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We consider a system of hardcore particles advected by a fluctuating potential energy landscape, whose
dynamics is in turn affected by the particles. Earlier studies have shown that as a result of two-way coupling
between the landscape and the particles, the system shows an interesting phase diagram as the coupling
parameters are varied. The phase diagram consists of various different kinds of ordered phases and a disordered
phase. We introduce a relative timescale ω between the particle and landscape dynamics, and study its effect on
the steady state properties. We find there exists a critical value ω = ωc when all configurations of the system are
equally likely in the steady state. We prove this result exactly in a discrete lattice system and obtain an exact
expression for ωc in terms of the coupling parameters of the system. We show that ωc is finite in the disordered
phase, diverges at the boundary between the ordered and disordered phase, and is undefined in the ordered phase.
We also derive ωc from a coarse-grained level description of the system using linear hydrodynamics. We start
with the assumption that there is a specific value ω∗ of the relative timescale when correlations in the system
vanish, and mean-field theory gives exact expressions for the current Jacobian matrix A and compressibility
matrix K . Our exact calculations show that Onsager-type current symmetry relation AK = KAT can be satisfied
if and only if ω∗ = ωc. Our coarse-grained model calculations can be easily generalized to other coupled systems.
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I. INTRODUCTION

Models of coupled driven systems are often used to study
several complex phenomena in physics and biology [1–3].
Examples include particles advected by turbulent fluid [4–7],
shape deformation of cell membrane by curvature sensi-
tive membrane proteins [8–14], sedimenting colloidal crystal
through a dissipative medium [2,15], etc. Also, recently there
has been a surge of interest in coupled nonequilibrium sys-
tems with multiple conserved quantities [16–19] since it was
shown using the tools of nonlinear fluctuating hydrodynamics
[16,20–22] that such systems often show unusual dynamical
universality classes, apart from the well-known diffusive and
Kardar-Parisi-Zhang (KPZ) class. In particular, it was shown
that the dynamical exponent which characterizes the univer-
sality class can be expressed as the Kepler ratio of successive
numbers of the Fibonacci sequence [16]. Although most of
these models follow rather simple dynamical rules, predict-
ing the state of the system in the long-time limit is often a
challenging task.

In this paper, we consider a lattice model of “light”
and “heavy” particles moving on a fluctuating energy land-
scape in one dimension. The heavy (light) particles prefer to
move towards the local energy minima (maxima), and the
shape of the local landscape gets modified by the presence
of these heavy and light particles. This model is known as
the light-heavy model or LH model, and was introduced in
[23]. It was shown that by varying the nature of coupling
between the particle motion and the landscape dynamics, a
rich phase diagram can be obtained, consisting of various
kinds of ordered phases and a disordered phase [23]. The static
and dynamic properties of these phases were characterized

in [24–26]. While the ordered phases show long-range order
among the particles and in the landscape, in the disordered
phase only short-range correlations exist in the system. How-
ever, the exact form of these short-range correlations is not
known in general. Often these correlations are quite strong,
because of which simple analytical approximations such as
mean-field theory fail. In the absence of any exact knowledge
of the nonequilibrium steady state, and breaking down of
mean-field approximations, it becomes almost impossible to
perform any exact, or even approximate analytical calculation
in the presence of these short-range correlations.

In an attempt to better understand these short-range corre-
lations, in this work, we introduce a relative timescale in the
coupled dynamics of particle slide and landscape movement.
Generally speaking, introducing a relative timescale in the dy-
namics of coupled driven systems means the time evolution of
one system becomes faster (or slower) compared to the other.
This is expected to produce significant changes in the behavior
of the composite system and such effects have been explored
in a number of recent studies [27–31]. In our system, introduc-
ing a relative timescale means that compared to the landscape
movement, the particle movement now happens faster or
slower. If the particles move much faster than the landscape,
then the particles get enough time to find their preferred loca-
tions on the landscape. This is not possible in the opposite
limit when the landscape movement happens faster. There-
fore, the choice of the relative timescale has a strong effect
on the nature of the steady state, and hence on the short-range
correlations described above. We investigate this effect in this
work, using exact calculations and Monte Carlo simulations.

