα (T ) − Dα (0) =
∫ T

0
Ḋαdt �

√
T

√∫ T

0
|Ḋα|2dt, (47)

and because of the upper bounds on |Ḋα|, we can estimate
the maximal difference between the values of divergences at
initial and some later arbitrary time T .

It is worthwhile to stress that the basic inequalities on
the rates of statistical divergences [Eqs. (12)–(15)] have a
very similar structure to the inequalities for the average rates
of stochastic observables [23,24]. Both of them follow from
the Cauchy-Schwarz inequality and contain temporal Fisher
information. In our case, the role of the observable is played
by the statistical divergence, which can be interpreted as a
generalized information gain.

A. Minimal speed and entropy production in terms
of the rates of statistical divergences

In recent years, different speed limits on stochastic thermo-
dynamics in different systems have been found [22,25,39–43].
Similarly, there has been an interest in determining minimal
entropy production during stochastic evolution [22,44–49].
Here, we provide alternative lower limits on the speed of dy-
namical systems and their entropy production, using statistical
divergences.

In a particular case when divergence Dα (p|p∞) is between
the time-dependent system’s probability distribution p and its
steady-state distribution p∞, the divergence Dα (p|p∞) can be
interpreted as generalized information gain in relation to its
steady state. Consequently, the rate of divergence Ḋα (p|p∞)
can be thought of as the speed of information gain away from
the steady state.

The speed of global system dynamics can be defined as
a square root of temporal Fisher information, i.e.,

√
IF (p).

Thus, Eqs. (13) and (14) provide lower bounds on the speed of

system evolution through either Tsallis or Renyi divergences,
or the α-coefficient, as√

IF (p) � |Ċα (p||p∞)|
|α|√C2α−1 − C2

α

, (48)

√
IF (p) � |Ṫα (p||p∞)|

|α|
√

2
(α−1) (T2α−1 − Tα ) − T 2

α

, (49)

and √
IF (p) � |α − 1||Ṙα (p||p∞)|

|α|√e2(α−1)(R2α−1−Rα ) − 1
. (50)

These inequalities imply that the minimal speed of the sys-
tem’s stochastic dynamics is set by the rate of generalized
information gain in this system.

Similarly, we can provide lower bounds on the entropy
production rate in stochastic Markov systems by inverting
Eqs. (32)–(34). As before, by considering statistical diver-
gences between the time-dependent distribution p and its
steady-state form p∞, we obtain the following inequalities for
Ṡp:

Ṡp �
Ċα (p||p∞)6

2α6ApIF (p)2[C3α−2 − CαC2α−1]2
, (51)

and via the rates of Tsallis and Renyi divergences

Ṡp � (α − 1)4Ṫα (p||p∞)6

2α6ApIF (p)2

×{3T3α−2 − 2T2α−1[1 + (α − 1)Tα] − Tα}−2 (52)

and

Ṡp � [(α − 1)Ṙα (p||p∞)]6

2α6ApIF (p)2

× [e3(α−1)(R3α−2−Rα ) − e2(α−1)(R2α−1−Rα )]−2. (53)

Equations (51)–(53) determine minimal dissipation for
stochastic thermodynamic systems in terms of the rates of
generalized information gains, the system’s average activity,
and its speed. As such, they are alternatives to the minimal
limits on entropy production derived in other ways, and in-
volving other quantities [22,44–49]. Interestingly, the minimal
dissipation in the system is inversely proportional to the prod-
uct of the system’s activity and the fourth power of its speed.
Thus, paradoxically, it is possible, in principle, to increase
dissipation by decreasing activity Ap and global speed

√
IF ,

as long as the rate of information gain is fixed.
Other, more specific, applications of the rates of diver-

gences are provided below.

B. Applications in physics and biophysics

1. Limits on nonequilibrium rates of free energy
and work in thermodynamics

Let us consider a physical system in contact with an en-
vironment (heat bath) at temperature T . Our goal is to find
the bounds on the rates of available free energy and work
associated with this system, which can be in thermal equilib-
rium or in nonequilibrium with the environment. In the first
case, we describe the system by the probability distribution

054126-9



JAN KARBOWSKI PHYSICAL REVIEW E 109, 054126 (2024)

peq,n(t ), that it is in state n at time t , while in the second,
nonequilibrium case, we describe our system analogously by
the probability distribution pn(t ). The nonequilibrium version
of the second law of thermodynamics for our system is [50]

Ẇ − Ḟ = kBT Ṡ, (54)

where Ẇ is the rate of work performed on the system, Ḟ is
the rate of nonequilibrium free energy, kB is the Boltzmann
constant, and kBT Ṡ is the physical entropy production rate in
energy units. Because of the presence of dissipation in the
system, which mathematically means that Ṡ � 0, we obtain
the second law as Ẇ � Ḟ , or equivalently �W � �F . These
inequalities indicate that the maximal useful work that can
be extracted (−�W ) is at most equal to the corresponding
decrease in nonequilibrium free energy (−�F ).

The time-dependent nonequilibrium free energy F (t ) is
related to the time-dependent equilibrium free energy Feq(t )
by [8,50]

F (t ) − Feq(t ) = kBT DKL(p||peq), (55)

which means that nonequilibrium free energy is always
greater than the equilibrium one by the amount of information
needed to specify the nonequilibrium state (quantified by the
KL divergence between the distributions pn and peq,n). The
differences of the rates of these free energies, Ḟ − Ḟeq =
kBT ḊKL(p||peq), are thus restricted by the bounds on KL
divergence, given by Eqs. (15), (17), or (40) and (45). For
example, using Eq. (17), we obtain bounds on the nonequi-
librium free energy rate as

|Ḟ − Ḟeq| � kBT (
√

IF (p)
√

T2 − DKL +√IF (peq)
√

T2). (56)

This means that the speed with which free energy changes
is limited by the speeds of global dynamics of nonequi-
librium and equilibrium versions of the system [i.e., IF (p)
and IF (peq)], as well as by the Pearson and KL divergences
between nonequilibrium and equilibrium distributions [i.e.,
T2(p||peq) and DKL(p||peq)].

Using Eqs. (54) and (56), we can also write the bounds on
the rate of work performed on the system. We obtain

−kBT (
√

IF (p)
√

T2 − DKL +√IF (peq)
√

T2)

� Ẇ − Ḟeq − kBT Ṡ

� kBT (
√

IF (p)
√

T2 − DKL +√IF (peq)
√

T2). (57)

These inequalities allow us to find lower and upper bounds on
the rates of extracted work from (−Ẇ ) or done on (Ẇ ) the
thermodynamic system. In a particular case when the equilib-
rium probability distribution is time-independent, i.e., ṗeq,n =
0, we obtain a simpler formula for the maximal extracted work
rate: −Ẇ � kBT ( − Ṡ + √

IF (p)
√

T2 − DKL). That work rate
is restricted not only by the entropy production rate but also by
the global speed of the nonequilibrium state and the difference
in Pearson and KL divergences.

2. Overdamped particle in time-dependent potential versus
“target” potential

This example concerns kinematic bounds on the rates
of divergences given by Eqs. (12)–(14). Consider a Brow-
nian massless particle moving in 1D with trajectory x(t )

in a stochastic environment with a damping force −kdx/dt
(k is some positive constant). We study the motion of this
particle in two different external time-dependent potentials,
either V1(s1(t )) or V2(s2(t )), which are influenced by two
time-dependent arbitrary signals s1(t ) and s2(t ). We call the
potential V2 the target or “desired” potential, and V1 is the
actual potential. Our goal is to study how fast the actual trajec-
tory of the particle, corresponding to the V1 potential, diverges
from the target trajectory corresponding to the V2 potential.
For analytical tractability, we assume harmonic potentials in
both cases, i.e., Vi = 1

2 kγ [x − si(t )]2, where γ is the inverse
of the (relaxation) time constant of the system. In this case,
the signals si(t ) are the centers of the two potentials.

The equation of motion in both potentials is

ẋ = −γ [x − si(t )] +
√

2γ σ 2η(t ), (58)

where i = 1, 2 and it corresponds to the case with potential
either V1 or V2, σ is the standard deviation of the noise in the
system, and η(t ) is the δ-correlated Gaussian random variable
related to the noise such that 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 =
δ(t − t ′).

The trajectory x(t ) of the particle tries to follow the in-
stantaneous value of the signal si(t ), but it is distracted by the
noise, and thus the particle position is a stochastic variable.
This particle dynamics can be described equivalently by the
dynamics of the probability density of the particle position in
terms of the Fokker-Planck equation as

∂Pi(x, t )

∂t
= −∂Ji(x, t )

∂x
, (59)

with

Ji(x, t ) = −γ [x − si(t )]Pi(x, t ) − γ σ 2 ∂Pi(x, t )

∂x
, (60)

where Pi(x, t ) is the probability density of particle position in
the potential related to signal si(t ), and Ji(x, t ) is the prob-
ability flux (i = 1, 2). Equation (59) can be exactly solved
yielding [38]

Pi(x, t ) =
exp
(− {x−e−γ t [x0+γ gi (t )]}2

2σ 2(1−e−2γ t )

)
√

2πσ 2(1 − e−2γ t )
, (61)

where gi(t ) = ∫ t
0 dt ′eγ t ′

si(t ′). The average value of particle
position x(t ) in both potentials is 〈x(t )〉 = [x0 + γ gi(t )]e−γ t ,
and the variance is 〈[x(t ) − 〈x(t )〉]2〉 = σ 2(1 − e−2γ t ).

