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Relating fragile-to-strong transition to fragile glass via lattice model simulations
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Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow
Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water,
which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low
temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously
demonstrated to be capable of simulating both strong and fragile glasses [C.-S. Lee, M. Lulli, L.-H. Zhang,
H.-Y. Deng, and C.-H. Lam, Phys. Rev. Lett. 125, 265703 (2020)]. Starting with a bimodal pair-interaction
distribution appropriate for fragile glasses, we show that by narrowing down the energy dispersion in the low-
energy component of the distribution, a FTS transition is observed. The transition occurs at a temperature at
which the stretching exponent of the relaxation is minimized, in agreement with previous molecular dynamics
simulations.

DOI: 10.1103/PhysRevE.109.054124

I. INTRODUCTION

Glasses are produced when liquids are supercooled below
the glass transition temperature Tg [1–3]. Depending on how
dramatically the relaxation rate of a glass changes with respect
to the temperature upon cooling, it is then classified as a strong
glass or a fragile glass. For strong glass, the dynamics follows
the Arrhenius law. In contrast, it shows a super-Arrhenius
temperature dependence for fragile glass. However, there exist
many types of liquids that do not obey this classification, such
as water [4,5], silica [6], BeF2 [7], and some metallic glasses
[8]. They are fragile at high temperature, but their dynamics
obeys the Arrhenius law characteristic of strong glass at low
temperature. This anomaly is known as the fragile-to-strong
(FTS) transition.

Water is the most widely studied material exhibiting a FTS
transition. Several hypotheses based on mode-coupling theory
[9] and Adam-Gibbs theory [4] have been proposed to account
for the phenomenon. Subsequently, Stanley and co-workers
explained the dynamic abnormalities with a crossover from
a high-density liquid to a low-density one at a line which is
known as the Widom line [10]. It is defined as the maxima
of thermodynamics response functions that emanate from a
proposed liquid-liquid critical point.

*dengh4@cardiff.ac.uk
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Recently, Tanaka and coworkers developed a hierarchical
two-state model that describes the structural, thermodynamic,
and dynamic properties of liquid water in a unified manner
[11–14]. In this model, the “apparent” fragile-to-strong tran-
sition is interpreted as a crossover between two Arrhenius
behaviors with different activation energies for two types
of local structures that coexist in liquid water [15,16]. This
model predicts the maximization of dynamic fluctuations
upon cooling at a crossover temperature below the Widom
line [11–14]. The existence of two types of local structures
and the maximization of dynamic fluctuations in liquid water
have been confirmed in TIP4P/2005 [13,14], TIP5P [11,12],
and ST2 [11,12] water models and supported by experimental
measurements [13,14,17–21]. Molecular dynamics (MD) sim-
ulations of other supercooled liquids with two distinct groups
of interactions have also demonstrated a fragile-to-strong tran-
sition [22,23].

In this paper, we study the FTS transition using the
distinguishable-particle lattice model (DPLM) of glass [24].
The DPLM has recently been applied successfully to address
Kovacs’ expansion gap paradox [25], the connection between
fragility and thermodynamics quantities [26], the heat capac-
ity hysteresis in cooling-heating cycles with large overshoots
in fragile glasses [27], two-level systems at low temperature
[28], and a diffusion-coefficient power law under a particle
partial-swap algorithm [29]. We show that materials exhibit-
ing a high fragility and a FTS transition are closely related and
can differ only in the low-energy statistics of the particle pair
interactions. Specifically, by simply altering the low-energy
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component of a pair-interaction energy distribution adopted in
the DPLM, a fragile glass model can be turned into a system
exhibiting a FTS transition.

