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Geometric phaselike effects of driven transport in presence of reservoir squeezing
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In a bare bosonic site coupled to two reservoirs, we explore the statistics of boson exchange in the presence
of two simultaneous processes: squeezing the two reservoirs and driving the two reservoirs. The squeezing
parameters compete with the geometric phaselike effect or geometricity to alter the nature of the steady-state
flux and noise. The even (odd) geometric cumulants and the total minimum entropy are found to be symmetric
(antisymmetric) with respect to exchanging the left and right squeezing parameters. Upon increasing the strength
of the squeezing parameters, loss of geometricity is observed. Under maximum squeezing, one can recover a
standard steady-state fluctuation theorem even in the presence of phase-different driving protocol. A recently
proposed modified geometric thermodynamic uncertainty principle is found to be robust.
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I. INTRODUCTION

Phase-different multiparametric temporal driving allows an
additional leverage over a system’s dynamics [1,2]. This lever-
age is due to gauge-invariant geometric observables during
the system’s time evolution, which affect the driven transport
and time-dependent energy conversion processes. Additional
phases during the time evolution of a system that arise dur-
ing cyclic variations of two parameter adiabatic driving are
usually referred to as Pancharatnam-Berry phases and are
known to introduce nontriviality into a well-understood sys-
tem [3]. As a first application, the holonomy of the parametric
space was engineered to observe bias-independent electronic
pumping under slow periodic variations [4]. Subsequently,
this paradigm was extended to hem in upon nonequilibrium
systems that exchange matter and energy with macroscopic
reservoirs [5,6]. Usually, geometric contributions in nonequi-
librium quantum systems are introduced by either driving
the reservoirs’ temperatures or chemical potentials or even
the system-reservoir couplings [6]. In such systems, the ge-
ometric effects not only actuate the steady-state dynamics
but also lead to violations of the well-established fluctuation
theorems (FT) and thermodynamic uncertainty relationships
(TUR) [7–9], which are otherwise robust even in the presence
of quantum coherences, entanglement, and quantum squeez-
ing. These geometric effects are almost entirely quantified by
identifying their contribution to the generating function de-
scribing any exchange processes in a nonequilibrium quantum
system [6,9,10]. The resulting generating functions, derived
from a full counting statistical (FCS) method, have an ad-
ditive term apart from the inherent dynamic term, which is
driving dependent and possesses a geometric curvature in the
parameter space [7,11]. The geometric contribution in such
nonequilibrium quantum systems can also be observed during
the evolution of the system’s density matrix [12]. Although
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observable, it is no longer a phase factor and hence, is referred
to as geometric phaselike effect or simply geometricity.

Such effects have also been explored in quantum heat
engines, thermoelectric devices, and molecular junctions
[12–17]. Enhancement of engine’s constancy, affecting the
coherent contribution to flux, observation of giant Fano fac-
tors, and fractional quantization of the flux, etc. have been
reported [7,14,18]. On a separate note, in the absence of geo-
metric effects, general observables such as flux, higher-order
fluctuations, constancy, thermodynamic affinities are also af-
fected when parameters describing the reservoirs are altered,
e.g., by introducing quantum mechanical squeezing [19–25].
Squeezed reservoirs are also known to introduce additional
quantum control, which have been exploited to observe non-
trivial quantum thermodynamics such as additional corrective
parameters on the classical fluctuation theorem of the Crooks
type [26] or not leading to Jarzynski-Wojcik type of fluctua-
tion theorem [27]. Squeezed states of the thermal reservoirs
have also been exploited to overcome Carnot limit in heat
engines [28–32], violate universal maximum power theories
[8,14,15], and introduce higher-order correlated photon pairs
from MgO:LiNbO3 crystals [33,34]. To corral a universal
understanding of the role of squeezed initial states in FTs and
TURs, several possibilities are currently under conceptualiza-
tion [35–37]. For example, higher-order fluctuations during
photon transport can be maximized due to mixing between a
qubit and squeezed resonators [38]. When treated separately,
both geometricity (introduced via tuning the reservoirs) and
squeezing the reservoirs inherently affect the quantum ther-
modynamics of nonequilibrium systems separately. Hence,
it is a natural question to ask about the quantum thermody-
namics of nonequilibrium systems where squeezed reservoirs
are subjected to periodic modulations. This is the motivation
behind this work: to simultaneously study the effect of two
externally introduced reservoir processes viz. squeezing and
driving on the quantum statistical thermodynamic observ-
ables. In the current work we address this question. Since
presence of geometricity make even a simple model, e.g., a
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resonant level coupled to two thermal or electronic reservoirs,
nontrivial [12,17], we focus on such a system, where the
reservoirs are squeezed.