Next, we calculate how the two probability densities
P1(x, t ) and P2(x, t ) diverge as time progresses. For this we
find a continuous version of the Chernoff α-coefficient given
by Eq. (1), with p(x, t ) = P1(x, t ) and q(x, t ) = P2(x, t ), i.e.,

Cα (p||q) = ∫ dx p(x, t )[ p(x,t )
q(x,t ) ]

α−1
. We obtain

Cα (p||q) = exp

[
α(α − 1)γ 2e−2γ t

2σ 2(1 − e−2γ t )

×
(∫ t

0
dt ′ eγ t ′

[s1(t ′) − s2(t ′)]
)2]

, (62)

from which we can determine the Tsallis and Renyi diver-
gences for the Brownian particle. For example, the Renyi
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Rα (p||q) divergence takes the form

Rα (p||q) = αγ 2e−2γ t
( ∫ t

0 dt ′ eγ t ′
[s1(t ′) − s2(t ′)]

)2
2σ 2(1 − e−2γ t )

, (63)

which means that Rα (p||q) measures the differences between
the external signals s1(t ) and s2(t ) accumulated over time,
appropriately weighted.

The rate at which the distributions p(x, t ) and q(x, t ) di-
verge is given by the derivative dCα/dt and reads

dCα

dt
= α(α − 1)γ 2e−γ t

σ 2(1 − e−2γ t )

(
− γ e−γ t

(1 − e−2γ t )
[g2(t ) − g1(t )]2

+ [s2(t ) − s1(t )][g2(t ) − g1(t )]

)
. (64)

Because dCα/dt is a quadratic function of [g2(t ) − g1(t )], it
has a maximum proportional to the square of the difference
between the signals s1(t ) and s2(t ) (for α > 1). More formally,

dCα

dt
� α(α − 1)γCα

4σ 2
[s2(t ) − s1(t )]2, (65)

which leads to the maximal rate of Renyi divergence between
the actual particle distribution and its target distribution,

dRα

dt
� αγ

4σ 2
[s2(t ) − s1(t )]2. (66)

To assess the bounds on the absolute value |dCα/dt | and
|dRα/dt |, we need to find the expressions for C2α − C2

α and
C2α−1 − C2

α , as well as for temporal Fisher information. Using
Eq. (62), it can be easily found that

C2α − C2
α = C2

α

(
C

2α
(α−1)
α − 1

)
,

C2α−1 − C2
α = C2

α

(
C

2(α−1)
α

α − 1
)
. (67)

The Fisher information IF (p) is given by

IF (p) = γ 2

(1 − e−2γ t )

(
2e−2γ t

(e2γ t − 1)
+ [〈x(t )〉 − s1(t )]2

σ 2

)
, (68)

and similarly for IF (q). Equation (68) indicates that temporal
Fisher information in this case is proportional (after a transient
time) to the square of the discrepancy between the external
signal and the average particle position, which tries to track it.

We can also compute the entropy production rate for this
system. It is computed using the continuous formula [6]

Ṡi =
∫

dx
Ji(x, t )2

γ σ 2Pi(x, t )
. (69)

As a result, we obtain for entropy production a similar formula
to the one for the temporal Fisher information. In particular,
for the distribution p(x, t ) we have Ṡp as

Ṡp = γ

(
e−2γ t

(e2γ t − 1)
+ [〈x(t )〉 − s1(t )]2

σ 2

)
. (70)

This formula indicates that the higher the discrepancy be-
tween the external signal and the average particle position, the
larger is the entropy production rate.

Next, we address a question: how does the entropy produc-
tion rate relate to the power dissipated in the particle system?

A more general equation of motion for our particle, if it had
mass m, is given by

mẍ = −∂Vi(x, t )

∂x
− kẋ + k

√
2γ σ 2η(t ). (71)

Both sides of this equation can be multiplied by the particle
velocity ẋ, which after a simple rearrangement yields

dEi

dt
= ∂Vi(x, t )

∂t
− kẋ2 + k

√
2γ σ 2ẋη(t ), (72)

where Ei = 1
2 mẋ2 + Vi(x, t ) is the mechanical energy of the

system, and we used the relation dVi (x,t )
dt = ∂Vi (x,t )

∂t + ∂Vi (x,t )
∂x ẋ.

Equation (72) means that energy in the system is dissipated
by three different factors: by a temporal decrease of the po-
tential Vi, friction proportional to kẋ2, and noise proportional
to ẋη(t ). The average dissipated power, or energy rate, is 〈 dEi

dt 〉,
which yields〈

dEi

dt

〉
= −kγ 2([〈x(t )〉 − si(t )]2

+ ṡi[〈x(t )〉 − si(t )] − σ 2e−2γ t ), (73)

where we used the Novikov theorem [51] for the average
〈ẋη(t )〉 = 1

2

√
2γ σ 2. Equation (73) shows that the effect of

noise on the energy change is negligible after a transient time
∼1/γ . The dominant contributions to 〈 dEi

dt 〉 are proportional
to the discrepancy between the external signal and the av-
erage particle position, which is similar to but not exactly
the same as that in the formula for the entropy production
rate [Eq. (70)]. The main difference between 〈 dEi

dt 〉 and Ṡp is
the term proportional to ṡi (of any sign), which characterizes
energy flux (either positive or negative) between the system
and the environment. Finally, the form of Eq. (73) implies
that the average energy rate is bounded from above by 〈 dEi

dt 〉 �
kγ 2[σ 2e−2γ t + 1

4 (ṡi)2].

3. Memory bistable systems

Here, we analyze a memory switch that can be driven
by time-dependent external factors, and it is motivated by
biophysics of small molecules. We assume that this switch is
a two-state system, described by Markov dynamics. Examples
of such bistable memory switches are proteins (their activation
and deactivation) and synapses in the brain [52–54].

Let us consider a two-state system with energies, respec-
tively, E1 and E2 (E2 > E1), corresponding to states 1 and 2,
that can be driven by a time-dependent chemical potential.
The system is at temperature T , which plays the role of the
noise, and there are stochastic jumps between states 1 and 2.
We assume that the system is initially (t = 0) at equilibrium,
and then a chemical potential μ(t ) is turned on [μ(t ) > 0].
This enables the system to jump to the higher-energy state 2,
thus acquiring new information above a thermal background
(the system learns). Our goal is to determine the rate of this in-
formation gain, and its bounds in terms of physical quantities.
The master equation corresponding to this situation is

ṗ1 = w12 p2 − w21(t )p1, p2 = 1 − p1, (74)

where the transition rate from state 2 to 1 is w12 = eβ�E/τ ,
with τ the timescale for the jumps, and the transition from
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state 1 to 2 is driven by the chemical potential μ(t ) as w21 =
e−β[�E−εμ(t )]/τ , with �E = E2 − E1 > 0, β = 1/(kBT ), and
ε 	 1. The role of the chemical potentials is to lower the
energy barrier so that the jumps to state 2 are more likely.
Initially, t = 0, the system is at thermal equilibrium, and we
have p1(0) = eβ�E/[2 cosh(β�E )].

Equation (74) can be solved exactly for an arbitrary form
of μ(t ). However, it is convenient to work in the limit of
small ε to get analytical expressions for divergences and other
physical quantities. We work to second order in ε, i.e., p1 =
p(0)

1 + εp(1)
1 + ε2 p(2)

1 + O(ε3), and we obtain p(0)
1 (t ) = p1(0)

and

p(1)
1 (t ) = −β

τ
e−w0t

[
p1(0)e−β�E

∫ t

0
ds μ(s)

+ 1

τ

∫ t

0
ds ew0s

∫ t

s
ds′ μ(s′)

]
, (75)

where w0 = ( 2
τ

) cosh(β�E ). The form of p(2)
1 does not appear

in the expressions for the divergences and relevant physical
quantities to ε2 order, and thus it is not presented here explic-
itly.

The Chernoff α-coefficient, between nonequilibrium
probabilities p1(t ), p2(t ) and their equilibrium values
p1(0), p2(0), is given by

Cα (p(t )||p(0)) = 1 + ε2α(α − 1)

(
p(1)

1

)2
2p(0)

1 p(0)
2

+ O(ε3), (76)

which gives us immediately that Tsallis and Renyi diver-
gences are identical in this order:

Tα (p(t )||p(0)) = Rα (p(t )||p(0)) = ε2 α
(
p(1)

1

)2
2p(0)

1 p(0)
2

+ O(ε3).

(77)

They are both proportional to the square of nonequilibrium
correction to the occupancy probability.

The rate of Tsallis and Renyi divergences is

Ṫα = Ṙα = −2ε2α

τ
cosh(β�E )

[
e2β�Eβμ(t )p(1)

1

+ 4 cosh2(β�E )
(
p(1)

1

)2]+ O(ε3), (78)

and it is nonzero only if chemical potential is present, which
corresponds to the detailed balance breaking in the system.
When Ṫα > 0 (or Ṙα > 0), then the system is gaining infor-
mation, whereas in the opposing case it is losing information.

Similar to the previous example, the rates Ṫα and Ṙα are
quadratic in p(1)

1 , hence both of them are bounded from above
by (for α > 0)

Ṫα = Ṙα � ε2αβ2e4β�Eμ(t )2

8τ cosh(β�E )
+ O(ε3). (79)

Thus, the speed of divergence from the equilibrium is limited
by the square of the chemical potential and Boltzmann factors
eβ�E .

Alternatively, and more generally, one can use the bounds
in Eqs. (13) and (14), but for that some thermodynamic and
information quantities have to be determined first.

Temporal Fisher information is

IF (p) = ε2
[
4 cosh2(β�E )p(1)

1 + βμ(t )
]2

16τ 2 cosh4(β�E )
+ O(ε3), (80)

which means that the global speed of the system increases
when the chemical potential is increasing.