In our Monte Carlo simulations, performed on a dis-
crete lattice model, we include the relative timescale in the
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following way. We define a parameter ω which denotes the
average number of times the landscape moves in between two
particle movements. ω = 1 corresponds to the case when one
particle movement is followed by one landscape movement,
on average. In all earlier studies of the LH model, ω = 1 was
considered [23–26]. Here, we consider any arbitrary ω within
the 0 < ω < ∞ range. For ω � 1, we have a landscape that
moves much slower compared to the particles, and for ω � 1,
the landscape moves more rapidly compared to particle move-
ment. We numerically measure various different short-range
correlations in the system as a function of ω. Surprisingly,
we find a critical value ω = ωc at which all correlations in
the system vanish, and the steady state is simply given by
equiprobable measure. We explain this surprising result from
exact calculation generalizing a formalism introduced by Ma-
hapatra et al. for the lattice model [32]. We show that for every
discrete configuration, it is possible to identify a bunch of in-
coming and outgoing transitions whose rates exactly balance
each other for ω = ωc. This condition, “bunchwise balance”
[32], ensures that in the steady state, all configurations occur
with equal probability. We derive an exact expression for ωc

in terms of the coupling parameters between the particle and
landscape dynamics.

To gain further insights into the above striking result, we
consider the coarse-grained level description of the discrete
LH model using hydrodynamics and examine the implica-
tions of the relative timescale there. In particular, for the LH
model, the dynamical rules are such that the local particle
density and local height gradient of the landscape remain
conserved. Therefore, one can start from a set of two cou-
pled continuity equations for these two conserved quantities,
and within linear hydrodynamic approximation, one can solve
these equations by diagonalizing the current Jacobian matrix
A and constructing the normal modes [33]. The stationary
fluctuations of the conserved variables are captured in the
covariance matrix or compressibility matrix K . For a wide
class of coupled driven systems with multiple conserved
quantities, it was shown in [34] that the product AK of the Ja-
cobian and compressibility matrix must be symmetric, which
is the nonequilibrium analog of Onsager’s reciprocity relation.
However, to explicitly construct the matrix elements of A and
K , an exact knowledge of the stationary measure is required.
We make an assumption that there exists a special value of the
relative timescale ω = ω∗ where the steady state of the system
satisfies product measure and all correlations vanish. Under
this assumption, we can explicitly construct the matrices A
and K . Our calculations show that the symmetry condition
is satisfied by the product AK if and only if ω∗ is equal to
ωc. Thus, not only for the discrete lattice model, even at a
coarse-grained level, we have been able to exactly calculate
the expression for the critical value of the relative timescale
which supports the product measure stationary state.

II. MODEL DESCRIPTION

The LH model, which is a short form for the light-heavy
model, is defined on a lattice whose sites can be either oc-
cupied by an H (heavy) particle or an L (light) particle. The
lattice bonds can have an orientation of ±π/4. We denote the
site occupancy by a variable η j , which takes the value +1 or

FIG. 1. A typical configuration in the LH model.

−1 if the site j is occupied by an H particle or an L particle,
respectively. We also use the filled circle (•) to represent an H-
occupied site and empty circle (◦) to represent an L-occupied
site. Similarly, the bond orientations are denoted by the vari-
able τ j+ 1

2
which takes the value −1 if the bond between sites j

and ( j + 1) is an upslope bond, i.e., it has orientation π/4. For
a downslope bond with orientation −π/4, the value of τ j+ 1

2
is

1. The upslope and downslope bonds are also symbolically
represented as / and \, respectively. With each lattice site, we
associate a “height” variable, defined as hi = −∑i−1

j=1 τ j+ 1
2
, as

illustrated in Fig. 1. From this figure, it is also clear that a local
hill is represented by /\ and a local valley by \/.

The dynamics of the particles and the landscape are cou-
pled in the following way. An H particle can exchange
position with an L particle on its neighboring site, with the
exchange rate depending on the slope of the intervening bond.
H particles tend to slide downward and L particles show
the opposite tendency. We define the particle sliding rates as
follows:

W (H \ L → L \ H ) = D + a,

W (L \ H → H \ L) = D − a,

W (H / L → L / H ) = D − a,

W (L / H → H / L) = D + a,

(1)

with 0 < a � D. In Fig. 2, we pictorially show these transi-
tions. No other transitions are possible for the particles.

The steady state particle current, defined as the rate of net
flux of H particles across a bond, can be formally written as

(D + a)[P(H\L) − P(L/H )] + (D − a)[P(H/L) − P(L\H )],

(2)

FIG. 2. Transition rules for the particles in the LH model.
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FIG. 3. Dynamical rules for the landscape movement in the LH
model.

where P(H\L) denotes the probability of occurrence of the
local configuration H\L, etc. The landscape evolves by ex-
changing slopes between adjacent bonds, but the exchange
rate depends on the occupancy of the site between those two
bonds:

W (/H \ → \H /) = ω(E + b),

W (\H / → /H \) = ω(E − b),

W (/ L \ → \ L /) = ω(E − b′),

W (\ L / → / L \) = ω(E + b′),

(3)

where the parameter ω controls the relative timescale between
the landscape movement and the particle movement. We ex-
plain below how, in our simulations, ω introduces an update
ratio of the particles and the landscape. Both the parameters b
and b′ in Eq. (3) are bounded between −E to E . In Fig. 3, we
pictorially show these transitions.