In this work, we study the effect of squeezing the reservoirs
on the statistics of particle exchange when the temperature of
the reservoirs are periodically modulated. The geometricity
that manifests itself into the quantum statistics is explored in
a toy model, which is a bare site coupled to two squeezed
reservoirs. Such a model is passably standard and well studied
in quantum transport [7,39,40]. Our work focuses on identi-
fying the competition between squeezing and driving on the
fluctuations of boson exchange within a quantum statistical
framework. We implement the acknowledged methodology of
full counting statistics (FCS) within a quantum master equa-
tion framework [41]. First, in Sec. II we present our model and
the general formalism used. In Sec. III, we show our results
and analysis after which we conclude in Sec. V.

II. MODEL AND FORMALISM

A bare site coupled to two reservoirs has been thoroughly
studied both in presence and absence of squeezing [24,42–
44]. The site can be effectively described by two Fock states
that correspond to a boson-occupied (|1〉) and an unoccupied
state, (|0〉), separated by an energy h̄ωo (see the Appendix for
the Hamiltonian). Such approximations work well at relatively
low temperatures with some nonlinear effect that drastically
increases the energy level of the two occupied state. There-
fore, higher occupied states in this situation can be neglected.
On the experimental front, such a model can be a flexural
mode of a GaAs-based nanobeam structure piezoelectrically
coupled to squeezed electronic noise (squeezed thermal reser-
voirs) [31] or a qubit system realizable in an NMR setup
[45] as well as in a transmon qubit around a SQUID setup
[46]. The schematic representation of the model is shown in
Fig. 1(a). In such a nonequilibrium system, the time evolution
of reduced density matrix, ρ̂, (within standard Born-Markov
approximation techniques) is a Pauli rate equation (decoupled
from coherences) with two Fock states, |1〉 and |0〉 acting as
the boson exchanger between the two squeezed reservoirs.
When the reservoirs are driven, the rates become time depen-
dent (see the Appendix). Within the standard theory of full
counting statistical (FCS) formalism [41,47], one can keep
track of the net number of bosons exchanged, q, through a
moment generating vector for the reduced system in terms
of the auxiliary counting field, λ. In the Liouville space, the
reduced moment generating density vector, |ρ̆(λ, t )〉〉, can be
written as,

| ˙̆ρ(λ, t )〉〉 = L̆(λ, t )|ρ̆(0, 0)〉〉, (1)

where the elements of the density vector contains the pop-
ulations of the occupied and unoccupied states, {ρ11, ρ00}
(Appendix) with the time-dependent evolution superoperator,
L̆(λ, t ), given by

L̆(λ, t ) =
[

−αL(t ) − αR(t ) βL(t )eλ + βR(t )

αL(t )e−λ + αR(t ) −βL(t ) − βR(t )

]
. (2)

FIG. 1. (a) Schematic diagram of two squeezed harmonic baths
interacting with a bosonic site with two Fock states (|0〉 and |1〉). The
temperatures of the two squeezed baths are time dependent via an
amplitude-modulated phase-different driving protocol as per Eq. (5)
and (b) represents a circle in the parameter space of T� and Tr with
T o

� = 3, T o
r = 2.5. Squeezing dependent (c) dynamic (d) geometric

cumulant generating function with squeezing parameters (x�, xr) =
(0,0), (0.7,0), (0,0.7), and (π, π ) for (c) outermost to innermost
curves and (d) in order of decreasing magnitude. The other parame-
ters are fixed throughout the paper at ωo = 1, γ� = γr = 1, 
 = 150,
Ao = 0.1, φ = π/4 in natural unit system (h̄ → 1, kB → 1).

It is a standard practice to ignore the Lamb shifts terms so that
the quantum mechanical rates of boson exchange between the
system and reservoirs can be recast as:

αν (t ) = γν

{
cosh (2xν )

(
nν (t ) + 1

2

)
+ 1

2

}
, (3)

βν (t ) = γν

{
cosh (2xν )

(
nν (t ) + 1

2

)
− 1

2

}
. (4)

γν, ν = �, r represents the coupling of the bare site and the νth
reservoir with nν = (eh̄ωo/Tν (t ) − 1)−1 being the Bose-Einstein
distribution of the νth bath. xν > 0 is the renormalized param-
eter responsible for squeezing the νth harmonic bath within
the Markovian regime [48] (see the Appendix). Within this
approximation, the squeezing properties get symmetrically
distributed about the concerned left or right squeezed bath’s
frequency [49]. The parametric modulation is present in the
reservoirs’ temperatures, Tν (t ), which we take to be of the
following form,

T�(t ) := T o
� + Ao cos(
t + φ), (5)

Tr (t ) := T o
r + Ao sin(
t + φ), (6)

Ao, 
, and φ are the amplitude, frequency, and phase differ-
ence between the driving protocols, respectively. Note that
this theory is valid under the adiabatic evolution assump-
tion, where the individual decay timescales of the system and
reservoirs are well separated, i.e., tB � ts � td , where td , tB,
and ts correspond to driving, bath, and system correlation
times, respectively (see the Appendix). Bosonic baths have
been realized recently in an 87Rb cold atomic heat engine

054122-2



GEOMETRIC PHASELIKE EFFECTS OF DRIVEN … PHYSICAL REVIEW E 109, 054122 (2024)

through probe and coupling lasers using principles from elec-
tromagnetically induced transparency [50]. By driving the
Rabi frequencies of such probe and coupling lasers through
an appropriately constructed time-dependent protocol one
can, in principle, perhaps achieve leverage over the reservoir
temperature modulations. A schematic representation of the
temperature driving that leads to a circle is shown in Fig. 1(b).