Other physical quantities of interest are entropy production
rates, Ṡp, and average activity Ap = 〈w〉. We find

Ṡp = ε2
[
4 cosh2(β�E )p(1)

1 + βμ(t )
]2

2τ cosh(β�E )
+ O(ε3), (81)

and for Ap = w21 p1 + w12 p2 we have

Ap = 1

τ cosh(β�E )
+ ε

[
βμ(t ) − 2 sinh(2β�E )p(1)

1

]
2τ cosh(β�E )

+ O(ε2). (82)

Equation (81) suggests that Ṡp grows quadratically with the
chemical potential and grows more nonlinearly with the en-
ergy barrier �E . On the contrary, the average activity Ap

decreases with �E .
Note that, to the leading order, we have a simple relation-

ship between entropy production rate, Fisher information, and
average activity:

Ṡp = 8IF (p)

τ 2A3
p

+ O(ε). (83)

This equation suggests that the speed of learning
√

IF (p)
(acquiring new information) is proportional (with different
powers) to the product of entropy production and average
activity. Consequently, it seems possible to maintain the speed
of learning while simultaneously decreasing dissipation and
increasing internal activity.

C. Applications in neuroscience

1. Speed of gaining information during synaptic plasticity

It is believed that long-term information in real neural net-
works is encoded collectively in the synaptic weights [55–58].
Data from brain cortical networks suggest that synaptic
weights are log-normally distributed, characterized by heavy
tails [57,58]. Such distributions seem to be relatively stable
during human development and adulthood [58].

In what follows, we want to determine the bounds on the
speed of gaining information during synaptic learning. We
assume that during synaptic plasticity, underlying learning
in neural circuits, synaptic weights change their mean and
standard deviation values, but they preserve their log-normal
distributions. This assumption is consistent with the stability
of weight distribution during the lifetime [58].

Let the initial probability density of synaptic weights w

(before learning at time t = 0) be ρ0(w), and during the learn-
ing phase (at times t > 0) let it be ρ(w, t ). Thus, we have

ρ0(w) = exp
(− [ln(w) − m0]2/2σ 2

0

)
√

2πσ 2
0 w

(84)
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and

ρ(w, t ) = exp(−[ln(w) − m(t )]2/2σ 2(t ))√
2πσ 2(t )w

, (85)

where m0 and σ 2
0 are the mean and variance of logarithms

of synaptic weights at t = 0, and m(t ) and σ 2(t ) are the
corresponding mean and variance of logarithms of synaptic
weights for t > 0.

The Chernoff α-coefficient between ρ(w, t ) and ρ0(w) can
be found as

Cα (ρ||ρ0) =
σα

0 exp
(

α(α−1)[m(t )−m0]2

2[ασ 2
0 −(α−1)σ 2(t )]

)
σ (t )α−1

√
ασ 2

0 − (α − 1)σ 2(t )
, (86)

which is valid for ασ 2
0 > (α − 1)σ 2(t ), and Cα (ρ||ρ0) = ∞

for ασ 2
0 � (α − 1)σ 2(t ). This gives us, in the first case, the

Renyi divergence

Rα (ρ||ρ0) = α[m(t ) − m0]2

2
[
ασ 2

0 − (α − 1)σ 2(t )
] + ln

σ0

σ (t )

− ln
[
1 + (α − 1)

[
1 − σ 2(t )/σ 2

0

]]
2(α − 1)

, (87)

and the KL divergence

DKL(ρ||ρ0) = [m(t ) − m0]2

2σ 2
0

+ ln
σ0

σ (t )
− 1

2

[
1 − σ 2(t )

σ 2
0

]
.

(88)

The KL divergence is the standard information gain during
synaptic plasticity [10,59], while the Renyi divergence is its
generalization. Their rates yield the speeds of gaining infor-
mation. The rate of Rα is somewhat complicated, but the rate
of KL takes a simple form

dDKL

dt
= [m(t ) − m0]ṁ(t )

σ 2
0

+ σ̇ (t )

σ (t )

[
σ 2(t )

σ 2
0

− 1

]
. (89)

The absolute values of both rates are bounded by the inequal-
ities in Eqs. (14), (15), and (17), with the temporal Fisher
information

IF (ρ) = 2σ̇ (t )2 + ṁ(t )2

σ 2(t )
. (90)

This means that the speeds of gaining information during
synaptic plasticity, while learning, are limited mostly by the
speeds of changing the two parameters characterizing means
and variances of synaptic weights.

An interesting question is, when is the bound in Eq. (15)
for the plastic synapses saturated? To answer this question,
we have to first determine 〈ln2 ρ(w,t )

ρ0(w) 〉ρ . It can be easily found
as 〈

ln2 ρ(w, t )

ρ0(w)

〉
ρ

= DKL(ρ||ρ0)2 +
[
σ 2(t ) − σ 2

0

]2
2σ 4

0

+ σ 2(t )

σ 4
0

[m(t ) − m0]2. (91)

With this, all the terms in Eq. (15) are given explicitly. After
some arrangements, we find that the general inequality in

Eq. (15) is equivalent to the following specific inequality:

0 �
{
2σ (t )σ̇ (t )[m(t ) − m0] − ṁ(t )

[
σ 2(t ) − σ 2

0

]}2
. (92)

This implies that the bound in Eq. (15) is saturated if the right-
hand side of Eq. (92) is 0, which is satisfied when the ratio
[m(t ) − m0]/[σ 2(t ) − σ 2

0 ] = const. In other words, the mean
and variance of the logarithm of synaptic weights must change
in a coordinated manner, which is a very restrictive condition
on the stochastic dynamics of synapses.

2. Predictive inference

The bounds presented in Eqs. (12)–(15) could also be used
in predicting the future behavior of a stochastic dynamical
system. In particular, the brain neural networks have to
often make predictions about some external signal, which is
somehow important for the organism possessing that brain
[8,60–63]. Let the external time-dependent sensory signal be
xt . Neurons in the sensory cortex of the brain try to predict the
value of the signal xt ′ in future times t ′ > t [60,62,63], using
some internal dynamical variable mt that relates to neural and
synaptic activities. One can think about mt as some sort of
“memory” variable, which keeps the information about the
past of the signal xt up to the time t , in a compressed manner.
In the simplest situation, neural activity mt tries to predict the
signal at the nearest future, i.e., to estimate the value xt+�t ,
where �t is small. The key in this estimate is two conditional
probabilities: p(xt+�t |xt ) and p(xt+�t |mt ). The former is the
probability of the jump in the signal value from time t to time
t + �t , and the latter is the probability of the signal at time
t + �t given the value mt of the memory variable at time
t . Thus, the first conditional probability describes a natural
temporal evolution of the external signal, whereas the second
is the estimate of this evolution given the knowledge of neural
activity mt .

The goodness of predictability can be quantified by KL
divergence between actual external dynamics p(xt+�t |xt ) and
its prediction p(xt+�t |mt ), i.e. [63],

DKL[p(xt+�t |xt )||p(xt+�t |mt )]

=
∫

dxt+�t p(xt+�t |xt ) ln
p(xt+�t |xt )

p(xt+�t |mt )
. (93)

The smaller the value of DKL, the better the memory variable
predicts the external dynamics. The rate of DKL measures how
fast the prediction can deteriorate. In this sense, Eqs. (15) and
(17) provide bounds on the speed of predictability degrada-
tion. These bounds are determined to a large extent by the
temporal Fisher information: IF (p(xt+�t |xt )), which gives the
square of the speed of transitions in the external signal, and
IF (p(xt+�t |mt )), which yields the speed of external dynamics
given the instantaneous value of the memory variable.

Below we analyze a specific example of predictive infer-
ence, in which one can obtain explicit formulas for all relevant
variables appearing in Eqs. (15) and (17). Let us consider the
following dynamics for xt and mt :

ẋ = −γ (x − λt ) +
√

2γ σ 2η(t ), (94)

ṁ = −γm(m − x) +
√

2γmσ 2
mηm(t ), (95)
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where λt is some external dynamical variable governing the
trajectory xt , γ and γm are inverses of time constants for
the external and internal systems, and σ and σm are stan-
dard deviations of the Gaussian noise terms η and ηm, as in
Eq. (58). For simplicity, let us consider the case γm/γ � 1,
which corresponds to the situation in which the dynamics of
internal variable mt is much faster than the external xt . The
discretized version of Eqs. (94) and (95) in this limit has the
following forms:

xt+�t = xt − γ (xt − λt )�t +
√

2γ σ 2ηt�t, (96)

xt ≈ mt −
√

2σ 2
m

γm
ηm,t . (97)

Note that the memory variable mt differs in this limit from the
actual external variable xt only by an appropriately rescaled
noise term.

The relevant conditional probabilities can be found from
Eqs. (96) and (97) as [16]

p(xt+�t |xt ) =
exp
(− [xt+�t −xt +γ (xt −λt )�t]2

4γ σ 2�t

)
√

4πγσ 2�t
, (98)

p(xt |mt ) =
√

γm�t

4πσ 2
m

exp
(

− γm�t

4σ 2
m

[xt − mt ]
2
)
, (99)

where Eq. (98) is valid for a small time interval �t . The
remaining conditional probability p(xt+�t |mt ) of interest is
found from the relation

p(xt+�t |mt ) =
∫

dxt p(xt+�t |xt )p(xt |mt ), (100)

which after a straightforward calculation yields

p(xt+�t |mt )

=
√

γm�t

4π
[
γ γmσ 2(�t )2 + σ 2

m

]
× exp

(
− γm�t[xt+�t − mt + γ (xt − λt )�t]2

4
[
γ γmσ 2(�t )2 + σ 2

m

] )
. (101)

Note that p(xt+�t |mt ) and p(xt+�t |xt ) become identical, with
substitution mt ↔ xt , if γm �→ ∞.

Equations (93), (98), and (101) allow us to find the KL
divergence DKL[p(xt+�t |xt )||p(xt+�t |mt )] as

DKL[p(xt+�t |xt )||p(xt+�t |mt )]

= 1

2
ln

(
1 + σ 2

m

γ γmσ 2(�t )2

)
+ γm�t (xt − mt )2 − 2σ 2

m

4
[
γ γmσ 2(�t )2 + σ 2

m

] ,

(102)

and its temporal derivative as

dDKL

dt
= γm�t (xt − mt )ẋt

2
[
γ γmσ 2(�t )2 + σ 2

m

] . (103)

The rate of KL divergence in this case is proportional to the
speed of change in the external variable xt (it does not depend
on the speed of mt because ṁt ≈ 0 in the limit γm/γ � 1),
and to the instant difference between xt and mt . Consequently,
the inference of the external signal improves if the rate of DKL

divergence decreases, which takes place when ẋt and (xt −
mt ) have opposite signs. For example, if the external signal
slows down (ẋt < 0), then the prediction internal variable mt

should be smaller than the signal xt to get closer to it in the
next instant of time, i.e., to improve the prediction.

