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Wetting and emergence of long-range couplings in arrays of fluid cells
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Critical wetting is of crucial importance for the phase behavior of a simple fluid or Ising magnet confined
between walls that exert opposing surface fields so that one wall favors liquid (spin up), while the other favors
gas (spin down). We show that arrays of boxes filled with fluid and linked by channels with appropriately chosen
opposing walls can exhibit long-range cooperative effects on a length scale far exceeding the bulk correlation
length. We give the theoretical foundations of these long-range couplings by using a lattice gas (Ising model)
description of a system.
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I. INTRODUCTION

Correlation effects occurring over large distances are of
great interest in condensed-matter physics from both funda-
mental and practical viewpoints. In a series of experiments,
Gasparini and coworkers [1,2] observed the emergence of
long-range couplings in arrangements of bulklike regions of
near-superfluid 4He. These experiments involve planar arrays
of micrometer-sized cells etched in a Si wafer filled with near-
superfluid 4He and connected either through a supernatant
nanoscopic 4He layer or via shallow channels. Remarkably,
even though the boxes had a mesoscopic spacing, various
measurements showed clear evidence of coupling between
different boxes extending over distances much larger. than
the bulk correlation length. This cooperative phenomenon,
subsequently termed action at a distance (AAAD) by M. E.
Fisher [3], was attributed to proximity effects induced by cell
and channel size, as well as proximity to the critical point. The
authors of Ref. [1] made an interesting suggestion that AAAD
effects of this type might be a more general feature of systems
with phase transitions, both quantum (like 4He) and classical.

Intrigued by these suggestions, we presented a theoreti-
cal model of a classical system exhibiting correlation effects
which are similar to the ones observed in superfluid helium
[4,5]. This model comprises boxes—cubic or square Ising
lattices of a finite size—arranged in a two-dimensional (2D)
array and coupled together by Ising strips. We have shown
that with appropriately tuned temperature and size of array
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components, a lattice of boxes develops long-range order even
though the connecting strips are very long compared to their
lateral dimensions, as in the case of the arrangement consid-
ered by Gasparini and coauthors. We have argued that the
same applies when cubes are connected by rods. Monte Carlo
simulations confirmed these predictions and provided thermo-
dynamic data, which signal the emergence of the long-range
order. Physical realizations of our model include uniaxial
classical ferromagnets or simple fluids and binary mixtures
in the lattice gas approximation (all belonging to the Ising
model universality class of critical phenomena in contrast to
the superfluid 4He, which belongs to the universality class of
XY model).

In Refs. [4,5] we imposed free boundary conditions on
the boxes and the channels (strips or rods) connecting them.
Although free boundary conditions are natural for quantum
fluids such as 4He, because the superfluid order parameter
(the phase of the wave function) does not couple to the
cells boundaries, they are rather unusual for classical fluids.
Typically, the molecules of the fluid are attracted to the bound-
aries of a container, which causes the density of the fluid
near the boundaries to increase and leads to adsorption and
wetting phenomena [6]. In terms of a lattice-gas description
this corresponds to the presence of a (dimensionless) surface
field h1. For binary liquid mixtures one has h1 ∼ δ�μ1/kBT ,
where δ�μ1 is a local increment at the boundaries of the
chemical potential difference between the two components of
the mixture [7]. It determines which component of the binary
mixture is preferred at the boundaries. The preference for
one component of a binary liquid mixture may be so strong
as to saturate the boundary of container with the preferred
component, which corresponds to h1 = +∞(−∞). If neither
component is preferred, then we have h1 = 0. At this point,
it is natural to ask how sensitive the AAAD phenomenon is
to modifications of boundary conditions to take surface fields
into account. For free boundary conditions, it is the state of the
connecting channel that determines the long-range coupling
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FIG. 1. Domain walls, by which we mean Peierls contours after
summing out fluctuations up to a scale of the bulk correlation length,
in a strip (a) with free boundary conditions below the critical tem-
perature Tc, (b) with opposing infinite surface fields h1 = −h2 = ∞
below Tc, and (c) with finite opposing surface fields corresponding to
weakened surface bonds below the wetting temperature Tw (h1) < Tc.