In the steady state, when λ = 0, a zero eigenvalue ζo(t ) is
obtained from the right-hand side (RHS) of Eq. (2). From this
zero eigenvalue, a cumulant generating function, S(λ) within
the domain λ ∈ {−∞,∞}, can be constructed, which allows
evaluation of the nth-order cumulants, j (n) = ∂λS(λ)|λ=0 [41].
In the presence of phase-different driving protocol, S(λ) is
known to be additively separable into two components, one
dynamic [Sd (λ)], and a geometric term Sg(λ), which are both
cumulant generating functions: dynamic cumulant generating
functions and the other is geometric cumulant generating
functions, respectively. The geometric term or or geometric
cumulant generating function, Sg(λ) essentially is the source
of geometricity in such driven dynamics and is obtainable
from the left eigenvector (〈Lo(λ, t )|) and the right eigenvector
(|Ro(λ, t )〉) of the RHS of Eq. (1) for the eigenvalue ζo(λ, t ).
It is nonexistent if the two parameters [Eq. (5)] are driven
without any phase difference, i.e., φ = 0 [17]. Both Sd (λ)
and Sg(λ) as a function of the counting field is depicted in
Figs. 1(c), 1(d) for different values of squeezing parameters x�

and xr . As the reservoirs’ squeezing is increased, the dynamic
cumulant generating function also gets squeezed making it a
sharper convex downward function [see the innermost curve
in Fig. 1(c), where x� = xr = π ]. This behavior is not different
than what was earlier observed for the nondriven scenario
[51]. For the geometric cumulant generating function, Sg(λ),
Fig. 1(d), an increased squeezing starts to reduce the ampli-
tude of the function finally making it zero at high values (see
the flat line where x� = xr = π ). Thus at high squeezing of
reservoirs, one will not see any geometric effects. We explore
this latter aspect in detail in later parts of the work.

Both the dynamic and geometric cumulants can be evalu-
ated as [7,7–12]

j (n)
d = ∂n

λSd (λ)λ=0 = 1

tp

∫ tp

0
∂n
λζo(λ, t )|λ=0(t )dt (7)

j (n)
g = ∂n

λSg(λ)λ=0 = 1

tp

∫ 0

tp

∂n
λ〈Lo(λ, t )|Ṙo(λ, t )〉dt |λ=0 (8)

= −∂n
λ

�
S
FT�Tr (λ)dT�dTr |λ=0 (9)

with tp = 2π/
 being the time period of the chosen ex-
ternal driving [Eq. (5)]. In Eq. (9), the integrand, FT�Tr (λ),
is known as the geometric curvature and is analogous to
the Pancharatnam-Berry curvature [7,7–12] in the T�, Tr sur-
face, S. Here, n = 1 and 2 correspond to the flux and noise,
respectively. Both the quantities depend on the squeezing
parameters, x�, xr through the modified rates in Eq. (3) and
Eq. (4). The dynamic and geometric cumulant generating
functions are shown in Figs. 1(c), 1(d) for different squeezing
parameters.

FIG. 2. (a) Behavior of the absolute dynamic flux, j (1)
d as a func-

tion of the two reservoirs’ squeezing parameters evaluated at equal
initial temperatures T o

� = T o
r = 3. The solid (dotted) lines are when

xr is fixed at 0 and 0.7 and xl is varied [xl and xr are exchanged in
Eq. (7)]. Note the antisymmetry due to exchange between x� and
xr . (b) Behavior of the scaled dynamic noise (second cumulant).
Note the equality upon exchanging the x� and xr values. Plot of
geometric scaled flux (c) and noise (d) highlighting the equality and
antisymmetry upon exchanging the squeezing parameters.

III. RESULTS AND DISCUSSION

By evaluating the eigensystem of Eq. (2), we can identify
the smallest eigenvalue ζo(λ, t ) [see the Appendix, Eq. (A14)],
from which we numerically obtain the dynamic flux and noise
using Eq. (7). The time integrals in Eq. (7) and Eq. (8) cannot
be performed analytically up to complete closure. Further,
only the curvature FT�Tr (λ) can be known analytically for the
considered system (discussed later), but the surface integral
over the curvature, Eq. (9) cannot be performed analytically
and a complete closed expression cannot be obtained. Hence
we choose to numerically evaluate all the dynamic and geo-
metric cumulants. The behavior of the two dynamic cumulants
(n = 1, 2) are shown in Figs. 2(a) and 2(b) for equal initial
temperatures. The qualitative behavior is not that different
from the undriven case apart from change in magnitude and
the saturation values are also the equal to what was ear-
lier observed for nondriven case [51]. These also retain the
symmetry (antisymmetry) of the even (odd) cumulants with
respect to the exchange of the left and right squeezing pa-
rameters under equal initial temperature (T o