The DPLM is a lattice gas model defined on a two-
dimensional (2D) square lattice with N distinguishable
particles [24–29]. Periodic boundary conditions are assumed.
At most one particle can occupy a site at a time. Voids of a
density, φv , are introduced in the system as unoccupied sites.
The total energy of the system is defined as

E =
∑
〈i, j〉′

Vsis j , (1)

where the sum is over occupied nearest-neighbor sites i and j,
and the particle index si = 1, . . . , N represents which particle
is located at site i. The interaction energy Vkl between particles
k and l is randomly sampled from a pair-interaction distri-
bution, g(V ), before the simulation commences. The DPLM
can produce both strong and fragile glasses by implementing
a uniform-plus-delta bimodal interaction distribution given
by [26]

g(V ) = G0

�V
+ (1 − G0)δ(V − V1), (2)

for V0 � V � V1, with �V = V1 − V0. The thermodynamic
parameter G0 obeys 0 < G0 � 1. Strong and fragile glasses
correspond to large and small G0, respectively.

The system follows void-induced dynamics governed by
the Metropolis algorithm. Specifically, each particle can hop
to an unoccupied nearest-neighbor site at temperature T at a
rate of

w = w0 exp

[
−E0 + θ (�E ) �E

kBT

]
, (3)

where �E represents the change in total energy E of the
system after hopping, kB = 1 is the Boltzmann constant, θ

denotes the Heaviside step function, E0 is an energy barrier
offset, and w0 is a rate constant.

II. FRAGILE-TO-STRONG TRANSITION

Dynamic behaviors of the DPLM largely depend on the
pair-interaction distribution g(V ). To enable a fragile-to-
strong transition, the uniform-plus-delta distribution in Eq. (2)
is replaced in our main simulations in this work by a bi-delta
distribution,

g(V ) = G1δ(V − V0) + (1 − G1)δ(V − V1), (4)

where V0 and V1 (V0 < V1) are the two possible interaction
energies. The thermodynamic parameter G1, analogous to G0

in Eq. (2), represents the probabilistic weight of the lower
interaction energy V0. We take V0 = 0 and V1 = 1 so that
�V = V1 − V0 = 1.

We have performed kinetic Monte Carlo simulations in
2D on a square lattice of length L = 100 with the bi-delta
pair interaction in Eq. (4). We take φv = 0.01, E0 = 0.5, and
w0 = 106. The diffusion coefficient D at various temperatures
T is measured (see the Appendix for details). The value of
φv considered here is similar to those in our previous studies
[24,26] and it allows our simulations to reproduce features
of interest within practical runtimes. In principle, voids may
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FIG. 1. Inverse particle diffusion coefficient log10(1/D) against
inverse temperature 1/T for various probabilistic weights G1 of the
low-energy state. We put E0 = 0.5 and w0 = 106. The dashed lines
represent fits to Eq. (7). The dotted line following Eq. (6) is a guide
to the eye.

take a more general form called quasivoids and their density
φv can be inferred from particle trajectories in colloidal glass
experiments [30]. For molecular glasses in which particle tra-
jectories cannot be resolved, appropriate values of φv can only
be justified in the future by comparing macroscopic dynamical
quantities such as particle diffusion coefficients obtained from
DPLM simulations or theoretical calculations [31] with those
from experiments. Figure 1 shows an Arrhenius plot of 1/D
for various values of G1. For the smallest value of G1 = 0.3
reported, we observe for 1/T � 4 a curvature in the semi-log
plot, indicating a super-Arrhenius temperature dependence
of 1/D. This signifies a high-temperature fragile regime and
the result is qualitatively similar to previous simulations in
Ref. [26] for moderately fragile glass with G0 = 0.3 using the
uniform-plus-delta distribution in Eq. (2). Nevertheless, a dis-
tinct feature in Fig. 1 is that for 1/T � 4 the super-Arrhenius
behavior turns into a sub-Arrhenius one, which was not ob-
served in Ref. [26]. The results are qualitatively similar for
all other values of G1 reported, although the high-temperature
super-Arrhenius nature diminishes at larger G1.