These landscape transitions result in a net upward or down-
ward velocity of the landscape or, equivalently, a net rightward
or leftward movement of the upslope bond through the system.
The landscape current, defined as the rate at which an upslope
bond moves through the system from left to right, is given by

ω(E + b)P(/H\) − ω(E − b)P(\H/) + ω(E − b′)P(/L\)

− ω(E + b′)P(\L/). (4)

From the dynamical rules shown in Eqs. (1) and (3), it
is clear that the local dynamics conserves the number of H
particles and L particles, as well as the number of upslope and
downslope bonds, in the system. We consider a lattice of size
N and a total number of Nup upslope bonds and (N − Nup)
downslope bonds. We denote the total number of H particles
as NH ; the number of L particles then becomes (N − NH ). We
denote the density of H particles as ρ = NH/N and the overall
tilt of the landscape as m = Nup/N . We assume a periodic
boundary condition on the lattice.

In all earlier studies of the LH model [23–26,32], ω = 1
was assumed, but here we consider any arbitrary non-negative
value of ω. From Eq. (3), it might appear that ω can be
simply reabsorbed into the rate parameters and our present
model then becomes identical to the previously considered
version of the LH model [23–26,32]. But this is not the case.
In particular, varying ω is not the same as varying b, b′ for
fixed E , as was done previously [23–26]. In the rates ω(E ± b)
and ω(E ± b′), if we absorb ω into E , b, and b′, then, as we
vary ω, it would mean varying all these three rescaled pa-
rameters E , b, and b′ proportionately. To ensure that rates are

non-negative, rescaled b and b′ should stay bounded between
rescaled [−E , E ], i.e., as ω is varied, the allowed range of
variation of b, b′ must also change.

This is how we incorporate ω in our simulation algorithm.
One Monte Carlo (MC) time step consists of N number of
update trials. Before each update trial, we choose with prob-
ability ω/(1 + ω) to carry out a landscape movement, and
with probability 1/(1 + ω) to carry out a particle movement.
If a landscape movement is decided, then the transition takes
place with rate (E ± b) or (E ± b′) depending on the local
configuration [see Eq. (3)]. If a particle movement is decided,
then it is performed with rate D ± a, as shown in Eq. (1).
Clearly, for large ω, the landscape gets a chance to be updated
much more frequently than the particles. For our choice of
D = E , ω denotes the average number of times the landscape
moves between two particle movements. ω � 1 indicates a
slowly moving landscape and ω � 1 represents a fast moving
landscape.

For ω = 1, some of the co-authors had constructed the
phase diagram for the system in an earlier work [23]. For any
a > 0, the ordered and disordered phases were mapped out in
the bb′ plane. It was found that for (b + b′) > 0, the system
is in various different kinds of ordered phases, where both the
particles and the landscape show long-range order. For (b +
b′) < 0, the system is in a disordered phase, but short-range
correlations still develop in the system. For (b + b′) = 0, it
follows from Eq. (3) that the landscape dynamics no longer
depends on the particles, and the coupling becomes one way.
This is a special limit and the system shows an unusual type
of ordering for the particles here, where long-range order and
strong fluctuations are simultaneously present [6,7,35].

III. SIMULATION RESULTS ON SHORT-RANGE
CORRELATIONS

Starting from a random initial configuration, we per-
form ∼N2 MC steps to reach the steady state and all our
measurements are conducted in the steady state. We de-
fine the following nearest-neighbor correlations. Consider
Prob(ηi = 1, ηi+1 = 1), which represents the joint probabil-
ity that two consecutive lattice sites are occupied by H
particles. Similarly, Prob(τi− 1

2
= −1, τi+ 1

2
= −1) is the joint

probability that there are two successive upslope bonds. In
a similar way, one can define Prob(ηi = 1, τi+ 1

2
= −1) and

Prob(τi− 1
2

= −1, ηi = 1). The two-point correlation functions
can be defined from the joint probabilities. For example,
the nearest-neighbor correlation between two heavy particles
is defined as Prob(ηi = 1, ηi+1 = 1) − ρ2. In Figs. 4(a) and
4(b), we plot the two-point correlations as a function of ω.
Surprisingly, we find that all four correlations vanish at a
precise value of ω. We denote this special point as ωc. For
different choices of rate parameters a, b, b′, the value of ωc is
also different.