� = T o
r ) setting as

well as the saturating behavior as observed earlier for undriven
case [51]. The solid lines in Fig. 2 are evaluated by keeping
xr fixed while x� is varied. The dotted lines represent the case
when x� → xr while x� is varied. This is simply because the
rates that affect the dynamic cumulants are just scaled by the
hyperbolic cosine functions [Eq. (3) and Eq. (4)] and does
not alter the overall mathematical structure of the eigenvalue
ζo(λ, t ) [Eq. (A14)]. In the figures, we also have denoted the
cumulants in absence of squeezing (xν = 0) and driving as
j (n)
o by defining a dimensionless ratio C(n)

d/g := j (n)
d/g/ j (n)

o . When

|C(n)
d/g| > (<)1, the squeezing increases (decreases) the value
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of the cumulant in comparison to the unsqueezed and undriven
case.

On substituting the left and right eigenvectors of L̆(λ, t ) in
the geometricity term 〈L(λ, t )|Ṙ(λ, t )〉 of Eq. (8) we can iden-
tify the geometric flux and geometric noise. The geometric
flux is given by,

j (1)
g = − 


2π

∫ tp

0

2� cosh(2x�) cosh(2xr )

(γ�X +
� + γrX +

r )3
dt (10)

and shown in Fig. 2(c). Note that the geometric flux decays
to zero at higher values of the squeezing parameter. The
geometric noise is given by

j (2)
g = − 


2π

∫ tp

0

12�2 cosh(2x�) cosh(2xr )(X +
r − X +

l )dt

(γ� + γr )(γ�X +
� + γrX +

r )5

(11)

with � = γ�γr (γ� + γr ) and X ±
ν := cosh(2xν )[2nν (t ) ± 1].

The RHS of Eq. (10) and Eq. (11) are evaluated as a function
of the squeezing parameters and the scaled function is shown
in Fig. 2(c) and Fig. 2(d), respectively. Both the geometric
cumulants are observed decaying to zero as the squeezing
parameters are increased. However, intermediate squeezing
[peak and dip region in Fig. 2(d)] amplifies the geometric
noise to a much larger extent (several orders of magnitude)
than the dynamic noise, Fig. 2(b). Further, it is also observed
that the geometric flux (odd cumulant) is symmetric with
respect to exchanging the squeezing parameters while the
second cumulant is antisymmetric, contrary to the behavior
of the dynamic cumulants. The symmetric behavior upon
exchanging x� and xr in the geometric flux is because the
denominator in the integrand inside the RHS of Eq. (10) is
symmetric with respect to exchange. The noise is antisym-
metric with respect to exchange because the numerator the
RHS of Eq. (10) imparts a negative sign upon exchanging
the squeezing parameters. It is interesting to note that both
the exchange symmetry and the antisymmetry does not hold
when the initial temperatures are different. This is shown
graphically in Figs. 3(a) and 3(b). Note that, in Eq. (11),
when X +

r = X +
� , we obtain j (2)

g = 0. This condition can be
triggered by controlling the squeezing parameters x� and xr

and can be seen as the zero line along the diagonal (x� = xr)
of the contour plot in Fig. 3(c). Under this same condition
X +

r = X +
� , the integral in Eq. (10) is, however, nonzero and

hence one observes geometric flux [Fig. 3(d)]. We conclude
that that when X +

r = X +
� , we observe geometric flux but not

the geometric noise.
We now move on to explain why the geometric effects in

the flux and fluctuations vanish at higher squeezing values
as seen in Figs. 2(c), 2(d) and Fig. 3. This is because Sg(λ)
vanishes at higher values of x�, xr , as seen in Fig. 1(d). The
geometric curvature, in the present model, can be known by
evaluating the standard known expression of the geometric
curvature [7,11,12],

FT�Tr = 〈
∂T�

Lo(λ)
∣∣∂Tr Ro(λ)

〉 − 〈
∂Tr Lo(λ)

∣∣∂T�
Ro(λ)

〉
. (12)

By substituting the left and right eigenvectors of L̆(λ, t ) (see
the Appendix) in the above expression, we obtain after some

FIG. 3. Plot highlighting absence of symmetry and antisymmetry
in the (a) geometric flux and (b) noise under unequal initial tempera-
tures upon exchanging the squeezing parameters. The solid (dotted)
lines are when xr is fixed at 0 and 0.7 and xl is varied [x� and xr are
exchanged in Eq. (7)]. Contour plots showing the vanishing (c) ge-
ometric flux and (d) noise at higher values of squeezing parameters.
Note the zero values along the diagonal.

algebra,

FT�Tr (λ) = − 2�C�Cr sin(λ)