Equation (103) is the exact form of the speed of divergence
between the true external dynamics xt and its estimate using
internal variable mt . Alternatively, one can provide the bounds
on dDKL/dt using Eqs. (15) and (17). For this, one needs to
determine the temporal Fisher information, defined as

IF (p(xt+�t |xt )) =
∫

dxt+�t p(xt+�t |xt )

[
ṗ(xt+�t |xt )

p(xt+�t |xt )

]2

(104)

and

IF (p(xt+�t |mt )) =
∫

dxt+�t p(xt+�t |mt )

[
ṗ(xt+�t |mt )

p(xt+�t |mt )

]2

,

(105)

which describe the speed of transitions in the external signal
and the speed of predictions of that signal, respectively. After
some simple algebra, one can find both Fisher informations as

IF (p(xt+�t |xt )) = γ�t (ẋt − λ̇t )2

2σ 2
(106)

and

IF (p(xt+�t |mt )) = γm�t (ẋt )2

2
[
γ γmσ 2(�t )2 + σ 2

m

] , (107)

and both of them depend on the speed of the external signal
ẋt . Note that for γm/γ � 1 the second Fisher information
IF (p(xt+�t |mt )) dominates over the first one, since generally
γ�t 	 1. This means that the speed of prediction is much
larger than the speed of the external signal, which is consistent
with our initial assumption.

VII. BOUNDS ON THE RATE OF MUTUAL INFORMATION

Mutual information I (x, y) between two stochastic vari-
ables x, y with joint probability pxy(x, y), and marginal
probabilities px(x), py(y), can be defined as KL divergence
between probabilities p and q given by p = pxy(x, y) and
q = px(x)py(y). More precisely, I (x, y) = DKL(pxy||px py).

A. General kinematic bounds

The general kinematic bound on the rate of mutual infor-
mation I (x, y), irrespective of the type of systems dynamics,
follows from Eqs. (15) and (17), and takes the form∣∣∣∣dI (x, y)

dt

∣∣∣∣ � √IF (pxy)

√〈
ln2 pxy

px py

〉
− I (x, y)2

+√IF (px ) + IF (py)

√〈
pxy

px py

〉
− 1

�
√

IF (pxy)
√

Cxy
2 − 1 − I (x, y)2

+√IF (px ) + IF (py)
√

Cxy
2 − 1, (108)
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where Cxy
2 is the Chernoff coefficient, i.e., Cxy

2 = 〈 pxy

px py
〉, and

averaging is done with respect to the joint probability pxy. We
used the fact that Fisher information of the product of prob-
abilities decomposes into the sum, i.e., IF (px py) = IF (px ) +
IF (py). The upper bound on dI/dt is thus constrained by the
global dynamical rates of the whole system x, y and of the sub-
systems x and y (it is called here bound BI 1). These rates are
appropriately rescaled by the degrees of mutual correlations
between variables x and y.

B. Examples: Weakly correlated systems

In this section we check the quality of the bound rep-
resented by Eq. (108) for two examples of weakly coupled
systems X and Y , with continuous state variables x and y,
respectively.

1. Bivariate Gaussian distribution

Consider the system (X,Y ) of weakly correlated variables
x and y with Gaussian joint probability density

pxy(x, y) = exp(−[x, y]�−1[x, y]T )

2π
√

det(�)
, (109)

where [x, y] is a two-dimensional vector with the components
x = x − μx, and y = y − μy, where μx and μy denote mean
values of x and y. The symbol � is a 2 × 2 covariance ma-
trix with elements �11 = σ 2

x , �22 = σ 2
y , and �12 = �21 =

εr0(t )σxσy, where ε 	 1. We assume that only the correlation
coefficient r0 is time-dependent.

Consequently, marginal distributions px(x) = exp(−x2/2σ 2
x )√

2πσ 2
x

and py(y) = exp(−y2/2σ 2
y )√

2πσ 2
y

are time-independent, which im-

plies that temporal Fisher information for these distributions
IF (px ) = IF (py) = 0.

For small ε the joint density (109) separates into a product
of the marginal distributions as

pxy = px py

(
1 + εr0

σxσy
xy + 1

2

(
εr0

σxσy

)2

× [2(xy)2 + (σxσy)2 − σ 2
y x2 − σ 2

x y2
]+ O(ε3)

)
,

(110)

which allows us to compute all the variables in Eq. (108) to
the lowest order in ε.

Thus, mutual information I (x, y) is [10]

I (x, y) = − 1
2 ln (1 − ε2r0(t )2) = 1

2ε2r0(t )2 + O(ε3), (111)

and temporal Fisher information for the joint density in
Eq. (109) is

IF (pxy) =
〈(

ṗxy

px py

)2
〉

= ε2ṙ0(t )2 + O(ε3), (112)

where ṙ0(t ) = dr0/dt . Moreover, we have〈
ln2

(
pxy

px py

)〉
= ε2r0(t )2 + O(ε3). (113)

With Eqs. (111)–(113) we can find the left- and right-
hand sides of Eq. (108). It turns out that both sides of this
equation are equal to each other in the lowest order of ε,
with the values ε2r0(t )|ṙ0| + O(ε3) each. This implies that for
weakly correlated Gaussian variables the bound on the rate of
mutual information in Eq. (108) is saturated if σx and σy are
time-independent. However, the situation is more complicated
if the variances of x and y are time-dependent. In this case,
much depends on how big are the rates of σx and σy. If they
are small, of the order ∼ε, then the bound in Eq. (108) is close
to saturation, but if they are large, ∼O(1), then the left-hand
side is much smaller (by the factor proportional to ε) than the
right-hand side. This follows from the observation that in this
case all Fisher information, IF (pxy), IF (px ), and IF (px ), would
be of order O(1).

2. Bivariate non-Gaussian distribution

In this case, we choose the joint probability density (nor-
malized) for the weakly correlated system (X,Y ) in the form

pxy(x, y) = (κ1κ2)2[1 + εr(t )xy]

κ1κ2 + εr(t )
e−(κ1x+κ2y), (114)

where κ1, κ2 are some positive constants, ε 	 1, and r(t ) is a
time-dependent positive parameter characterizing the degree
of correlations between X and Y . Note that for ε = 0 the
systems X and Y become decoupled. The marginal probability
densities px, py are time-dependent and read

px(x) = κ2
1 κ2
[
1 + εr(t ) x

κ2

]
κ1κ2 + εr(t )

e−κ1x,

py(y) = κ1κ
2
2

[
1 + εr(t ) y

κ1

]
κ1κ2 + εr(t )

e−κ2y. (115)

As in the Gaussian case, all the relevant variables present
in Eq. (108) can be computed analytically for this case as a
series expansion in the small parameter ε (see Appendix D).
Consequently, mutual information I (x, y) to the lowest order
in ε is

I (x, y) = ε2

2

(
r(t )

κ1κ2

)2

+ O(ε3). (116)

Temporal Fisher information IF (pxy) and IF (px ), IF (py)
takes the forms

IF (pxy) = 3ε2

(
ṙ(t )

κ1κ2

)2

+ O(ε3),

IF (px ) = IF (py) = ε2

(
ṙ(t )

κ1κ2

)2

+ O(ε4), (117)

where ṙ(t ) = dr/dt . Additionally, we have〈
ln2

(
pxy

px py

)〉
= ε2

(
r(t )

κ1κ2

)2

+ O(ε3),

〈
pxy

px py

〉
= 1 + ε2

(
r(t )

κ1κ2

)2

+ O(ε3). (118)

Insertion of Eqs. (116)–(118) into Eq. (108) gives us
the left-hand side, |dI (x, y)/dt |, equal to ( ε

κ1κ2
)
2
r(t )|ṙ(t )|,

whereas both right-hand sides are identical to the lowest order
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and equal to (
√

2 + √
3)( ε

κ1κ2
)
2
r(t )|ṙ(t )|. This means that, for

weakly correlated systems, the bound on the rate of mutual
information in Eq. (108) is greater than its actual absolute
value by a factor of 3.1, which is a worse performance than
for the Gaussian case. Thus, comparing the two examples, it is
clear that the degree of accuracy in estimation of |dI (x, y)/dt |
is model-dependent.

C. Kinematic-thermodynamic bounds for Markov processes

In this section, we provide upper bounds on the rates of
mutual information for more restricted dynamics of compos-
ite Markov systems with interacting systems X and Y . First
we discuss the dynamics of such systems and then give the
bounds on the rate of mutual information between X and Y .

1. Master equation for composite systems

For the composite system (X,Y ) containing two interacting
subsystems X and Y , we can formulate the Master equa-
tion similar to Eq. (22),

ṗxy =
∑
x′,y′

(W(xy|x′y′)px′y′ − W(x′y′|xy)pxy), (119)

where pxy is the joint probability that the system (X,Y ) is in
the state (x, y), and W(x′y′|xy) is the global transition rate
from state (x, y) to state (x′, y′).

The average activity Axy of the whole system (XY ) corre-
sponds to the first moment of the total escape rate and is given
by [[26,27]; compare Eq. (25)]

Axy ≡ 〈W〉xy =
∑
x,y

W(xy)pxy, (120)

where the total escape rate from state (xy) is W(xy) =∑
x′,y′ W(x′y′|xy).
The second moment of the total escape rate of the compos-

ite system is defined as

〈W2〉xy =
∑
x,y

W(xy)2 pxy, (121)

and the system entropy production rate Ṡxy is

Ṡxy = 1

2

∑
xy,x′y′

(W(xy|x′y′)px′y′ − W(x′y′|xy)pxy)

× ln
W(xy|x′y′)px′y′

W(x′y′|xy)pxy
. (122)

In a particular case when the joint probability is separable,
i.e., pxy = px py, we denote the above quantities as A(0)

xy ≡
〈W〉(0)

xy for average activity, 〈W2〉(0)
xy for the second moment of

the total escape rate, and Ṡ(0)
xy as the entropy production rate.