We also measure the variation of three-point correla-
tions with ω. While it is possible to define many different
three-point correlations in the system, here we present data
for only four different kinds, which appear in Eq. (3). In
Figs. 4(c) and 4(d), we present the data. Here, up-heavy-
down refers to a local hill occupied by a heavy particle,
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(a) (c)

(d)(b)

FIG. 4. Simulation results for two-point and three-point correlations. Top row corresponds to b = −0.1, b′ = −0.4, and a = 0.5. Bottom
row is for b = 0.1, b′ = −0.35, and a = 0.375. For all panels, N = 1024, NH/N = ρ = 0.5, Nup/N = m = 0.5.

i.e., Prob(τi− 1
2

= −1, ηi = 1, τi+ 1
2

= 1) − ρm(1 − m), and
other three-point correlations can also be similarly defined.
We find that at exactly the same ω = ωc, all three-point corre-
lations vanish. We have verified it for a few other correlations
too (data not shown here). To explain the above results, we
generalize the formalism introduced in [32] and show that at
ω = ωc, the system indeed satisfies equiprobable measure and
no correlations exist in the system.

IV. EXACT CALCULATION FOR ωc FOR DISCRETE
LATTICE MODEL

In this section, we generalize the formalism introduced
in [32] to prove that at ω = ωc, the system can be char-
acterized by equiprobable measure in the steady state. In
other words, for a lattice of size N with NH number of
H particles, (N − NH ) number of L particles, Nup num-
ber of upslope bonds, and (N − Nup) number of downslope
bonds, the total number of possible configurations is N =( N

NH

) × ( N
Nup

)
, and for ω = ωc each configuration occurs with

probability 1/N in the steady state. Below, we exactly cal-
culate an expression for ωc in terms of the rate parameters
a, b, b′.

The configurations in the LH model are discrete and spec-
ified by the occupancy of the lattice sites and orientation or
tilt of the lattice bonds. Let pc(t ) be the probability to find

the system in a particular configuration c at time t . The time
evolution of pc(t ) is governed by the master equation [36]

d pc(t )

dt
=

∑
c′ 
=c

[rc′→c pc′ (t ) − rc→c′ pc(t )]. (5)

Here, rc′→c is the incoming transition rate from any other con-
figuration c′ to c and rc→c′ is the outgoing rate. In the steady
state, the right-hand side of the above equation must van-
ish. Now, a transition between two configurations is possible
either via particle movement or via landscape movement. Par-
ticle movement involves the exchange of positions between
an H and L particle at two neighboring sites. A landscape
movement happens when a neighboring pair of upslope and
downslope bonds exchange their orientations. Let us consider
the quantity (η j+1 − η j )/2, which can take the values ±1 or 0.
For a local configuration of the form L/H or L\H , the value is
+1; for H\L or H/L, the value is −1; and for any other case
where both neighboring sites are occupied by particles of the
same species, the value is zero. Clearly, no particle transition
takes place if the value is zero.

A. Mapping of configuration to sequence of brackets and dots

At this stage, we introduce an alternative way to rep-
resent a configuration, following the method introduced in
[32]. Instead of explicitly specifying the site occupancies, we
use the open-parenthesis symbol “(” if (η j+1 − η j )/2 is +1,
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TABLE I. Representation of the configuration in the LH model as a sequence of brackets and dots.

Variable Value Local configurations Name Symbol

1
2 (η j+1 − η j ) 1 ◦/• ; ◦ \ • open parenthesis (

0 ◦/◦ ; ◦ \ ◦ ; • \ • ; •/• dot ·
−1 •/◦ ; • \ ◦ closed parenthesis )

1
2 (τ j− 1

2
− τ j+ 1

2
) 1 \ ◦ / ; \ • / open angular bracket <

0 / • / ; / ◦ / ; \ • \ ; \ ◦ \ dot ·
−1 / ◦ \ ; / • \ closed angular bracket >

a closed-parenthesis symbol “)” if it is −1, and a dot symbol
“·” if it is zero. Similarly, the quantity (τ j− 1

2
− τ j+ 1

2
)/2 takes

the value +1 for a local valley, −1 for a local hill, and zero for
all other cases where no landscape transitions are possible. We
use an open angular bracket “<” for a local valley, a closed
angular bracket “>” for a local hill, and a dot “·” for other
cases. In Table I, we summarize the mapping.

Using the above method, one can map any configuration in
the LH model as a unique sequence of parentheses, angular
brackets, and dots. In Fig. 5, we illustrate this process. The
sequence follows some constraints though. Two open (closed)
parentheses cannot occur in succession; there must be a closed
(open) parenthesis between them. Similar restriction holds for
angular brackets too. Due to the periodic boundary condition,
each configuration must have an equal number of open and
closed parentheses, and an equal number of open and closed
angular brackets. However, the total number of parentheses
may or may not be equal to the total number of angular
brackets in a configuration. Moreover, the dynamics does not
conserve these total numbers and they can change with time,
even though NH and Nup remain conserved.