{K + 4 f (λ)}3/2
(13)

with

Cν = h̄ωoeh̄ωo/kBTν

kBT 2
ν

(
(nν + 1/2) cosh(2xν ) − 1

2

)2

(14)

K =
∑
ν=�,r

2γν cosh(2xν )

(
nν + 1

2

)
(15)

f (λ) =
∏

ν=�,r

γν (cosh(2xν )(nν + 1/2) − 1/2)

× (eh̄ωo/kBT� (eλ − 1) + eh̄ωo/kBT� (e−λ − 1)) (16)

and is analogous to the known expression for the unsqueezed
case (xν = 0) [51]. FT�Tr (λ) is finite for the unsqueezed case
around λ = 0. At low values of λ, the sin(λ) dominates over
the denominator’s f (λ) term resulting in the typical modified
sinusoidal shape as already reported. In the present case too,
at lower values of squeezing (x�, xr ≈ 0) around λ = 0, such a
behavior is shown for Sg(λ) as shown in Fig. 1(d). As xν is in-
creased, the hyperbolic terms from the squeezing parameters
start contributing more to Eq. (13) around λ = 0 and changes
the overall geometricity. These squeezed parameters can now
be used to gain control or steer the underlying geometric
statistics.

Note that, in general, the mathematical structure of FTl Tr

in Eq. (13) is such that the numerator (denominator) has
an overall squared (cube-halved) dependence on the cosine
hyperbolic terms. This structure dictates that as one keeps
squeezing the reservoirs the denominator keeps increasing
and hence the amplitude (quantified by the coefficients) of
the sin(λ) term keeps reducing, which results in lower slope
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around λ = 0. This causes the geometric flux and subsequent
cumulants to keep reducing and finally vanishes as shown in
Fig. 1(d). We can safely conclude that squeezing the reser-
voirs reduces the geometricity of the driven system. In this
high-squeezing limit, even upon increasing the frequency of
phase-different driving, 
 	 1, the statistics of exchange is
solely governed by the dynamicity of the system, i.e., Sd (λ).
We can prove this analytically by considering the following
limiting case. Under the assumption that nν � 1/2 (low-
temperature regime), we have,

Cν |nν�1/2 ∝ cosh(2xν ) − 1 (17)

K|nν�1/2 ∝
∑

ν

cosh(2xν ) (18)

f (λ)|nν�1/2 ∝
∏
ν

[cosh(2xν ) − 1, (19)

which results in

FT�Tr |nν�1/2 ∝ sin(λ)√∑
ν

cosh3(2xν )

√∏
ν

[cosh(2xν ) − 1]

. (20)

In the above expression, taking either of the two limits, x� →
∞ or xr → ∞ results in the RHS being zero. Thus, squeezing
the reservoirs to its extremum kills the geometric curvature
or the geometricity resulting in Sg(λ) = 0. The complete con-
tour plots of the two geometric cumulants C(1)

g and C(2)
g as

a function of x� and xr are shown in Figs. 3(c) and 3(d). In
both the plots, the geometric effects vanish at higher values of
squeezing.

IV. THERMODYNAMIC UNCERTAINITY RELATIONSHIP

For an undriven case, j (n)
g = 0 (when 
 = 0 or φ = 0),

a standard thermodynamic uncertainty relationship (TUR),
reminiscent of a steady-state fluctuation theorem holds, given
by FA � 2kB [45,52] with F = j (2)/ j (1) being the Fano fac-
tor while A is the thermodynamic affinity of the system. This
TUR has been shown not to hold in the presence of geometric
effects [14].

In the present case, one can recover the standard TUR in
the high-squeezing limit of either reservoir. Under maximum
squeezing, FTl Tr (λ) = 0 kills the geometric contributions to
the system statistics. We can hence recover a Gallavoti-Cohen
symmetry,

lim
xν→∞

1

tp

∫ tp

0
ζo(λ, t )dt = lim

xν→∞
1

tp

∫ tp

0
ζo(−λ − lim

xν→∞A, t )dt,

(21)

with the current model’s thermodynamic affinity being

A = log

(∫ tp

0 X −
� X +

r dt∫ tp

0 X +
� X −

r dt

)
, (22)

where the time- and squeezing-dependent quantities X ±
ν are

defined in the text below Eq. (11). Equation (22) reduces to
the known expression 1/T� − 1/Tr in absence of driving [7]
that leads to a steady-state fluctuation theorem. The recovery

FIG. 4. (a) Behavior of the geometric correction factor, g(
) to
the TUR as a function of x� for xr = 0, 0.7 Note the singularity at
x� = 0.7, xr = 0.7 at equal temperature (derivative shaped curve).
At this value of x�, the thermodynamic force, A = 0 [slanted line
is exp(A)]. For xr = 0, there is no singularity (the curve bounded
below unity). (b) Contour of �min as a function of squeezing param-
eters. The region where it is zero is where A = 0. (c) Symmetry in
the minimum entropy upon exchanging the values of the squeezing
parameters. (d) Behavior of the minimum entropy produced as a
function of x� at unequal temperature for xr = 0, 0.7. It is zero at
x� = xr . The solid (dotted) lines are when xr is fixed at 0 and 0.7 and
xl is varied [x� and xr are exchanged in Eq. (7)].