For the so-called bipartite systems [64–66], the global
transition rates W(x′y′|xy) in Eq. (119) can be written in a
more explicit form as W(x′y′|xy) = w

y
x′xδyy′ + wx

y′yδxx′ . In this
formula, wy

x′x,w
x
y′y are transition rates in the subsystems X and

Y , respectively, which depend on the actual state in the neigh-
boring system. Here, one considers only single transitions
in either of the subsystems (x �→ x′ or y �→ y′), neglecting
double simultaneous transitions, i.e., (x, y) �→ (x′, y′), as they
are less likely. With the above decomposition of W(x′y′|xy)
one can write the master equation (119) as

ṗxy =
∑

x′
w

y
xx′ px′y +

∑
y′

wx
yy′ pxy′

−
⎛
⎝∑

x′
w

y
x′x +

∑
y′

wx
y′y

⎞
⎠pxy.

Moreover, also Axy, 〈W2〉xy, and Ṡxy can be expressed in
terms of local transition rates w

y
x′x,w

x
y′y, which may be useful

[64–66] (see also below).

2. The rates of mutual information for Markov processes

For the Markov dynamics represented by the Master equa-
tion (119), the thermodynamic-kinematic bound on the rate of
mutual information between variables x and y can be deduced
from Eq. (40), and reads

∣∣∣∣dI (x, y)

dt

∣∣∣∣ � ([IF (px ) + IF (py)]
√

A(0)
xy �

(0)
xy
[
Cxy

3 − Cxy
2

])1/3

+ (IF (pxy)
√

Axy�xy
[
e−3I/2Cxy

5/2 − e−I/2Cxy
3/2 − eI/2Cxy

1/2 + e3I/2Cxy
−1/2

])1/3
, (123)

where the Chernoff coefficient Cxy
α = 〈( pxy

px py
)
α−1〉, and averaging is done with respect to pxy. Additionally, the symbols �xy and

� (0)
xy are analogs of Eq. (35) with the joint probability pxy and its separable variant pxy = px py, respectively.
An alternative kinematic-thermodynamic bound on the rate of mutual information, coming from Eqs. (45) and (46), is∣∣∣∣dI (x, y)

dt

∣∣∣∣ � √�xy/2(
√

IF (pxy) + 2
√

〈W2〉xy)1/2
(
e−2ICxy

3 − 4e−ICxy
2 − 4eI + e2ICxy

−1 + 6
)1/4

+
√

�
(0)
xy /2

(√
IF (px ) + IF (py) + 2

√
〈W2〉(0)

xy
)1/2(

Cxy
4 − 4Cxy

3 + 6Cxy
2 − 3

)1/4
. (124)

The inequalities (123) and (124), called here bounds
BI 2, BI 3 and BI 4, BI 5, respectively, imply that for Markov
dynamical physical systems the rates at which we can gain

information about one variable (X ) by observing another cor-
related variable (Y ) can be restricted in several ways, but
the speeds of global and internal dynamics always appear in
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TABLE II. Summary of the inequalities for the rates of MI.

Bound type Equation

Kinematic:

BI 1 |İxy| �
√

IF (pxy )
√

Cxy
2 − 1 − I2

xy +√IF (px ) + IF (py )
√

Cxy
2 − 1

Kinematic-thermodynamic:

BI 2, BI 3 |İxy| � ([IF (px ) + IF (py )]
√

A(0)
xy �

(0)
xy [Cxy

3 − Cxy
2 ])

1/3

+(IF (pxy )
√

Axy�xy[e−3Ixy/2Cxy
5/2 − e−Ixy/2Cxy

3/2 − eIxy/2Cxy
1/2 + e3Ixy/2Cxy

−1/2])
1/3

BI 4, BI 5 |İxy| �
√

�
(0)
xy /2(

√
IF (px ) + IF (py ) + 2

√
〈W2〉(0)

xy )
1/2

(Cxy
4 − 4Cxy

3 + 6Cxy
2 − 3)

1/4

+√�xy/2(
√

IF (pxy ) + 2
√

〈W2〉xy )
1/2

(e−2IxyCxy
3 − 4e−IxyCxy

2 − 4eIxy + e2IxyCxy
−1 + 6)

1/4

those limitations. This suggests that the speeds of information
transfer between two systems are limited primarily by global
and local speeds of system transformations. Since the speed of
local dynamics is related to activity A and the entropy produc-
tion rate, this also means that the rate of MI is constrained by
thermodynamics, which is in line with previous conclusions
[67]. Moreover, out of the three bounds on dI (x, y)/dt repre-
sented by Eqs. (108), (123), and (124), the most accurate is the
bound given by Eq. (108). This follows from the fact that this
bound is the most general, as it is independent of the type of
system dynamics (either Markovian or non-Markovian). This
is also supported by the results in Figs. 1 and 2, where the
bound B1 [corresponding to Eq. (108)] is very close to the
actual value of |dCα/dt |.

It is important to note that the bounds on the rate of MI
given by Eqs. (108), (123), and (124) are a new type of
bounds, and they are different from other existing bounds
on mutual information or its rate [67–69]. The inequalities
derived here for the rate of MI are collected in Table II.

VIII. APPLICATION OF INEQUALITIES FOR THE RATES
OF MI: BIPARTITE SENSING AND LANDAUER LIMIT

For bipartite systems, with X describing an external vari-
able and Y an internal variable, one can decompose the rate of
mutual information, İxy ≡ dI (x, y)/dt , between X and Y into
the so-called information flows İx and İy as [66,70]

İxy = İx + İy, (125)

where İx = [I (xt+dt , yt ) − I (xt , yt )]/dt and İy =
[I (xt , yt+dt ) − I (xt , yt )]/dt with dt �→ 0. The rate İx can
be interpreted as the rate of change of mutual information
between the two subsystems that is due only to the dynamics
of X , and similarly for İy. One can also represent both İx and
İy by the specific transition rates in both subsystems [66]:

İx =
∑

x>x′,y

(
w

y
xx′ px′y − w

y
x′x pxy

)
ln

p(y|x)

p(y|x′)
(126)

and

İy =
∑

y>y′,x

(
wx

yy′ pxy′ − wx
y′y pxy

)
ln

p(x|y)

p(x|y′)
. (127)

In the case of sensing the external variable X by the internal
variable Y , and with no feedback from Y to X , the information

flows İx and İy are also referred to in the literature as the non-
predictive information rate (or nostalgia rate) and the learning
rate, respectively [8,67]. One can think about the variable
Y as a molecular sensor or as activity of a neural network
learning the dynamics of the external variable X . Thus the rate
of information İxy between internal and external dynamics is
the sum of the learning rate (İy dynamics of Y about external
signal X ) and the rate of nonpredictive information (İx). Using
the general bounds derived in Sec. VII on the rate of mutual
information, we can find the bounds on the learning rate in
terms of the nostalgia rate. Since |İx + İy| = |İxy| � BI , where
BI is any of the three bounds on the rate of mutual information
[Eqs. (108), (123), and (124)], we obtain the following general
bounds on the learning rate İy:

−BI − İx � İy � BI − İx. (128)

Thus, the learning rate İy about the external signal is bounded
from below and above by the bounds involving temporal
Fisher information and other kinematic and thermodynamic
characteristics.

On the other hand, the nostalgia rate İx in this case can be
bounded as [8,71]

0 � −İx � Ṡ(Y |X ) − Q̇y

kBT
, (129)

where the conditional entropy rate Ṡ(Y |X ) =
−d
dt

∑
x,y pxy ln p(y|x), and Q̇y is the heat flow between

the internal system Y and the thermal environment where

Q̇y = −kBT
∑

y>y′,x (wx
yy′ pxy′ − wx

y′y pxy) ln
wx

yy′
wx

y′y
.

Combining Eqs. (128) and (129), we obtain the limits on
the learning rate İy in terms of the thermodynamic quantities
and the derived bounds BI ,

−BI � İy � BI + Ṡ(Y |X ) − Q̇y

kBT
. (130)

This inequality implies that the maximal learning rate of the
internal system about the external variable is limited by the

internal system entropy production [which is Ṡ(Y |X ) − Q̇y

kBT ]
and the upper bound on the rate of MI between the two
subsystems.
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Equation (130) can also be used in the context of infor-
mation erasure and corresponding heat generation [8,72]. The
right-hand side of Eq. (130) can be equivalently written as

− Q̇y

kBT
� İer + (İy − BI ), (131)

where İer = −Ṡ(Y |X ) and it can be interpreted as the rate of
Landauer erasure of the learned information about X , which
is exactly the rate of decrease of the conditional entropy of
Y about X [63]. Inequality (131) is another lower bound on
the heat generation during continuous erasure of memory,
though not in terms of nostalgia [as in Eq. (129)] but using
the learning rate. However, it should be noted that the bound
(131) is less sharp than the bound (129).