B. Grouping brackets and dots into segments

In the steady state, the total incoming flux to any config-
uration c must be balanced by the total outgoing flux from
c. Here we classify all incoming and outgoing transitions for

FIG. 5. Description of a configuration in terms of parentheses
and angular brackets.

a general configuration c into groups. For this, we follow the
protocol introduced in [32]. We start from any random point in
the sequence of parentheses, angular brackets, and dots, which
represents configuration c, and move rightward through the
sequence. Every time we encounter an open (closed) paren-
thesis or open (closed) angular bracket, we move towards the
right (left) and keep moving in that direction until we find a
closed (open) bracket of the same type. While doing so, if we
encounter another type of open (closed) unpaired bracket, we
move in the rightward direction (leftward direction) until we
get a closed (open) bracket of that type. This procedure is con-
tinued until a segment of minimum size is identified, where
corresponding to each open bracket, there is a closed bracket
of the same type. After a segment has been completed, we
start a new segment from the current position and repeat the
process. This method divides a sequence into a few nonover-
lapping segments and also ensures that this segmentation is
unique since the protocol ensures that every bracket belongs to
the smallest group of open and closed brackets [32]. In Fig. 5,
we illustrate this method. Next, we show how, within each
segment, the steady state flux balance condition is satisfied.

C. Pairwise balance

The simplest possible segment contains only one pair of
open and closed brackets of the same type, i.e., either (· · · ) or
〈· · · 〉. Let us first consider (· · · ), which represents a local con-
figuration c where only particle movements are possible, and
no landscape movement is allowed. As we illustrate in Fig. 6,
for every such configuration c, one can identify a unique
pair of configurations c′ and c′′, such that rc′→c = rc→c′′ . The
absence of any angular brackets rules out the existence of
local hills and valleys in c. For example, if we assume all
lattice bonds are downhill, then c can be entered (exited) by
an upward (downward) slide H particle at the left (right) end.

FIG. 6. Pairwise balance for a sequence enclosed by a pair of
parentheses. For every incoming transition, there is an outgoing
transition of the same rate.
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FIG. 7. Pairwise balance for a local configuration c represented by (· · 〈··) · ·(··〉 · ·).

Thus, for every incoming transition, there exists an outgoing
transition of the very same type. This condition is known
as the “pairwise balance” [32,37]. More precisely, if rc′→c =
rc→c′′ is satisfied, then pc′ = pc indeed makes the right-hand
side of Eq. (5) zero for any values of a, b, b′. In a similar
way, one can show that pairwise balance with equiprobable
measure condition is satisfied for all 〈· · · 〉 segments.

Even for a more general type of segment, where both
parentheses and angular brackets are present, the pairwise
balance condition can be satisfied as long as the leftmost
opening bracket and the rightmost closing bracket are of the
same type. To show this, we use the method of reduction
introduced in [32], where a given segment can be shortened
by eliminating those pairs of brackets which represent transi-
tions that satisfy pairwise balance. For example, consider the
segment (·· < ··) · ·(·· > ··). It can be easily shown that the
pair ) · ·(, appearing in the middle, satisfies pairwise balance.
The proof runs along exactly the same lines as illustrated in
the previous paragraph for the (··) segment. After eliminating
this pair, the segment is reduced to (·· < ·· > ··), and after
eliminating the pair of angular brackets 〈· · · 〉, which obvi-
ously satisfy pairwise balance, we are left with (··), another
pairwise balanced segment. In Fig. 7, we explicitly show that
without using the method of reduction, the local configuration
represented by the above sequence segment indeed satisfies
pairwise balance. In a similar way, one can show that pairwise
balance is satisfied for the segment 〈· · (·· > ·· < ··) · ·〉.

D. Bunchwise balance

However, if a segment has a leftmost opening bracket and
rightmost closing bracket of opposite types, then it cannot be
reduced completely. After eliminating all pairwise balanced
brackets such as 〈··〉, > ·· <, (··), and ) · ·(, which may have
been present in the middle of the segment, we are left with ei-
ther (·· < ··) · · > or < · · (· · · > ··), which cannot be reduced
any further. These are known as the irreducible sequence of +
type and − type, respectively. They do not satisfy pairwise
balance [32]. However, both of these irreducible sequences
represent local configurations that can be reached in four

different ways, two of which involve particle exchange and
the other two involve landscape movement. In Fig. 8, we
explicitly show this for a + type irreducible sequence. The
particle transitions are always of the same type, and if one
landscape transition consists of heavy (light) hill flipping to
a heavy (light) valley, then the other one corresponds to light
(heavy) valley flipping to a light (heavy) hill. The configu-
rations can be exited by four transitions, which are exactly
the reverse transitions of the incoming ones. If equiprobable
measure has to be satisfied in the steady state, then the sum
of all incoming transition rates must be equal to the sum of
all outgoing transition rates. This leads to the condition of
“bunchwise balance”,