The termination of the high-temperature super-Arrhenius
behavior as temperature decreases marks a FTS transition. Far
below the transition at very low temperature, the dynamics
is Arrhenius as is typical of strong glass. As lattice models
are often more tractable analytically, the low-temperature Ar-
rhenius behavior can be proven easily as follows. For kBT �
�V , excitation to interaction V1 is suppressed so that only the
lower-energy interaction V0 is relevant. All possible particle
hops are then constrained to those resulting at no energy
change, i.e., �E = 0. The rate w of all energetically possible
hops as given in Eq. (3) then follow the same Arrhenius rate:

w = w0 exp

(
− E0

kBT

)
, (5)
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which defines the dynamic timescale. Simulations at differ-
ent low temperatures are thus similar except for this trivial
scaling factor in the hopping rate. We therefore arrive at the
low-temperature Arrhenius form

D ∼ exp

(
− E0

kBT

)
. (6)

The result signifies a strong behavior.
We observe from Fig. 1 that the Arrhenius behavior in

Eq. (6) is directly verified at low temperature for G1 = 0.7.
For larger G1, the observed trend is also consistent with a con-
vergence to Eq. (6). When approaching the Arrhenius regime,
we find that D follows the empirical form

D = D0 exp

[
− E0

kBT
+

(c1

T
− c2

)−4
]
, (7)

where D0, c1, and c2 are constants and it reduces to Eq. (6) at
low temperature. For example, for G1 = 0.5, fitted values are
D0 = 181, c1 = 0.316, and c2 = 1.30.

III. MODELING WATERLIKE LIQUID

We have demonstrated in the previous section that, by
adopting a different interaction distribution, g(V ), a model of
fragile glass can be turned into one exhibiting a FTS transi-
tion. We now further generalize it to model waterlike liquid
more closely. In water, both hydrogen and nonhydrogen bonds
are present and they are crucial in studying its anomalies
[32,33]. We envision that the two interaction energies V0 and
V1 in Eq. (4) now describe hydrogen and nonhydrogen bonds,
respectively, an interpretation in line with a two-state picture
of water [12,13].

We consider the probabilistic weight G1 = 0.38 of the
low-energy interaction V0. This value allows simulations to be
performed within a manageable runtime for observing both a
high fragility at high temperature and a FTS transition at low
temperature. The bottom curve in Fig. 2 shows 1/D hence
obtained. When compared with amorphous water, we notice
however that, relative to the high-temperature regime, the
temperature dependence of the dynamics at low temperature
is rather weak, corresponding to an effective low-temperature
energy barrier being too small. This issue can be attributed to
the constant barrier offset E0 adopted in Eq. (3).

In molecular systems, barriers of particle motions depend
on the precise molecular structures and, in particular, on the
bond types. A higher barrier is expected for the hopping
of particles participating in more hydrogen bonds. We thus
generalize the model to include an additional bond-dependent
barrier offset term. Consider particle k attempting to hop from
site i to site j. Let �i j be the set of all other particles at any of
the six nearest-neighboring sites of i and j. The rate in Eq. (3)
is generalized to

w = w0 exp

[
−E0 + θ (�E ) �E + U (k,�i j )

kBT

]
. (8)

Here, we have included an additional hopping-energy barrier
term U (k,�i j ) of magnitude U0 defined as

U (k,�i j ) = U0

C

∑
l∈{�i j}

δ(Vkl ,V0), (9)
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FIG. 2. Inverse particle diffusion coefficient 1/D against inverse
temperature 1/T for various U0. We use G1 = 0.38, E0 = 0.5, and
w0 = 106.

where C = 6 represents the number of bonds affected by the
hop, including three to be deformed and three to be formed.
If all of these six bonds are all hydrogen bonds, Eq. (9)
gives U (k,�i j ) = U0. This occurs at low temperature. In the
other extreme, if all are nonhydrogen bonds, U (k,�i j ) = 0,
which may happen at high temperature. Note that dynamics
based on Eqs. (8) and (9) satisfies detailed balance due to the
symmetry U (k,�i j ) = U (k,� ji ) corresponding to the same
barrier offset for forward and backward hops.