IX. CONCLUSIONS

In this work, two types of upper bounds on the rates
of statistical divergences were obtained. The first type of
bound, with two different inequalities [bounds B1 and B2
represented by Eqs. (12) and (18)], is very general, inde-
pendent of the type of system dynamics, and it relates to
the system’s global speed via temporal Fisher information.
The second type, with four different inequalities [bounds
B3–B6 represented by Eqs. (31), (32), and (44)], is less gen-
eral, applying only to Markov systems. The second type of
limitation involves either purely kinematic variables (speeds
of global dynamics and average activities) or a mixture of
kinematic and thermodynamic variables, with the presence
of entropy production rate characterizing dissipation in the
system. Generally, the first type of limitation is tighter than
the second, as shown by the numerical example with the
one-step Markov process. The restrictions on the rates of
divergences were also used to derive general bounds on the
rates of mutual information between two stochastic variables,
with arbitrary time varying probability distributions. Since
statistical divergences can be thought of as generalized in-
formation gains [10], the present work suggests a link with
information thermodynamics [21,22], and it is also related to
recent applications of majorization in thermodynamics [73].
In particular, this work as well as [73] both provide a comple-
mentary view of out-of-equilibrium thermodynamic systems
in a coherent manner in terms of information-theoretic and
physical variables. Additionally, the ideas presented here may
open new avenues in interdisciplinary research, e.g., by con-
necting some areas in computer science, or general computing
either electronic or biological, to the physics of operating
algorithms (e.g., [8,74]). Moreover, the derived bounds on
the rates of mutual information might be useful estimates for
information flow in real neurons [75], artificial deep neural
networks [76], molecular circuits [77], or other systems where
exact values are difficult to obtain [68] and require heavy
numerical calculations [67,69]. Finally, it is worth mention-
ing that there are also other types of limits possible on the
rates of statistical divergences, but the goal here was to have
bounds that can be related clearly to the known physical
observables.
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APPENDIX A: WEAKLY TIME-DEPENDENT
EXPONENTIAL DISTRIBUTIONS APPLIED

TO THE BOUND IN EQ. (12).

The α-coefficient and its rate can be computed exactly
for the time-dependent exponential distributions. In particular,
taking px(x) = ν1e−ν1x and qx(x) = ν2e−ν2x, with ν1(t ) = ν +
ε[� + r1(t )] and ν2(t ) = ν + εr2(t ), and the small parameter
ε 	 1, yields

Cα = (ν1/ν2)α

1 + α[(ν1/ν2) − 1]

= 1 + α(α − 1)

2
(ε/ν)2(r1 − r2 + �)2 + O(ε3) (A1)

and

dCα

dt
= α(α − 1)(ε/ν)2(r1 − r2 + �)(ṙ1 − ṙ2) + O(ε3).

(A2)

Note that Cα is finite provided 1 + α[(ν1/ν2) − 1] > 0. Oth-
erwise it is infinite.

Temporal Fisher information is given by

IF (px ) =
(

εṙ1

ν

)2

+ O(ε3),

IF (qx ) =
(

εṙ2

ν

)2

+ O(ε3). (A3)

Equations (A1)–(A3) allow us to find both sides in Eq. (12) in
this case to the lowest order, as discussed in the main text.

APPENDIX B: UPPER LIMIT ON 〈| ṗ/p||(p/q)α−1 − Cα|z〉p

In this Appendix we show how to calculate the bound on
〈| ṗ/p||(p/q)α−1 − Cα|z〉p, where the exponent z = 0 or z = 1.

We can generally write

〈| ṗ/p||(p/q)α−1 − Cα|z〉p

=
∑

n

| ṗn||(p/q)α−1 − Cα|z

�
∑

nk

|wnk pk − wkn pn||(p/q)α−1 − Cα|z, (B1)

where we used the master equation in Eq. (22) and the fa-
miliar relation |x + y| � |x| + |y|. Below we restrict the last
line in Eq. (B1) in two different ways: one corresponding
to a kinematic bound, and the second to a mixed kinematic-
thermodynamic bound.
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1. Kinematic bound

Let us decompose the last line in Eq. (B1) as∑
nk

|wnk pk − wkn pn||(p/q)α−1 − Cα|z

=
∑

nk

√
|wnk pk − wkn pn|

√
|wnk pk − wkn pn|[(p/q)α−1 − Cα]2z

�
∑

nk

√
(wnk pk + wkn pn)

√
(wnk pk + wkn pn)[(p/q)α−1 − Cα]2z �

√∑
nk

(wnk pk + wkn pn)

×
√∑

nk

(wnk pk + wkn pn)[(p/q)α−1 − Cα]2z = √2Ap

√∑
n

( ṗn + 2wn pn)[(p/q)α−1 − Cα]2z, (B2)

where we used first the known relation |wnk pk − wkn pn| � (wnk pk + wkn pn), and then the Cauchy-Schwarz inequality. In the
last line, we used the master equation (22) for the second factor. Additionally we introduced two quantities Ap and wn, which
are, respectively, the average activity and the total escape rate from state n. The average activity Ap is defined as

Ap = 1

2

∑
nk

(wnk pk + wkn pn) ≡
∑

n

wn pn, (B3)

from which we also have that the total escape rate from state n is wn =∑k wkn.
For z = 0 the last line in Eq. (B2) simplifies to 2Ap, since

∑
n ṗn = 0. This means that∑

nk

|wnk pk − wkn pn| � 2Ap, (B4)

which in combination with Eq. (B1) leads to Eq. (24) in the main text.
For z = 1 we decompose the last factor in the last line of Eq. (B2) into the sum of two terms: one involving ṗ and the second

wn, and then we use the Cauchy-Schwarz inequality in both terms. Applying that procedure yields∑
n

( ṗn + 2wn pn)[(pn/qn)α−1 − Cα]2 = 〈( ṗ/p)[(p/q)α−1 − Cα]2〉p + 2〈w[(p/q)α−1 − Cα]2〉p,

� (
√

IF (p) + 2
√

〈w2〉p)
√

〈[(p/q)α−1 − Cα]4〉p, (B5)

where 〈w2〉p =∑n w2
n pn. This means that∑

nk

|wnk pk − wkn pn||(p/q)α−1 − Cα| � √2Ap(
√

IF (p) + 2
√

〈w2〉p)1/2〈[(p/q)α−1 − Cα]4〉1/4
p , (B6)

which corresponds to Eq. (42) in the main text.

2. Kinematic-thermodynamic bound

Now we decompose the last line in Eq. (B1) in a different way, which will allow us to introduce also entropy production rate.
We have the following sequence of inequalities:

∑
nk

|wnk pk − wkn pn||(pn/qn)α−1 − Cα|z =
∑

nk

√
(wnk pk − wkn pn) ln

wnk pk

wkn pn

√
(wnk pk − wkn pn)

ln wnk pk

wkn pn

× |(pn/qn)α−1 − Cα|z �
√∑

nk

(wnk pk − wkn pn) ln
wnk pk

wkn pn

√∑
nk

(wnk pk − wkn pn)

ln(wnk pk/wkn pn)
[(pn/qn)α−1 − Cα]2z, (B7)

where we used in the second line the Cauchy-Schwarz inequality. The first factor in the last line of Eq. (B7) is the coarse-grained
entropy production rate Ṡp, i.e. [7,34,36],

Ṡp = 1

2

∑
nk

(wnk pk − wkn pn) ln
wnk pk

wkn pn
. (B8)

It is worth mentioning that coarse-grained entropy production Ṡp satisfies inequality Ṡp � 1
2

∑
s

∑
nk (w(s)

nk pk −
w

(s)
kn pn) ln (w(s)

nk pk/w
(s)
kn pn), which means that Ṡp is the lower bound on the true physical entropy production caused by distinct

microscopic processes [7]. However, in our case this is a sufficient estimation.
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The second factor on the right in the last line of Eq. (B7) can be bounded by the logarithmic mean, as in Eq. (5):

(wnk pk − wkn pn)

ln(wnk pk ) − ln(wkn pn)
� 1

2
(wnk pk + wkn pn). (B9)

Combining Eqs. (B7)–(B9), we obtain the following inequality:

∑
nk

|wnk pk − wkn pn||(pn/qn)α−1 − Cα|z �
√

2Ṡp

√∑
nk

1

2
(wnk pk + wkn pn)[(pn/qn)α−1 − Cα]2z

=
√

Ṡp

√∑
n

( ṗn + 2wn pn)[(pn/qn)α−1 − Cα]2z. (B10)

For z = 0 this inequality implies ∑
nk

|wnk pk − wkn pn| �
√

2Ṡp

√
Ap, (B11)

which in combination with Eq. (B1) produces Eq. (26) in the main text.
For z = 1, after applying Eq. (B5), Eq. (B10) gives∑

nk

|wnk pk − wkn pn||(p/q)α−1 − Cα| �
√

Ṡp(
√

IF (p) + 2
√

〈w2〉p)1/2〈[(p/q)α−1 − Cα]4〉1/4
p , (B12)

which corresponds to Eq. (42) in the main text.

APPENDIX C: UPPER LIMIT ON 〈|X − 〈X〉|3〉 AND
RELATED INEQUALITIES

In this Appendix we provide three different bounds on
〈|X − 〈X 〉|3〉, where X is some non-negative random variable,
for which the first four moments exist. (We require non-
negativity of X , since we deal with such cases in this paper.)

The first method generates the following inequality:

〈|X − 〈X 〉|3〉 � 〈X 3〉 − 〈X 〉〈X 2〉, (C1)

which can be justifying in a few steps as

〈|X − 〈X 〉|3〉 = 〈(X − 〈X 〉)2|X − 〈X 〉|〉
� 〈(X − 〈X 〉)2(X + 〈X 〉)〉
= 〈X 〉〈(X − 〈X 〉)2〉 + 〈X (X − 〈X 〉)2〉

and by performing the averages. In the above, a simple in-
equality valid for X � 0 was used, namely |X − 〈X 〉| � X +
〈X 〉.

The second method generates a more complicated inequal-
ity,

〈|X − 〈X 〉|3〉 �
√

〈X 2〉 − 〈X 〉2

×
√

〈X 4〉 + 6〈X 〉2〈X 2〉 − 4〈X 〉〈X 3〉 − 3〈X 〉4,

(C2)

which follows from applying the Cauchy-Schwarz inequality
as

〈|X − 〈X 〉|3〉 = 〈(X − 〈X 〉)2|X − 〈X 〉|〉
�
√

〈(X − 〈X 〉)4〉
√

〈(X − 〈X 〉)2〉,
and executing some algebra under the square roots.