2(D + a) + ω(E + b) + ω(E + b′)

= 2(D − a) + ω(E − b) + ω(E − b′), (6)

which gives

ω = ωc = − 2a

b + b′ . (7)

For a − type irreducible sequence also, the condition of
bunchwise balance gives the exactly same expression for the
critical timescale. In the special case of ωc = 1, the bunchwise
balance condition simplifies further. In this case, the total
incoming (outgoing) transition rate through particle exchange
becomes equal to the total outgoing (incoming) transition
rate through slope update, such that 2(D + a) = (E − b) +
(E − b′), which gives 2a + b + b′ = 0, the condition derived
in [32].

Equation 7 shows that it is only in the disordered phase,
i.e., for (b + b′) < 0, that one has a positive, finite value of
ωc. As one approaches the (b + b′) = 0 line, the value of ωc

becomes infinitely large. This is expected since the particles
show long-range order here, and the product measure cannot
be satisfied. For (b + b′) > 0, both particles and the landscape
show long-range order and ωc takes unphysical negative val-
ues here. In Fig. 9, we compare our exact result with our
simulation observation and find excellent agreement.
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FIG. 8. Incoming and outgoing transitions for a plus type irreducible sequence.

V. RELATIVE TIMESCALE IN HYDRODYNAMICS

In the previous section, an exact expression for ωc was
derived for a discrete lattice model using the condition of
flux balance in the steady state. In this section, we present
an alternative derivation in the continuum limit where we
coarse grain the LH model and use hydrodynamic expansion.
As discussed in Sec. II, the dynamical rules are such that the
number of H particles and the number of upslope bonds are
locally conserved. We denote the local density of H particles
as ρ(x, t ), and that of upslope bonds as m(x, t ). As the parti-
cles move around and the landscape fluctuates, these densities
change and their time evolution is described by the following
continuity equations:

∂ρ

∂t
= −∂Jρ (ρ, m)

∂x
, (8)

∂m

∂t
= −∂Jm(ρ, m)

∂x
, (9)

where Jρ and Jm are local currents of H particles and upslope
bonds, respectively. Due to coupled dynamics, these currents
depend on both ρ and m. Here, we have used the assumption
of local equilibrium, i.e., local currents depend on x, t only
through their dependence on ρ, m and do not have any explicit
space-time dependence. Then the continuity equations can be
written as

∂ρ

∂t
+ ∂Jρ

∂ρ

∂ρ

∂x
+ ∂Jρ

∂m

∂m

∂x
= 0, (10)

∂m

∂t
+ ∂Jm

∂ρ

∂m

∂x
+ ∂Jm

∂m

∂m

∂x
= 0. (11)

By defining a two-dimensional vector ψ (x, t ), whose com-
ponents are ρ(x, t ) and m(x, t ), the above equations can be
written in a more compact form as

∂ ψ
∂t

+ A∂ ψ
∂x

= 0, (12)

where A is the current Jacobian defined as

A =
⎛
⎝ ∂Jρ

∂ρ

∂Jρ

∂m

∂Jm
∂ρ

∂Jm
∂m

⎞
⎠. (13)

Expanding components of ψ (x, t ) around their conserved
global values ψα (x, t ) = ψ0

α + uα (x, t ) and retaining only
linear terms in uα , we get

∂ u
∂t

+ A
∂ u
∂x

= 0, (14)

where A is a 2 × 2 matrix whose elements are those of A eval-
uated at ρ = NH/N and m = Nup/N . To solve this equation,
we diagonalize A and obtain the normal modes. However, this
requires explicit knowledge of Jρ and Jm as a function of ρ and
m. From Eqs. (2) and (4) in Sec. II, it follows that the exact
expressions for certain short-range correlations are needed,
which is generally hard to obtain. At this stage, we make
an assumption that there exists a specific ω = ω∗ for which
the product measure holds and these correlations factorize.