To illustrate the physical relevance of U0, Fig. 2 also shows
measured 1/D for various values of U0 � 0. It can be observed
that a larger U0 leads to further slow down in the dynamics
at low temperature, but it has relatively little effect on the
dynamics at high temperature. Introducing U0 thus allows the
fine-tuning of the effective activation energy at low and high
temperatures independently.

To best reproduce dynamical features of waterlike liquid
within reasonable computational requirements, we consider
G1 = 0.38, U0 = 0.4, E0 = 0, and w0 = 104. Figure 3 shows
a kinetic Angell plot of 1/D against Tg/T thus obtained.
Here, the glass transition temperature Tg is defined as the
temperature at which 1/D = 5 × 104, close to the slowest
dynamic rates at which simulations are still practical. We
obtain Tg = 0.105 after extrapolating our simulation data to
lower temperatures using

D = D0 exp

[
−E0 + U0

kBT
+

(c1

T
− c2

)−4
]
, (10)

which is an empirical form generalized from Eq. (7). Note that
D0 depends on U0 while c1 and c2 are independent of U0. At
low temperature, it reduces to

D ∼ exp

(
−E0 + U0

kBT

)
. (11)

which generalizes Eq. (6). For comparison, we also simulate
a model of fragile glass by adopting the uniform-plus-delta
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FIG. 3. Kinetic Angell plot for a model of waterlike liquid with
a FTS transition and a fragile glass with Tg = 0.105 and 0.185,
respectively. For the FTS transition case, the dashed line represents a
fit to Eq. (10). The dotted line following Eq. (11) is a guide to the eye.
The arrow points to temperature T = 0.35 at which β is minimized.

interaction in Eq. (2) with G0 = 0.03, E0 = 2.05, w0 = 106,
and U0 = 0. We get Tg = 0.185. Results have also been shown
in Fig. 3. We have chosen the model parameters so that the
respective features observed resemble qualitatively those of
amorphous water and o-terphenyl, respectively, as reported in
Ref. [12].

Nevertheless, we notice that the two characteristic turns in
the Angell plot from our simulations are too stretched out.
More precisely, the FTS transition temperature and the most
super-Arrhenius point from Fig. 3 occur roughly at Tg/T �
0.42 and 0.15, respectively, corresponding to a ratio of about
2.8. This is much larger than a ratio of roughly 1.5 from MD
simulations [12]. We believe that the discrepancy may be due
to a lack of correlation between neighboring bonds in our
model, which is a feature of the DPLM [24] and interestingly
is also assumed implicitly in two-state models [15,16,34].

Besides the diffusion coefficient, we have also measured
the self-intermediate scattering function (see the Appendix).
It follows the Kohlrausch-Williams-Watts (KWW) form char-
acterized by the stretching exponent β. Figure 4 plots the
temperature dependence of β obtained from the KWW fits.
We observe a minimum of β at T � 0.35. This value is
consistent with the temperature at which the system starts
to display the low-temperature Arrhenius behavior as seen in
Fig. 3. Similar observations have been reported in molecular
dynamics simulations of TIP4P/2005, TIP5P, and ST2 models
of water with the minimum β (stretching exponent for the
time correlation function of water dipole) associated with a
maximized dynamic heterogeneity [11–13].

In addition, we have measured the four-point correlation
function χ4 which shows a peak at time τ4 (see the Appendix).
Figure 5 plots the peak height χ4(τ4) as a function of tem-
perature. MD simulations in Refs. [11–13] show that χ4(τ4)
exhibits a local maximum at the same temperature at which β
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FIG. 4. Stretching exponent β plotted against T for the model of
waterlike liquid.

is minimized. However, we observe from Fig. 5 no noticeable
maximization at T � 0.35 at which β is minimized.