The third method uses Minkowski inequality, known
in generality as 〈|X + Y |s〉1/s � 〈|X |s〉1/s + 〈|Y |s〉1/s. In our

case, we obtain

〈|X − 〈X 〉|3〉 � (〈X 3〉1/3 + 〈X 〉)3. (C3)

It is clear that the upper bound in Eq. (C3) is larger than
〈X 3〉, and hence larger than the bound in Eq. (C1). This
implies that Eq. (C1) provides a tighter bound than Eq. (C3).
Moreover, the formula (C1) is simpler than the formula (C2),
and it requires lower moments. For these reasons, we use
Eq. (C1) for estimations in this paper. For example, Eq. (28)
can be obtained by substituting (p/q)α−1 for X , and noting
that Cα = 〈(p/q)α−1〉p.

Now let us find the upper limit on a related average,
which appears in Eq. (39), i.e., 〈| ln(X ) − μ|3〉, where μ =
〈ln(X )〉, and μ can be negative. We have 〈| ln(X ) − μ|3〉 =
〈| ln(X/eμ)|3〉. From Eq. (5) for arbitrary positive numbers x, y
we have

| ln(x/y)| � |
√

x/y −
√

y/x|, (C4)

which implies for x = X and y = eμ the following series of
inequalities:

〈| ln(X ) − μ|3〉 � 〈|
√

X/eμ −
√

eμ/X |3〉
= 〈[

√
X/eμ −

√
eμ/X ]2|

√
X/eμ −

√
eμ/X |〉

� 〈[
√

X/eμ −
√

eμ/X ]2(
√

X/eμ +
√

eμ/X )〉
= e−3μ/2〈X 3/2〉 − e−μ/2〈X 1/2〉

− eμ/2〈X −1/2〉 + e3μ/2〈X −3/2〉. (C5)

Similarly, we can estimate 〈[ln(X ) − μ]4〉, which appears in
Eq. (43),

〈[ln(X ) − μ]4〉 � 〈[
√

X/eμ −
√

eμ/X ]4〉
= e−2μ〈X 2〉 − 4e−μ〈X 〉

+ 6 − 4eμ〈X −1〉 + e2μ〈X −2〉. (C6)
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Obviously, the inequalities (C5) and (C6) require that sev-
eral first few fractional moments (even of negative order)
exist.

APPENDIX D: MUTUAL INFORMATION AND TEMPORAL
FISHER INFORMATION FOR THE MODEL IN EQ. (114)

Mutual information I (x, y) between x and y variables is
I (x, y) = 〈ln( pxy

px py
)〉, which for the model in Eq. (114) trans-

lates to

I (x, y) = ln

(
1 + εr(t )

κ1κ2

)
+ 〈ln(1 + εr(t )xy)〉

− 〈ln(1 + εr(t )x/κ2)〉 − 〈ln(1+εr(t )y/κ1)〉. (D1)

Next, we approximate the logarithms to the second order in
ε, according to the formula ln(1 + x) = x − x2/2 + O(x3).
After that step, the mutual information reads

I (x, y) = εr(t )

([
1

κ1κ2
+ 〈xy〉 − 1

κ2
〈x〉 − 1

κ1
〈y〉
]

+ 1

2
εr(t )

[
1

κ2
2

〈x2〉 + 1

κ2
1

〈y2〉 − 〈x2y2〉 − 1

(κ1κ2)2

])

+ O(ε3). (D2)

The averages in Eq. (D2) are given to the lowest order by

〈x〉 = 1

κ1

(
1 + εr(t )

κ1κ2

)
+ O(ε2), (D3)

〈y〉 = 1

κ2

(
1 + εr(t )

κ1κ2

)
+ O(ε2), (D4)

〈xy〉 = 1

κ1κ2

(
1 + 3

εr(t )

κ1κ2

)
+ O(ε2), (D5)

〈x2〉 = 2

κ2
1

(
1 + 5

εr(t )

κ1κ2

)
+ O(ε2), (D6)

〈y2〉 = 2

κ2
2

(
1 + 5

εr(t )

κ1κ2

)
+ O(ε2), (D7)

〈x2y2〉 = 4

(κ1κ2)2

(
1 + 8

εr(t )

κ1κ2

)
+ O(ε2). (D8)

Insertion of the averages in Eqs. (D3)–(D8) into Eq. (D2) with
some algebra produces Eq. (116) in the main text.

Temporal Fisher information IF (px ) = 〈( ṗx/px )2〉 can be
obtained by finding the ratio ṗx/px, which is

ṗx

px
= ε

ṙ(t )

κ2

[
1

κ1

(
− 1 + ε

r(t )

κ1κ2

)
+ x

(
1 − ε

r(t )x

κ2

)]

+ O(ε3). (D9)

Averaging the square of this expression yields Eq. (117) in the
main text. In a similar way, one can evaluate temporal Fisher
information for the joint probability density pxy.

[1] A. Renyi, On Measures of Entropy and Information, Proceed-
ings of the 4th Berkeley Symposium on Mathematics, Statistics
and Probability (University of California Press, Berkeley, CA,
1960), pp. 547–561.

[2] I. Csiszar, Information-type measures of difference of proba-
bility distributions and indirect observations, Studia Sci. Math.
Hungar. 2, 299 (1967).

[3] C. Tsallis, Generalized entropy-based criterion for consistent
testing, Phys. Rev. E 58, 1442 (1998).

[4] S. Kullback and R. A. Leibler, On information and sufficiency,
Ann. Math. Stat. 22, 79 (1951).

[5] A. Cichocki and S.-I. Amari, Families of alpha- beta- and
gamma-divergences: flexible and robust measures of similarity,
Entropy 12, 1532 (2010).

[6] T. Hatano and S. Sasa, Steady-state thermodynamics
of Langevin systems, Phys. Rev. Lett. 86, 3463
(2001).

[7] M. Esposito and C. Van den Broeck, Three faces of the second
law. I. Master equation formulation, Phys. Rev. E 82, 011143
(2010).

[8] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, Ther-
modynamics of prediction, Phys. Rev. Lett. 109, 120604
(2012).

[9] G. Falasco, M. Esposito, and J.-C. Delvenne, Beyond ther-
modynamic uncertainty relations: nonlinear response, error-
dissipation trade-offs, and speed limits, J. Phys. A 55, 124002
(2022).

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley, Hoboken, NJ, 2006).

[11] M. D. Reid and R. C. Williamson, Information, divergence
and risk for binary experiments, J. Mach. Learn. Res. 12, 731
(2011).

[12] F. Liese and I. Vajda, On divergences and informations in statis-
tics and information theory, IEEE Trans. Inform. Theor. 52,
4394 (2006).

[13] S-I. Amari and H. Nagaoka, Methods of Information Geometry
(Oxford University Press, Oxford, 2000).

[14] I. Sason and S. Verdu, f-Divergence inequalities, IEEE Trans.
Inf. Theory 62, 5973 (2016).

[15] T. Morimoto, Markov processes and the H-theorem, J. Phys.
Soc. Jpn. 18, 328 (1963).

[16] H. Risken, The Fokker-Planck Equation (Springer, Berlin,
1989).

[17] L. Borland, A. R. Plastino, and C. Tsallis, Information gain
within nonextensive thermostatistics, J. Math. Phys. 39, 6490
(1998).

[18] T. Yamano, de Bruijn-type identity for systems with flux, Eur.
Phys. J. B 86, 363 (2013).

[19] A. N. Gorban, General H-theorem and entropies that violate the
second law, Entropy 16, 2408 (2014).

[20] G. E. Crooks, Measuring thermodynamic length, Phys. Rev.
Lett. 99, 100602 (2007).

[21] J. M. Parrondo, J. M. Horowitz, and T. Sagawa, Thermodynam-
ics of information, Nat. Phys. 11, 131 (2015).

[22] T. V. Vu and K. Saito, Thermodynamic unification of optimal
transport: Thermodynamic uncertainty relation, minimum dis-
sipation, and thermodynamic speed limits, Phys. Rev. X 13,
011013 (2023).

054126-21

https://doi.org/10.1103/PhysRevE.58.1442
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.3390/e12061532
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevLett.109.120604
https://doi.org/10.1088/1751-8121/ac52e2
https://doi.org/10.1109/TIT.2006.881731
https://doi.org/10.1109/TIT.2016.2603151
https://doi.org/10.1143/JPSJ.18.328
https://doi.org/10.1063/1.532660
https://doi.org/10.1140/epjb/e2013-40634-9
https://doi.org/10.3390/e16052408
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1038/nphys3230
https://doi.org/10.1103/PhysRevX.13.011013


JAN KARBOWSKI PHYSICAL REVIEW E 109, 054126 (2024)

[23] S. Ito and A. Dechant, Stochastic time evolution, information
geometry and the Cramer-Rao bound, Phys. Rev. X 10, 021056
(2020).

[24] S. B. Nicholson, L. P. Garcia-Pintos, A. del Campo, and J. R.
Green, Time-information uncertainty relations in thermody-
namics, Nat. Phys. 16, 1211 (2020).

[25] N. Shiraishi, K. Funo, and K. Saito, Speed limit for classical
stochastic processes, Phys. Rev. Lett. 121, 070601 (2018).

[26] T. Koyuk and U. Seifert, Thermodynamic uncertainty rela-
tions for time-dependent driving, Phys. Rev. Lett. 125, 260604
(2020).

[27] V. T. Vo, T. V. Vu, and Y. Hasegawa, Unified thermodynamic-
kinetic uncertainty relation, J. Phys. A 55, 405004 (2022).

[28] A. Kolchinsky and B. D. Tracey, Estimating mixture entropy
with pairwise distances, Entropy 19, 361 (2017).

[29] H. Finner, A generalization of Hölder’s inequality and some
probability inequalities, Ann. Probab. 20, 1893 (1992).