FIG. 9. Comparison between theory and simulations. Discrete
points show ωc measured from simulations and lines show exact
result from Eq. 7. Here, ρ = m = 0.5 are used.
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Then, from Eqs. (2) and (4), we can write Jρ and Jm as [scaled by a factor of (1 + ω∗)]

Jρ = 2aρ(1 − ρ)(1 − 2m),

Jm = ω∗2m(1 − m)[ρ(b + b′) − b′].
(15)

The current Jacobian matrix Aαβ = ∂Jα

∂ρβ
then has the form

A =
[

2a(1 − 2m0)(1 − 2ρ0) −4aρ0(1 − ρ0)

2ω∗m0(1 − m0)(b + b′) ω∗(1 − 2m0)[2ρ0(b + b′) − 2b′]

]
, (16)

which has real, distinct eigenvalues. Therefore, we have a system of strictly hyperbolic conservation laws. For such systems, it
was shown in [34], using time-reversal invariance, that the product of the current Jacobian matrix and the compressibility matrix
must be symmetric,

AK = KAT , (17)

where AT is transpose of A.
Now in a canonical ensemble which we use in the simulations, the global conservation of NH and Nup does give rise to

correlations in a finite-size system, even when the equiprobable measure is satisfied in the steady state. The product measure
condition, which we used in writing Eq. (15), actually holds for a grand canonical ensemble with a fluctuating NH and Nup. These
fluctuations are characterized by a symmetric covariance matrix (also known as compressibility matrix) K , whose elements are
[16–18]

K = 1

N

(
〈(NH − ρN )2〉 〈(NH − ρN )(Nup − mN )〉

〈(Nup − mN )(NH − ρN )〉 〈(Nup − mN )2〉

)
. (18)

In the case when the product measure is satisfied, K becomes

K =
(

ρ0(1 − ρ0) 0

0 m0(1 − m0)

)
. (19)

Substituting forms of A and K in Eq. (17), we get

AK − KAT =
[

0 −2ρ0(1 − ρ0)m0(1 − m0)[2a + ω∗(b + b′)]

2ρ0(1 − ρ0)m0(1 − m0)[2a + ω∗(b + b′)] 0

]
. (20)

The right-hand side of Eq. (20) vanishes only when ω∗ =
− 2a

(b+b′ ) , which matches exactly with ωc derived in Eq. (7),
Sec. IV.

VI. CONCLUSIONS

To gain insights into the behavior of coupled driven sys-
tems, one useful tool is to make one system evolve faster or
slower than the other, by introducing a relative timescale in
their dynamics. This method has been used in quite a few
recent studies [27–31] and various interesting effects of the
relative timescale were observed. In [29,30], noninteracting
particles sliding on a fluctuating landscape were considered in
the limit of one-way coupling, where the landscape dynamics
remains unaffected by the particles, and it was found that
depending on whether the particles move faster or slower
compared to the landscape, the scaling description of several
steady state correlations changes. In [31], a single particle was
considered on a fluctuating energy landscape in the presence
of a two-way coupling, and qualitatively different long-time
behavior were observed, depending on the landscape to slider
timescale ratio.

In this work, we have examined the effect of introducing a
relative timescale ω in a coupled time evolution of hard-core
particles on a fluctuating landscape. We find a critical value ωc

of the relative timescale at which all configurations are equally
likely in the steady state. We prove this result exactly for a
discrete lattice model, as well as for a coarse-grained model.
Our proof for the case of a discrete lattice model relies on gen-
eralizing a formalism introduced in [32], according to which
we break up each configuration into nonoverlapping segments
and identify the incoming and outgoing transitions for each
segment. For certain segments, we find that for each incoming
transition, there exists an outgoing transition of exactly the
same type. This condition is known as pairwise balance [37]
and it follows from Eq. (5) that the equiprobable measure is
satisfied in the steady state. However, there are some special
types of segments where the incoming and outgoing transi-
tions are exactly the reverse of each other. For these cases, the
equiprobable measure can be satisfied if and only if the total
incoming rate and outgoing rate are equated, which yields the
ω = ωc criterion. For ω 
= ωc, the equiprobable measure does
not hold and local correlations are nonzero in general. It was
not possible to calculate these correlations exactly, but their
qualitative behavior can be explained by following the line of
argument presented in [32]. In Appendixes A and B, we have
included detailed discussions of this.

Our study opens up the intriguing possibility to control
the stationary measure of a coupled driven system by tuning
its relative timescale. This idea can be implemented for other
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model systems as well. In particular, our calculation in the
coarse-grained model is quite generic and, for any other
system which allows hydrodynamic expansion, similar cal-
culations can readily be performed. It will be of interest to
see if such calculations yield a critical timescale for other
systems. Finally, for systems with n > 2 conserved modes,
there can be (n − 1) relative timescales. How their interplay
affects the correlation functions and whether it allows for a
product measure steady state are interesting questions and
offer a promising direction for future research.
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APPENDIX A: VARIATION OF SHORT-RANGE
CORRELATIONS WITH ω