between boxes. Below the critical temperature Tc, while the
state of each large box is either magnetized positively or
negatively, the dominant spin configurations in the Ising strip
involve Peierls contours [8,9] separating regions of alternating
(+) and (−) magnetization that terminate at the edges of the
strip, as sketched in Fig. 1(a). [It is clear that closed Peierls
contours are allowed in the form of bubbles of phase (−) in the
cluster of phase (+) and vice versa.] These Peierls contours
are responsible for breaking up long-range order in the chan-
nel on the characteristic length scale, which emerges from
asymptotic spectral degeneracy in transfer matrices [10,11]
and which is much larger than the bulk correlation length. The
existence of such a characteristic length scale is intimately
related to the appearance of the long-range order in 2D ar-
rays. In the case of Ising strips or rods with all boundary
spins equal to +1, or more generally, if surface fields at
the edges have the same sign (h1h2 > 0), then there is no
asymptotic spectral degeneracy in transfer matrices [12–14]
and hence no long-range cooperative effects in 2D arrays. In
the presence of equal and opposite surface fields h1 = −h2,
such degeneracy appears in the partial wetting regime [14].
However, the mechanism of asymptotic degeneracy in this
case is quite different from the mechanism in the strip with
free edges. For strips with equal and opposite surface fields,
the boundaries are covered with the (+) or (−) phase, and
below Tc there is a single open Peierls contour separating
these two regions of opposite magnetization [15]. For infinite
surface fields h1 = −h2 = +∞, the Peierls contour, entrop-
ically repelled from both boundaries, maximizes its distance
from them by fluctuating in the middle of the strip, as depicted
in Fig. 1(b); there are no asymptotically degenerate states in
that case. However, for finite surface fields corresponding to

weakened surface bonds, there is a temperature range where
the Peierls contour runs close to the boundary, but since the
surface fields have the same strength, it switches back from
one side of the strip to the other, as shown in Fig. 1(c). This
switching occurs below the single-wall wetting temperature
Tw(h1) < Tc and is caused by asymptotic degeneracy, which
can be explained by the concept of surface states, as we will
show in this paper. The presence of asymptotically degener-
ate states in the connecting channels means that long-range
effects can be expected in systems of boxes connected by
strips with appropriately selected equal and opposite surface
fields. This would open an intriguing possibility of tunability
not only for uniaxial classical ferromagnets but also for fluid
systems and could be used, e.g., in as a microfabricated device
in soft-matter and biophysics experiments.

Here we explore this possibility by using a mesoscopic
description, which is in the spirit of Fisher-Privman theory
of finite-size effects at first-order transitions [16] and which
gives a simple physical picture of a typical spin configuration
in a channel below the wetting temperature. By applying this
description we reduce the problem to a “network” planar Ising
model that focuses on the state of the cubes. For large-enough
cubes, the state of each cube is characterized by +1 and
−1 magnetization. These “boxes” are coupled by channels
in which the internal degrees of freedom have been summed
out, producing an Ising superlattice of nodes with the effec-
tive coupling that are temperature dependent. In the case of
2D channels, we extend our mesoscopic description utilizing
exact results for the full Ising strip. This allows us to make a
quantitative prediction of the temperature range and the size
of the connecting strips for which the “network” develops
long-range order.