of the symmetry hence allows us to recover the standard TUR,

lim
xν→∞A

lim
xν→∞ j (2)

d

lim
xν→∞ j (1)

d

� 2kB. (23)

In the case of finite (but not maximal) squeezing, the ge-
ometricities are still present. TUR in such a case has been
shown to get modified by including a geometric correction
factor [18],

j (2)�

( j (1) )2g(
)
� 2kB, (24)

where, g(
) is the driving-dependent geometric correction
factor and is of the form,

g(
) = 1(
1 + j (1)

g / j (1)
d

)2 . (25)

We numerically evaluate Eq. (25) and plot g(
) as a function
of x� in Fig. 4(a) where a discontinuity is observed at x� = 0.7.
This discontinuity is at that point of x�, where A = 0 (eA

is shown as a vertically slanted line) that results in j (1)
d = 0

in Eq. (25). Further, for any fixed value of j (1)
g in Eq. (24),

the RHS is greater (less) than unity when j (1)
d < (>)0 and

vice versa. We have earlier shown that, for an undriven
case, the direction of the dynamic flux j (1)

d is controllable
through the squeezing parameters due to the modification of
the thermodynamic affinity, A [51]. Thus by controlling x�, we
observe regions where g(
) > 1 and g(
) < 1 characterized
by a shift between these two regions at that value of x� where
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A = 0 as seen in Fig. 4(a). The curve below unity is evalu-
ated by maintaining positive geometric flux and A > 0 (T� =
Tr, x� = 0.7, xr = 0) so that g(ω) < 1. In a standard context
without squeezing, as in the work of Lu et al. [18] where
g(
) was introduced, the dynamic flux is solely dependent on
the temperature gradient, which controls the thermodynamic
affinity and the g(
) is a continuous function either below
unity or above unity depending on the signs of the dynamic or
geometric fluxes.

We state that the observed discontinuity in the behavior of
g(
) in Fig. 4(a) does not lead to violation of the modified
TUR, Eq. (24). Although, not highlighted in the earlier work
[18], the continuity of g(
) in Eq. (24) as a function of a
system parameter is rather limited to the sign of the ratio of
the two fluxes, j (1)

g / j (1)
d in the denominator of Eq. (25). For

positive dynamic flux (characterized by A > 0) or geometric
flux, the correction factor g(
) < 1, since the denominator
of Eq. (25) is always greater than unity. For either negative
dynamic flux (A < 1) or geometric flux, the denominator of
Eq. (25) is less than unity resulting in g(
) > 1. So whenever
there is sign change in either of the two fluxes, j (1)

d or j (1)
g ,

as a result of system parameter change (by tuning φ, x�, xr ,
etc.), g(
) changes its behavior so that the TUR, Eq. (24) gets
preserved. In Fig. 4(a), the discontinuity observed at x� = 0.7
is that point of x�, where j (1)

d changes its sign (A changes from
less than unity to greater than unity) resulting in the change of
behavior of g(
) from greater than unity to less than unity and
preserving the TUR, Eq. (24).

As long as we maintain A > 0, by properly choosing x�

and xr values, the modified TUR given by Eq. (24) always
holds within these two separate regimes of g(
). Within the
limit of adiabatic driving (with fast dephasing [7,53]), the
Liouvillian of the reduced system, Eq. (24) is completely
positive and trace preserving and obeys the detailed balance
even with squeezed reservoirs, being of the Lindblad type
[53,54]. Since the recently proposed TUR is found to be valid,
we directly use it to estimate the entropy production, albeit its
extremum value. By maintaining, A > 0, we directly estimate
the minimum entropy production, �min in the presence of
geometricities by taking the equality at the minimum value
of the entropy from Eq. (24),

�min = 2kB

(
j (1)
d + j (1)

g

)2

j (2)
d + j (2)

g

g(
). (26)

In the above equation, it is not possible to separate the
entropy rates into dynamic and geometric contributions. Al-
though when 
 	 1, j (1)

g 	 j (1)
d , the same cannot be said

for the second cumulant, which makes the denominator in
Eq. (26) to have combined dynamic and geometric contribu-
tions. Nonetheless, the modified TUR allows an easy way to
evaluate the total minimum entropy production rate. Note that
in the presence of geometricities, evaluation of entropies with
contribution from both dynamic and geometric components
is not at all straightforward [55] due to production of excess
entropies. We evaluate Eq. (26) and plot it as a function of the
left reservoir’s squeezing parameters in Figs. 4(b)–4(d). The
dependence of �min on x� is nonlinear and saturates at higher
values. In Fig. 4(b), we show a contour map of �min for a
wide range of x� and xr values. There exists a wide region

of �min around the diagonal of the contour is where A ≈ 0
that results in �min=0. This region is actually not allowed
since g(
) is strictly not defined when A = 0. One should not
substitute this zero value of the minimum entropy in Eq. (24)
and claim it as a violation of the TUR. In Fig. 4(c), we show
the existence of the exchange symmetry between x� and xr

in the entropy under equal temperature setting. In Fig. 4(d),
we show the absence of the exchange symmetry when the
temperatures are unequal.