[30] B. C. Carlson, Some inequalities for hypergeometric functions,
Proc. Am. Math. Soc. 17, 32 (1966).

[31] B. R. Frieden, Science from Fisher Information: A Unification,
2nd ed. (Cambridge University Press, Cambridge, UK, 2004).

[32] F. Otto and C. Villani, Generalization of an inequality by Ta-
lagrand and links with the logarithmic Sobolev inequality, J.
Funct. Anal. 173, 361 (2000).

[33] T. Yamano, Phase space gradient of dissipated work and infor-
mation: A role of relative Fisher information, J. Math. Phys. 54,
113301 (2013).

[34] J. Schnakenberg, Network theory of microscopic and macro-
scopic behavior of master equation systems, Rev. Mod. Phys.
48, 571 (1976).

[35] M. Baiesi, C. Maes, and B. Wynants, Fluctuations and re-
sponse of nonequilibrium states, Phys. Rev. Lett. 103, 010602
(2009).

[36] C. Maes and K. Netocny, Time-reversal and entropy, J. Stat.
Phys. 110, 269 (2003).

[37] C. Maes, Frenesy: Time-symmetric dynamical activity in
nonequilibria, Phys. Rep. 850, 1 (2020).

[38] N. G. Van Kampen, Stochastic Processes in Physics and Chem-
istry (Elsevier, Amsterdam, 2007).

[39] N. Margolus and L. B. Levitin, The maximum speed of dynam-
ical evolution, Physica D 120, 188 (1998).

[40] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo,
Quantum speed limits across the quantum-to-classical transi-
tion, Phys. Rev. Lett. 120, 070401 (2018).

[41] R. Hamazaki, Speed limits for macroscopic transitions, PRX
Quantum 3, 020319 (2022).

[42] L. P. García-Pintos, S. B. Nicholson, J. R. Green, A. del Campo,
and A. V. Gorshkov, Unifying quantum and classical speed
limits on observables, Phys. Rev. X 12, 011038 (2022).

[43] S. Deffner and S. Campbell, Quantum speed limits: From
Heisenberg’s uncertainty principle to optimal quantum control,
J. Phys. A 50, 453001 (2017).

[44] A. C. Barato and U. Seifert, Thermodynamic uncertainty rela-
tion for biomolecular processes, Phys. Rev. Lett. 114, 158101
(2015).

[45] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Quantifying
dissipation using fluctuating currents, Nat. Commun. 10, 1666
(2019).

[46] T. Van Vu, V. T. Vo, and Y. Hasegawa, Entropy production esti-
mation with optimal current, Phys. Rev. E 101, 042138 (2020).

[47] D. J. Skinner and J. Dunkel, Estimating entropy production
from waiting time distributions, Phys. Rev. Lett. 127, 198101
(2021).

[48] D. S. P. Salazar, Lower bound for entropy production rate in
stochastic systems far from equilibrium, Phys. Rev. E 106,
L032101 (2022).

[49] A. Dechant, Minimum entropy production, detailed balance and
Wasserstein distance for continuous-time Markov processes, J.
Phys. A 55, 094001 (2022).

[50] M. Esposito and C. van den Broeck, Second law and Lan-
dauer principle far from equilibrium, Europhys. Lett. 95, 40004
(2011).

[51] E. A. Novikov, Functionals and the random-force method in
turbulence theory, Sov. Phys. JETP 20, 1290 (1965).

[52] P. Miller, A. M. Zhabotinsky, J. E. Lisman, and X-J. Wang,
The stability of stochastic CaMKII switch: dependence on the
number of enzyme molecules and protein turnover, PLoS Biol.
3, e107 (2005).

[53] C. C. Petersen, R. C. Malenka, R. A. Nicoll, and J. J. Hopfield,
All-or-none potentiation at CA3-CA1 synapses, Proc. Natl.
Acad. Sci. (USA) 95, 4732 (1998).

[54] J. Karbowski, Metabolic constraints on synaptic learning and
memory, J. Neurophysiol. 122, 1473 (2019).

[55] P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT
Press, Cambridge, MA, 2000).

[56] D. B. Chklovskii, B. W. Mel, and K. Svoboda, Cortical rewiring
and information storage, Nature (London) 431, 782 (2004).

[57] H. Kasai, N. E. Ziv, H. Okazaki, S. Yagishita, and T. Toyoizumi,
Spine dynamics in the brain, mental disorders, and artificial
neural networks, Nat. Rev. Neurosci. 22, 407 (2021).

[58] J. Karbowski and P. Urban, Information encoded in volumes
and areas of dendritic spines is nearly maximal across mam-
malian brains, Sci. Rep. 13, 22207 (2023).

[59] J. Karbowski and P. Urban, Cooperativity, information gain,
and energy cost during early LTP in dendritic spines, Neural
Comput. 36, 271 (2024).

[60] W. Bialek, I. Nemenman, and N. Tishby, Predictability, com-
plexity, and learning, Neural Comput. 13, 2409 (2001).

[61] A. H. Lang, C. K. Fisher, T. Mora, and P. Mehta, Thermody-
namics of statistical inference by cells, Phys. Rev. Lett. 113,
148103 (2014).

[62] S. E. Palmer II, O. Marre, M. J. Berry, and W. Bialek, Predictive
information in a sensory population, Proc. Natl. Acad. Sci.
(USA) 112, 6908 (2015).

[63] S. Still, Information bottleneck approach to predictive infer-
ence, Entropy 16, 968 (2014).

[64] D. Hartich, A. C. Barato, and U. Seifert, Stochastic thermody-
namics of bipartite systems: transfer entropy inequalities and a
Maxwell’s demon interpretation, J. Stat. Mech. (2014) P02016.

[65] G. Diana and M. Esposito, Mutual entropy production in bipar-
tite systems, J. Stat. Mech. (2014) P04010.

[66] J. M. Horowitz and M. Esposito, Thermodynamics with contin-
uous information flow, Phys. Rev. X 4, 031015 (2014).

[67] A. C. Barato, D. Hartich, and U. Seifert, Information-theoretic
versus thermodynamic entropy production in autonomous sen-
sory networks, Phys. Rev. E 87, 042104 (2013).

[68] L. Paninski, Estimation of entropy and mutual information,
Neural Comput. 15, 1191 (2003).

[69] A. Kraskov, H. Stogbauer, and P. Grassberger, Estimating mu-
tual information, Phys. Rev. E 69, 066138 (2004).

054126-22

https://doi.org/10.1103/PhysRevX.10.021056
https://doi.org/10.1038/s41567-020-0981-y
https://doi.org/10.1103/PhysRevLett.121.070601
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1088/1751-8121/ac9099
https://doi.org/10.3390/e19070361
https://doi.org/10.1214/aop/1176989534
https://doi.org/10.1090/S0002-9939-1966-0188497-6
https://doi.org/10.1006/jfan.1999.3557
https://doi.org/10.1063/1.4828855
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1023/A:1021026930129
https://doi.org/10.1016/j.physrep.2020.01.002
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1103/PhysRevLett.120.070401
https://doi.org/10.1103/PRXQuantum.3.020319
https://doi.org/10.1103/PhysRevX.12.011038
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1038/s41467-019-09631-x
https://doi.org/10.1103/PhysRevE.101.042138
https://doi.org/10.1103/PhysRevLett.127.198101
https://doi.org/10.1103/PhysRevE.106.L032101
https://doi.org/10.1088/1751-8121/ac4ac0
https://doi.org/10.1209/0295-5075/95/40004
https://doi.org/10.1371/journal.pbio.0030107
https://doi.org/10.1073/pnas.95.8.4732
https://doi.org/10.1152/jn.00092.2019
https://doi.org/10.1038/nature03012
https://doi.org/10.1038/s41583-021-00467-3
https://doi.org/10.1038/s41598-023-49321-9
https://doi.org/10.1162/necoa01632
https://doi.org/10.1162/089976601753195969
https://doi.org/10.1103/PhysRevLett.113.148103
https://doi.org/10.1073/pnas.1506855112
https://doi.org/10.3390/e16020968
https://doi.org/10.1088/1742-5468/2014/02/P02016
https://doi.org/10.1088/1742-5468/2014/04/P04010
https://doi.org/10.1103/PhysRevX.4.031015
https://doi.org/10.1103/PhysRevE.87.042104
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1103/PhysRevE.69.066138


BOUNDS ON THE RATES OF STATISTICAL … PHYSICAL REVIEW E 109, 054126 (2024)

[70] A. E. Allahverdyan, D. Janzing, and G. Mahler, Thermody-
namic efficiency of information and heat flow, J. Stat. Mech.
(2009) P09011.

[71] J. Ehrich and D. A. Sivak, Energy and information flows in
autonomous systems, Front. Phys. 11, 1108357 (2023).

[72] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Develop. 5, 183 (1961).

[73] T. Sagawa, Entropy, Divergence, and Majorization in Clas-
sical and Quantum Thermodynamics (Springer, Singapore,
2022).

[74] D. H. Wolpert, The stochastic thermodynamics of computation,
J. Phys. A 52, 193001 (2019).

[75] F. Rieke, D. Warland, R. de Ruyter, and W. Bialek, Spikes:
Exploring the Neural Code (MIT Press, Cambridge, MA, 1999).

[76] M. Gabrie, A. Manoel, C. Luneau et al., Entropy and mutual
information in models of deep neural networks, J. Stat. Mech.
(2019) 124014.

[77] R. Cheong, A. Rhee, C. J. Wang, I. Nemenman, and A.
Levchenko, Information transduction capacity of noisy bio-
chemical signaling networks, Science 334, 354 (2011).

054126-23

https://doi.org/10.1088/1742-5468/2009/09/P09011
https://doi.org/10.3389/fphy.2023.1108357
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1088/1751-8121/ab0850
https://doi.org/10.1088/1742-5468/ab3430
https://doi.org/10.1126/science.1204553