The paper is organized as follows. First, we show that in
Ising strips with “wetting boundaries,” i.e., with finite op-
posing surface fields h1 = −h2 corresponding to weakened
surface bonds, a characteristic divergent length scale ξ‖ de-
velops below the wetting temperature Tw(h1). This can be
inferred, e.g., from the decay of the spin-spin correlation func-
tion. In Sec. II we demonstrate that the spin-spin correlation
function can be obtained from coarse-grained description if
one takes into account that in a partial wetting regime a typical
spin configuration is one with domain walls inclined at the
contact angle � to the edge of the strip [see Fig. 1(c)] [17]. We
derive the contact angle � and the statistical weight of such
an inclined domain wall in an independent exact calculation
in the Ising strip with surface fields (Appendices A and D). In
addition to the contribution due to the angle-dependent surface
tension, this statistical (Boltzmann) weight includes a term
due to point tension τp [18]; the latter is the 2D equivalent of
line tension in 3D [6]. We show that τp diverges logarithmi-
cally on approaching the wetting. In Sec. III we construct the
“network” planar Ising model and find the range of parameters
for which it develops long-range order. For comparison with
the coarse-grained theory presented in Sec. II, in Sec. IV we
calculate the spin-spin correlation function for Ising strips
with surface fields exactly using the transfer matrix method. In
particular, we demonstrate how for wetting boundaries below
Tw(h1) the ferromagnetic order is attained over distances of
the order of characteristic length scale ξ‖ that diverges ex-
ponentially with the cross section of the channels. We show
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that ξ‖ emerges as the inverse mass gap between two asymp-
totically degenerate modes in the spectrum of the transfer
matrix. Our approach allows us to treat the case of opposite
surface fields (h1h2 < 0) in contrast to the technique used
by Au-Yang and Fisher [19] which is only applicable to
the case of h1h2 > 0. Moreover, we construct surface states
corresponding to two phases pseudocoexisting in the partial
wetting regime T < Tw(h1). Note that for bulk 2D systems
there can be no true phase transition in the strip geometry.
However, there is still a line of sharp (very weakly rounded)
first-order phase transitions ending in the pseudocritical point
[16,20]. Our conclusions are summarized in Sec. V.

II. STRIPS WITH OPPOSING SURFACE FIELDS:
MESOSCOPIC DESCRIPTION

We start by considering the phase behavior of connecting
channels with surface fields at the boundaries. For a 2D Ising
strip with wetting boundaries h1 = −h2, at low temperatures
one finds pseudocoexistence at zero bulk field, where large do-
mains of the “bulk” phases are formed [21–24]. In this respect,
the asymmetric strip behaves in the same fashion as the strip
with free boundaries h1 = −h2 = 0. At higher temperatures
the influence of wetting manifests itself. For the semi-infinite
square Ising model with a surface field h1 Abraham’s [25]
exact solution shows that for a range of h1 there is a critical
wetting transition at a strictly subcritical temperature given by
w = 1 with

w = e2K1 (cosh 2K2 − cosh 2h1)/ sinh 2K2, (1)

and 0 < h1 < K2; K1 = βJ1 and K2 = βJ2 are the coupling
constants of interactions along bonds perpendicular and par-
allel to the surface, respectively. In the region w > 1, the
interface is found on average at a finite distance from the wall,
i.e., it is pinned. Above the transition, the interface depins
to a fluctuating regime. In considering asymmetric strips it
means that by choosing h1 one can tune the temperature region
of pseudocoexistence, where large domains exhibiting thin
“wetting” films exist. For example, if h1 is weak, then pseu-
docoexistence occurs almost all way up to the bulk critical
temperature Tc. The same scenario should apply to the cubic
Ising model in slab and rod geometry [20,26–28].

On the scale of bulk correlation length, a typical configura-
tion at pseudocoexistence is one with regions of alternating
(+) and (−) magnetization, with a magnitude roughly the
spontaneous magnetization, separated by domain walls. Un-
like a strip with free boundaries, where domain walls run
perpendicular to the edges to minimize an energetic penalty
proportional to their length, in a strip with surface fields they
are inclined at the contact angle �(h1, T ) as shown in Fig. 2.
The exact expression for the contact angle is [17]

tan � = w2 − 1

[(A − w)(B − w)(w − A−1)(w − B−1)]1/2
. (2)

Figure 3 shows � as function of the variables h1 and T . The
derivation of �(h1, T ) is carried out in Appendix A, and there
the meaning of the notation for A and B is explained.