We remark that, while they both indicate dynamic het-
erogeneity, the stretching exponent β and the four-point
correlation function χ4 display distinct temperature depen-
dencies in the simulations. As seen in Fig. 4, the temperature
dependence of β is nonmonotonic: As the temperature drops,
β first decreases from unity to a local minimum, where the
FTS transition sets in, and then rises again as the temperature
drops further. Nevertheless, as shown in Fig. 5, the peak height
of χ4 increases monotonically as the temperature drops. Such
contrast manifests the fact that these quantities capture dif-
ferent aspects of dynamic heterogeneity. Namely, β mostly
encrypts the heterogeneity of relaxation times, whereas χ4

largely tells of the average correlation length of particle mo-
bilities. This interpretation can be rationalized by the recently
proposed configuration tree theory, which has successfully
explained a variety of dynamical properties of the DPLM
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FIG. 5. Peak height χ4(τ4) of four-point correlation function
plotted against T for the model of waterlike liquid.
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[31,35]. According to this theory, structural relaxation occurs
mainly due to the diffusion of mobile clusters, each consisting
of a number of coupled (quasi-)voids signifying emergent
dynamical facilitation. The number of voids required to
make up each of these dominating clusters increases as tem-
perature decreases. If mobile clusters of a range of sizes
contribute to the structural relaxation, β tends to be small;
otherwise it tends to unity. Meanwhile, the spatial correlation
length of particle mobilities, as measured by the peak height
of χ4, is principally set by the diffusion length of the cluster
that freely diffuses the farthest without encountering another
cluster. As the temperature drops, mobile clusters become
fewer and diffuse further, hence a greater peak height of χ4

and its monotonic increase. At temperatures far below the FTS
transition, fluctuations are reduced because most interactions
take the value V0. The dynamics may then be dominated
by clusters of one or a few particular sizes and hence β

approaches towards unity. Around the transition, clusters of
varying sizes contribute, leading to smaller β.

In Ref. [36], the emergence of the FTS transition has been
found in MD simulations to be correlated to the temperature
dependence of the average energy in the system. We now show
that this correlation can also be observed in our simulations.
The equilibrium average energy per particle ε = E/N in the
DPLM has been derived in Ref. [24] and follows

ε = 2(1 − φv )V , (12)

where the average interaction energy V is given exactly in the
thermodynamic limit by

V =
∫

V peq(V ) dV. (13)

Here, peq(V ) is the distribution of the interactions realized in
an equilibrium system and follows

peq(V ) = 1

N g(V ) exp(−V/kBT ), (14)

where N = ∫
e−V/kBT g(V )dV . We hence calculate the aver-

age energy for the same systems we have explained above
and reported in Fig. 3. Results are shown in Fig. 6. They
qualitatively reproduce important features found in previous
MD simulations [36] in which the energy of the FTS sys-
tem transits from concave downwards at high temperature to
concave upwards at low temperature. This feature is more
pronounced when the energy is plotted against T as shown
in the inset or when G1 is further reduced. In contrast, the
energy of the fragile system remains concave downwards for
the whole relevant temperature range.

IV. ONE-DIMENSIONAL MODEL

Our main simulations above have been performed in two
dimensions. Many glassy features are believed to be inde-
pendent of dimensions and previous two-dimensional (2D)
simulations of the DPLM are able to reproduce qualitatively
many characteristic properties of glass [24–29]. The DPLM
has also demonstrated to behave qualitatively similarly in
three dimensions [37]. To show that our results are inde-
pendent of dimensions, we perform additional study in one
dimension, which is computationally more efficient than in
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FIG. 6. The average energy per particle ε of the fragile system
and the system with an FTS transition studied in Fig. 3 normalized
by ε∞, which equals ε at the high-temperature limit. Inset: ε is plotted
with the same data as in the main panel as a function of T .