V. CONCLUSION

We employ a full counting statistical method to derive a
tilted driven quantum master equation for a simple bosonic
site coupled to two squeezed harmonic reservoirs. The tem-
peratures of the two squeezed reservoirs are assumed to be
adiabatically driven with a phase-different driving protocol.
This allowed us to explore the combined effect of squeez-
ing parameters and the geometricities or geometric phaselike
contributions to the steady-state observables, the flux (first
cumulant), and the noise (second cumulant). The dynamic
cumulants exhibit similar qualitative behavior as a function
of squeezing parameters to that of what is already known for
an undriven scenario, albeit with modified magnitudes. The
geometric cumulants are, however, affected by the squeezing
parameters. The odd (even) geometric cumulants are found to
be antisymmetric (symmetric) with respect to exchanging the
left and right squeezing parameters when the initial thermal
gradient is maintained at zero. These also decay to zero as
we keep increasing the strength of the reservoirs’ squeezing
parameters. This is because an increased squeezing prohibits
the generation of geometricity in the cumulant generating
function. Hence, under maximum squeezing, one can re-
cover a standard steady-state fluctuation theorem, which also
leads to a standard thermodynamic uncertainty relation even
in the presence of phase-different driving protocol. Using a
recently proposed modified geometric thermodynamic uncer-
tainty principle, which is robust in the presence of squeezing,
we estimate the minimum entropy production rate at finite
values of dynamic flux. This minimum entropy production
rate cannot be separated into dynamic and geometric contribu-
tions. It exhibits a saturating behavior and is also symmetric
with respect to exchange of the left and right squeezing pa-
rameters under a zero initial thermal gradient scenario.
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APPENDIX

The Hamiltonian of the bare site interacting with two
bosonic reservoirs can be written as,

Ĥ = h̄ωob̂†b̂ +
∑

i=ν,ν∈L,R

h̄ωiâ
†
i âi + V̂ , (A1)
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with

V̂ =
∑

i,ν∈L,R

kν
i (â†

iν b̂ + âiν b̂†). (A2)

Here, h̄ωob̂†b̂ is the on-site Hamiltonian with bare frequency
ωo, while b̂†(b̂) is the bosonic creation (annihilation operator)
on the site. The second term is the reservoir Hamiltonian
with squeezed harmonic states and is a sum of two terms
that represent the left (L) and right (R) squeezed reservoirs.
The single-particle operators â†

iν (âiν ) represent the creation
(annihilation) of a boson in the ith mode from (of) the νth
bath. V̂ is the system bath coupling Hamiltonian with kν

i being
the coupling constant for the ith squeezed mode of the νth
bath to the bare site mode. The squeezed density matrix for
the νth reservoir (Ĥν being the νth reservoir Hamiltonian) is
given by

ρ̂ν = 1

Z
exp{−βν (t )ŜνĤν Ŝ†

ν}, (A3)

Ŝν =
∏

k

e
1
2 (x∗

ν â†2
kν

−H.c.), (A4)

βν (t ) = [kBTν (t )]−1 being the inverse temperature and Ŝν is
the squeezing operator on the kth mode of the νth bath, with
xν being the squeezing the νth reservoir’s squeezing param-
eter [27,48,51,56]. In accordance with standard perturbation
theory framework [7,48,51] and considering interactions upto
second order in the system-bath coupling, V̂ , the reduced
system dynamics is given by:

˙̃ρ = −trB

∫ t

o
ds[ρT (t )Ṽ (t )Ṽ (ts) − Ṽ (t )ρ̃T (t )Ṽ (ts) + H.c.],

(A5)

where ts := t − s and s = t − s. The interaction picture
is Õ(t ) = exp(iĤot )Ô exp(−iĤot ) where Ĥo contains only
the diagonal part from Eq. (A1). For any external mod-
ulations that give an extra time dependence to system
parameters, a quantum master equation can be derived un-
der some standard assumptions [9,12,17,57]. We restrict
ourselves to modulations of the temperatures of the bath,
which makes the bath density matrix time dependent. As-
suming that the initial density matrix is factorizable, we
can write ρ̃T (t ) := ρ̃t ⊗ ρB, with ρB := ρL(t ) ⊗ ρR(t ), being
the externally driven time-dependent squeezed density ma-
trices for the left and right reservoirs, respectively. ρt is
the time-dependent squeezed density matrix. Substituting the
value of the operator V̂ in Eq. (A5),the integrands can be
rewritten as,