As first pointed out by Parry and Evans [23,24], the
characteristic length ξ‖ of successive domains of (+) and
(−) magnetization in the nonwet regime should diverge

+

−

ξ‖

ΘΘ

Θ Θ

M

aσ

M cot Θ

FIG. 2. A configuration of domain walls in the channel with
wetting boundaries. Domain walls form a contact angle � with
the solid wall and ξ‖ provides a measure of their separation. The
effective picture is that of one-dimensional lattice gas of particles
with diameter σ = 1 + [M cot �].

exponentially with the width of the strip. This prediction is
consistent with exact results from the restricted solid-on-solid
model of an interface, where ξ‖ is obtained from the two
largest eigenvalues of the transfer matrix [29,30]. In Sec. IV C
we show that for 2D Ising strips the exact result for ξ‖ is

ξ‖ = (Aw − 1)(Bw − 1)

2w
√

AB(w − w−1)2 wM ; (3)

the exponential growth follows from w > 1.
The exponential divergence of ξ‖ can also be inferred in

a simple way by using a coarse-grained description based on
domain walls. To this end, we treat the collection of domain
walls for the strip geometry as a quasi-one-dimensional gas
of strictly avoiding particles on a lattice. To account for the
slope of the domain wall, we assume that the particles are not
pointlike but have a diameter σ . The domain-wall projection
onto the edge of the strip is equal to M cot � as shown in

89◦
85◦

75◦
60◦ 45◦ 30◦ 15◦ 0◦

FIG. 3. The contact angle � as function of the rescaled field
a = |h1|/K2 and temperature T ; the solid black lines indicate the
contour lines of constant contact angle �. The locus with � = 0
corresponds to the wetted phase boundary where w(h1, T ) = 1. The
contact angle tends to π/2 for any subcritical temperature provided
the surface field tends to zero; therefore for free boundaries �(h1 =
0, T ) = π/2, and domain walls are perpendicular to the strip edges.
In this figure K1 = K2.
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Fig. 2. On a lattice with the lattice constant a = 1 we set σ =
[M cot �] + 1, where the symbol [x] denotes the integer part
of x, i.e., x is the greatest integer less than or equal to x. If the
surface fields vanish, then σ = a so the domain wall becomes
a pointlike particle, which is the case we studied in Refs. [4,5].

The equilibrium statistical mechanics of this system can be
determined within the grand-canonical ensemble. If ζ̃ is the
fugacity corresponding to the Boltzmann weight associated
with an isolated domain wall, then the grand partition function
for a strip of length L is

�rods (̃ζ , L, σ ) =
[L/σ ]∑
j=0

(
L − jσ + j

j

)
ζ̃ j, (4)

where [L/σ ] is the maximum number of particles that can be
allocated on the strip of length L. The binomial coefficient
counts all possible arrangements of j indistinguishable hard
rods of length σ on a lattice of length L. The rods are hard in
the sense that they can touch but not overlap. For free bound-
ary conditions the diameter becomes a lattice unit, and then
the combinatorial factor in Eq. (4) reduces to the binomial(L

j

)
[31].

For any σ � 2 and for arbitrary ζ̃ the grand partition func-
tion can be expressed in terms of generalized hypergeometric
functions. Since the distance between the domain walls is
large, we can approximate the grand partition function �rods

by reducing the problem of hard rods on a lattice to the one of
point particles on a coarse lattice with a lattice constant of σ .
In fact, the problem is reduced to the study of the diluted limit
of a hard rod gas. (For a formal details of this approximation
as well as the connection to the continuum version of the
model known as the Tonks-Rayleigh hard rod gas [32,33], see
Appendix B.) This approximation gives

�rods (̃ζ , L, σ ) ≈
�∑

j=0

(
�

j

)
σ j ζ̃ j = (1 + ζ̂ )�, (5)

where ζ̂ = σ ζ̃ and � = L/σ .
Within this simple physical picture, the calculation of the

pair correlation function G(x) for a separation x = σn is
straightforward. If a pair of spins is parallel (antiparallel), then
they are separated by an even (odd) number of domain walls.
Denoting by �e(x) and �o(x) the grand partition function with
an even and odd number of particles, respectively, we find

G(x) ∝ �e(x) − �o(x)

�e(x) + �o(x)
= (1 − ζ̂ )n

(1 + ζ̂ )n
. (6)

The proportionality factor is not obtainable within this ap-
proach since on the mesoscopic scale, the local magnetization
at the correlated sites is not ±1. For ζ̂ � 1, the expression for
G(x) can be simplified giving a purely exponential decay,