two dimensions. In a truely one-dimensional (1D) lattice, par-
ticles cannot swap positions under the assumed void-induced
dynamics and this can drastically alter the model characteris-
tics. Our 1D model is therefore, more precisely, a quasi-1D
model in which we shrink the width of the lattice in one
direction and adopt a L × 2 lattice with L = 600. We apply
periodic boundary conditions in both the long and short di-
rections. Note that we keep taking C = 6 in Eq. (9) as a hop
attempt may involve either five or six bonds. Other parts of
the algorithm are unchanged. This system allows particles to
swap positions via a sequence of void-induced hops.
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FIG. 7. An Arrhenius plot of 1/D against 1/T for a 1D model
of waterlike liquid with G1 = 0.15, U0 = 1.5, w0 = 6.7 × 105, and
φv = 0.03. This is compared with results from Fig. 3 for a 2D model
with G1 = 0.38, U0 = 0.4, w0 = 104, and φv = 0.01. In both cases,
we take E0 = 0. The dotted line following Eq. (11) is a guide to the
eye.

054124-5



CHIN-YUAN ONG et al. PHYSICAL REVIEW E 109, 054124 (2024)

10-5 100 105

t

10-4

10-2

100

102

 | 
r l(t

)-
 r

l(0
)|

2
 

FIG. 8. MSD against t against time t for T = 3, 1, 0.7, 0.5, 0.4,
0.35, 0.3, 0.26, 0.22, and 0.16 (from left to right).

We consider G1 = 0.15 and w0 = 6.7 × 105 so as to match
the 2D results. We also increase the void density to φv =
0.03 from 0.01 so that average separation between voids is
comparable to that in two dimensions. Figure 7 shows 1D
results on 1/D against 1/T . Compared with 2D results re-
produced from Fig. 3, much similarity is observed. A wider
low-temperature Arrhenius regime below the FTS transition
can now be observed in one dimension due to the better
computational efficiency.

V. DISCUSSIONS

As explained in Ref. [26], fragile glass can be simulated
by the DPLM using the uniform-plus-delta pair-interaction
distribution g(V ) in Eq. (2) as shown in Fig. 3. Closely related
to a two-state picture of glass [34], the two components in
the distribution represent low-energy and high-energy states
with average energies V0 + kBT and V1, respectively. Glasses
of the highest fragility are obtained when the weight G0 of
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FIG. 9. Self-intermediate scattering function Fs(q, t ), with |q| =
2π/λ and λ = 2 t , against time t for T = 3, 1, 0.7, 0.5, 0.4, 0.35, 0.3,
0.26, 0.22, and 0.16 (from left to right).

the low-energy state is small but nonvanishing. These low-
energy interactions are thus rare and have a low entropy. As
temperature decreases, interactions are increasingly restricted
to these rare pairings, leading to a reduction of energetically
favorable kinetic pathways and a dramatic slowdown of the
dynamics. The low-energy component in g(V ) in Eq. (2) has
been approximated as a uniform distribution so that energy
dispersion persists even when this component dominates at
very low temperature. Super-Arrhenius behaviors thus persist
to the lowest temperatures studied.

In this work, the fragile glass model is converted to a
system with a FTS transition simply by replacing the lower
uniform component of g(V ) by a delta function at V0 in
Eq. (4). At high temperature, such details in the lower com-
ponent have little impact because the dynamics is dominated
by whether individual interactions belong to the lower or the
upper component. The fragile nature at high temperature is
thus preserved. At low temperature when the lower-energy
component dominates, the nondispersive energy at V0 results
in the Arrhenius behavior of strong glass as shown in Eq. (11).
This is consistent with the two-state scenario for liquid water,
in which, as temperature decreases, the growth of the locally
favored tetrahedral structure gives rise to the fragile behavior
at high temperatures while its dominance at low temperatures
leads to the Arrhenius behavior [11–14].

Although there has been much progress in studying fragile
glass and amorphous systems with FTS transitions, their re-
lations have been much less discussed. In particular, closely
related two-state models [11–16,34] have found great success
in their studies. Our lattice model approach allows studying
both phenomena in a unified framework.