As shown in Fig. 4, different local short-range correlations
show different natures of variation with ω. In the case of
three-point correlations, / ◦ \ and \ • / start from a positive
value, decrease with ω, pass through zero at ω = ωc, and
become negative for larger ω. For the other three-point cor-
relations, / • \ and \ ◦ / show exactly the opposite trend.
They are negative for ω < ωc and positive for ω > ωc. These
variations can be easily explained by considering how the
bunchwise balance of incoming and outgoing transition rates
is violated when ω 
= ωc. As shown in Fig. 8, the sum total of
all incoming transition rates for a + type irreducible sequence
is 2(D + a) + ω(2E + b + b′), which is greater than the sum
of all outgoing transition rates 2(D − a) + ω(2E − b − b′),
if ω < ωc. For a − type sequence, similarly, one can show
that the total outgoing rate is larger than the incoming ones.
Therefore, for ω < ωc, the steady state probability to find a
+ type sequence is more than the − type. As a result, those
correlations which occur in + type sequences are positive
for ω < ωc and negative for ω > ωc, while those correlations
which are absent from + type sequences but can be found in
− type sequences show the opposite trend.

At ω = ωc, the + type and − type irreducible sequences
are equally probable. The following quantity, known as the
cross-correlation function, captures this clearly [32]. This is
defined as

S ({η, τ }) =
N∑

j=1

1

2
(η j+1 − η j )τ j+ 1

2
, (A1)

which depends on the specific configuration {η, τ }. The
cross-correlation function can also be defined as S ′({η, τ }) =∑N

j=1
1
2 (τ j− 1

2
− τ j+ 1

2
)η j , which has the same value as

S ({η, τ }) for any configuration with periodic boundary condi-
tions. S and S ′ give a value of 0 when we calculate them only
over a pair of parentheses or angular brackets. A segment that
satisfies pairwise balance has a vanishing contribution towards
the sum in Eq. (A1). The only nonzero contribution comes
from irreducible sequences of the + and − types, which con-
tribute 2 and −2, respectively. If N+({η, τ }) and N−({η, τ })

FIG. 10. Variation of S with relative timescale for b =
−0.1, b′ = −0.4, a = 0.5, ρ0 = m0 = 0.5, and N = 1024.

denote the number of + type and − type irreducible sequences
in a configuration, then

S ({η, τ }) = 2[N+({η, τ }) − N−({η, τ })]. (A2)

When averaged over the steady state ensemble, we get S =
〈S ({η, τ })〉 = 2(〈N+〉 − 〈N−〉), where 〈N±〉 are the average
number of + type and − type irreducible sequences in the
steady state. In Fig. 10, we plot S (scaled by system size) as
a function of the relative timescale and find that for ω < ωc,
when + type sequences are more probable, S is positive, while
for ω > ωc, when − type sequences are more probable, S is
negative. This is consistent with the above argument.

APPENDIX B: HEIGHT FLUCTUATIONS AND CLUSTER
SIZE DISTRIBUTIONS

To further probe the effect of relative timescale on the
steady state of the system, we define two “height” variables
for site occupancy and bond orientation as follows:

hη(i) =
i∑

j=1

η j and hτ (i) = −
i∑

j=1

τ j+1/2. (B1)

Let Wη and Wτ be the width of the corresponding height
profiles, defined as

Wη =
[

1

L

〈
L∑

i=1

[hη(i) − hη]2

〉]1/2

,

Wτ =
[

1

L

〈
L∑

i=1

[hτ (i) − hτ ]2

〉]1/2

, (B2)

where the overhead bar denotes averaging over all lattice
points in a given configuration, and the angular brackets de-
note averaging over different steady state configurations. In
Fig. 11, we plot Wη and Wτ for different ω values and find two
opposite trends. While Wη decreases with ω (purple points),
Wτ increases (green points) and they intersect at ω = ωc. To
explain this behavior, we note that the tendency of H particles
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FIG. 11. Variation of Wη and Wτ with ω for b = −0.1, b′ =
−0.4, and a = 0.5 with ρ0 = m0 = 0.5.

to slide down to the local valleys is exactly balanced by their
tendency to destabilize the valleys by landscape movement
at ω = ωc. This gives rise to equiprobable measure. For ω

smaller than ωc, the landscape movement is slower and the H
particles get a chance to form local clusters around the valleys.
Although this heterogeneity in particle occupancy does not
give rise to long-range order in the system, the width Wη is
still larger than its product measure value. To verify this ar-
gument, we explicitly measure the cluster size distribution of
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FIG. 12. Cluster size distribution of particles at different ω for
b = −0.1, b′ = −0.4, and a = 0.5 with ρ0 = m0 = 0.5. The solid
line represents P(n) for product measure.

H particles (Fig. 12) and show that for ω < ωc, medium- and
large-size clusters are more probable than the product measure
case. Similarly, for ω > ωc, the landscape moves faster and
heavy valleys are quickly destabilized. This makes it more
difficult for the H particle to clump together and isolated H
particles are found more frequently now. This brings down
Wη. In a similar way, variation of Wτ can also be explained.
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