ρ̃tρBṼ (ts)Ṽ (t ) = k2
iν (〈ã†

iν (ts)ãiν (t )〉ρ̃(b̃(ts)b̃(t ) + b̃(ts)b̃†(t ))

+ 〈ãiν (ts)ã†
iν (t )〉ρ̃(b̃(ts)b̃†(t ) + b̃†(ts)b†(t )))

(A6)

Ṽ (t )ρ̃tρBṼ (ts) = k2
iν (〈ã†

iν (t )ãiν (ts)〉(b̃(t )ρ̃b̃(ts) + b̃(t )ρ̃b̃†(t ))

+ 〈ãiν (t )ã†
iν (ts)〉(b̃(t )ρ̃b̃†(ts)

+ b̃†(t )ρ̃b†(ts))), (A7)

where 〈.〉 represents trace over the externally driven time-
dependent squeezed density matrix. On evaluating the matrix
elements of Eqs. A6) and (A7), 〈m|.|n〉, m, n = 1, 0, the terms
with conjugate system operators survive leading to only m =
n terms. The nonzero squeezed bath expectation values are
given by [48],

〈ã†
iν ãiν〉 =

(
cosh(2xiν )(nν (t ) + 1

2

)
− 1

2

)
f (t, s) (A8)

:= Nν (t ) f (t, s) (A9)

〈ãiν (t )ã†
iν〉 =

(
cosh(2xiν )(nν (t ) + 1

2
) + 1

2

)
f (t, s) (A10)

:= (1 + Nν (t )) f (t, s). (A11)

nν (t ) is the Bose function for the νth externally
driven time-dependent squeezed bath and f (t, s) =
exp(itsωiν ) exp(−itωiν ). On the assumption that only the
thermodynamic equilibrium of the bath changes with time
due to external driving, we obtain three time scales: internal
baths’ relaxation (tB), system relaxation (ts) due to coupling
with the baths, and the time scale (td ) of the external
driving. We further assume that tB � ts � td , so that the
Born approximation is valid so that modulation occurs
under the adiabatic limit. With these definitions, a standard
Born-Markov approximation (t → ∞) within the wide-band
limit coupled with the fast dephasing separated time-scale
approximations [7,12,18,53,57], we can evaluate the time
integrands in Eqs. (A6) and (A7) by substituting in Eq. (A5).
The wide band limit normalizes the squeezing parameter of
the kth mode of the νth bath, xiν to a real positive number xν

[48] and also allows us to convert the coupling terms to a real
positive constant γν . We can hence write down two adiabatic
Pauli-type master equations, with time-dependent squeezed
rates,

ρ̇11 = − (γL(1 + NL(t )) + γR(1 + NR(t )))ρ11

+ (γLNL(t ) + γRNR(t ))ρ00 (A12)

ρ̇00 = (γL(1 + NL(t )) + γR(1 + NR(t )))ρ11

− (γLNL(t ) + γRNR(t ))ρ00, (A13)

where 〈m|ρ|m〉 = ρmm represents the probability of occupa-
tion of the occupied and unoccupied Fock states. Note that
the populations and coherences are decoupled and the equa-
tions are effectively classical albeit with quantum mechanical
rates [58]. Now we can recast the above two equations in the
Liouville space and following the standard procedure of FCS
by introducing the auxiliary counting field, λ to keep track of
the net number of bosons exchanged, q (between left reser-
voir and system) [41,47], we can define the time-dependent
moment generator, Eq. (2), where the quantum mechanical
rates have been redefined to αν (t ) = γL[1 + NL(t )] and βν =
γνNν (t ). The λ-dependent zero eigenvalue of Eq. (2) is given
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by,

ζo(λ, t ) = − (γ�X +
� + γrX +

r )

+
√

(γ� + γr )2 + (γ�X −
� + γrX −

r ) f (λ) (A14)

X ±
ν = cosh(2xν )(2nν (t ) ± 1), ν = l, r (A15)

f (λ) = [γ�e−λ(1 + X +
� ) + γre2λ(X +

r )] (A16)

from which the dynamic flux and noise can be numerically
evaluated using Eq. (7). The left and the right eigenvectors of
L̆(λ, t ) are obtained as,

|R±(λ, t )〉〉 = {u±, 1} (A17)

〈〈L±(λ, t )| = 1

u+(t ) − u−(t )
{±1,∓u∓(t )}, (A18)

with

u±(t ) =
∑

ν=L,R

−[αν (t ) + βν (t )] ±
√

[αν (t ) − βν (t )]2 + 4αλ(t )βλ(t )

2αλ(t )
. (A19)

Here, αλ = αl e−λ + αr, βλ = βl eλ + βr . The + subscript in
the eigenvectors corresponds to the zero eigenvalue (the
largest eigenvalue), ζo, which we denoted in the paper as Lo

or Ro. Substituting these values in the Eqs. (7)–(9) allows
us to arrive at Eq. (10), (11), and (12) after some algebraic
simplifications.
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