Lattice simulations are, in general, orders of magnitude
faster than MD approaches, However, simulations at realis-
tic timescales are still impossible and phenomena can often
only be studied qualitatively at compressed timescales. Yet,
we notice that the dynamics of our DPLM model shows the
two characteristic turns in the Angell plot and the minimal
stretching parameter β, in agreement with the FTS crossover
in liquid water [11–14]. Despite its simplicity, the DPLM
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FIG. 10. Minus-log of self-intermediate scattering function
against time t resulting in a log-log-versus-log plot using data from
Fig. 9.
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provides clear evidence supporting the two-state scenario for
the FTS crossover in a lattice model of supercooled liquids.

To conclude, using a lattice model of glass, we have repro-
duced a FTS crossover separating a high-temperature fragile
behavior from a low-temperature strong behavior. The model
differs from that of fragile glass mainly by a different low-
energy component of the pair-interaction energy distribution.
While highly dispersed low-energy states lead to a fragile
glass for the whole temperature range, a narrow low-energy
distribution induces a FTS transition to a low-temperature
strong regime. Our work provides a unified framework for
studying fragile glass and systems exhibiting FTS transitions.
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APPENDIX: DETAILS OF DYNAMICAL
CHARACTERIZATION

We now provide full details in the characterization of the
dynamics of the DPLM with a bi-delta pair-interaction distri-
bution, g(V ), in Eq. (4) which shows a FTS transition. We
take the example of our 2D model of water introduced in
Sec. III. Results for other parameters are qualitatively simi-
lar. As already explained, we adopt the probabilistic weight
G1 = 0.38 of the low-energy component. Particle hops follow
Eq. (8) with E0 = 0, w0 = 106, and U0 = 0.4. A void density
of φv = 0.01 is used.

We have calculated the particle mean-square displacement
(MSD) from 〈|rl (t ) − −rl (0)|2〉, with rl (t ) denoting the posi-
tion of particle l at time t . Figure 8 plots the MSD against time
t . We observe the development of a plateau as temperature
decreases, The particle diffusion coefficient D is then calcu-
lated from D = (1/2d )(MSD/t ) at long time t and results
are plotted in Fig. 3. Here, d = 2 represents the dimension
of the system. To ensure a sufficiently long time t in the
calculation, only MSD values beyond 1 satisfying MSD ∼ tγ

with γ � 0.96 are considered.
Next, we examine the self-intermediate scattering function

Fs defined as

Fs(q, t ) = 〈eiq·[rl (t )−rl (0)]〉, (A1)

where |q| = 2π/λ with λ = 2. Figure 9 plots Fs against t .
It shows a two-step relaxation with a tiny first step. The
main relaxation in Fs follows the Kohlrausch-Williams-Watts
stretched exponential function A exp[−(t/τ )β], where β is
the stretching exponent, τ is the relaxation time, and A is a
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FIG. 13. Four-point correlation function χ4(t ) against time t for
T = 1, 0.6, 0.45, 0.35, 0.3, 0.26, 0.24, 0.22, and 0.20 (from left to
right).
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constant close to 1. We plot − log(Fs) against t in log-log
scales in Fig. 10 from which we obtain β for different T by
computing the slope of the linear region at large t satisfying
10−3 � Fs(q, t ) � 0.9. Results on β are shown in Fig. 4.
The relaxation time τ can be obtained as the time at which
Fs = 1/e. In Fig. 11, we plot τ against 1/T . Figure 12 then
further shows a violation in the Stokes-Einstein relation as
observed from an increase of Dτ when T decreases. We have
also studied the four-point correlation function defined by

χ4 = N〈(O(t ) − Ō(t ))2〉, in which

O(t ) = 1

N
�[|ri(t ) − ri(0)|], (A2)

where �(r) is the Heaviside step function. Figure 13 plots
χ4(t ) against time t for various T . We observe that χ4(t )
maximizes at the dynamical timescale τ4. The peak height
χ4(τ4) is plotted against T in Fig. 5.
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