G(x) ∼ G0 exp{−2xζ̃ [1 + O(̃ζ 2)]}. (7)

From the above expression it follows that the emerging paral-
lel correlation length is

ξ‖ = 1/(2̃ζ ). (8)

This is consistent with Landau’s argument about the lack of
long-range order in a one-dimensional system with short-
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FIG. 4. The point tension τp as function of temperature T for
various surface fields (as shown in the inset). The rightmost curve
(black) corresponds to the free edges a = 0. The point tension di-
verges logarithmically at the wetting temperature Tw (h1). In this
figure, K1 = K2.

range interactions [34]. The statistical weight of a domain
wall is taken a priori to be ζ̃ = exp[−F (�)], where F (�) is
the energy cost associated with the insertion of a domain wall
into the strip with opposing surface fields. This energy cost is
proportional to M; hence, the mesoscopic description predicts
that the decay length of the correlation function G(x) diverges
exponentially with M. In Appendices A and D we argue
that F (�) = Mv0 with Mv0 = M csc �τ (�) − M cot � f0,
where τ (�) is the angle-dependent surface tension [35,36]
for an inclined interface forming a tilt angle � with the wall
and f0 is the surface free energy of a flat interface pinned to
the wall.

We now compare this prediction with the results of ex-
act calculations for the full Ising strip, which we present in
Sec. IV. We find agreement in the asymptotic behavior of G(x)
provided ζ̃ = exp(−Mv0) is replaced by

ζ (T, h1, M ) = w
√

AB(w − w−1)2

(Aw − 1)(Bw − 1)
e−Mv0 . (9)

The prefactor in Eq. (9) is due to the point tension τp (a 2D
analog of the line tension) [18] arising at the points where
flat portions of the domain wall meet the inclined one. We
calculate this prefactor exactly in Appendix D. The point
tension τp as a function of temperature for different values
of the surface field is shown in Fig. 4.

Finally, comparing with Eq. (3) we find

ζ (T, h1, M ) = e−2τpe−Mv0 = ξ−1
‖ /2, (10)

where ξ‖ is given by Eq. (48). Thus, the result from the coarse-
grained model [Eq. (8)] is formally identical to the exact one
provided the fugacity ζ̃ is identified with the exact fugacity
ζ (T, h1, M ) containing the point tension.

Moreover, if we consider spins at distance m from the
channel and compare Eq. (7) with the exact calculation for the
full Ising strip, then the prefactor G0 of the exponential decay
can be identified with the amplitude m̄2

m(M ) in Eq. (47).
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L0

L

M

Si = +1

Sj = −1

FIG. 5. Geometry of the two-dimensional array of cubes of size
L0 connected by channels (strips) of length L and thickness M � L.
Different colors indicate oppositely magnetized regions. In the “net-
work” Ising model the state of a bulklike box is describe by a spin
variable Si = ±1.

III. NETWORK PLANAR ISING MODEL

We now apply the mesoscopic description to a pair of cubic
lattice boxes of side L0 coupled by an Ising strip with wetting
boundaries of dimension L × M, with L0 	 M as shown in
Fig. 5. For T < Tw, the picture which emerges is one with a
sequence of inclined domain walls crossing the strip but none
inside the boxes. The domain walls intersecting the boxes are
of size ∼Ld−1

0 and are therefore suppressed due to the much
higher cost of free energy. Because boxes are large, we expect
that below the wetting temperature Tw(d = 2), which is lower
than the critical temperature Tc(d = 2), which in turn is lower
than Tc(d = 3), the state of each box is either magnetized up
or down. Within our coarse-grained description, we can assign
a variable S j = ±1 for each box as illustrated in Fig. 5 and
calculate a strip-mediated effective interaction energy KeffSiS j

for a given argument of the S j . This can be done by noticing
that if spins on neighboring boxes i and j are parallel, that is,
SiS j = 1, then there must be an even number of domain walls
on the connecting strip which has length L. On the other hand,
if SiS j = −1, then the location of the spins is separated by an
odd number of domain walls. As follows from the previous
section, the grand partition function with an even number of
particles, denoted �e(�) for a lattice of length L = σ�, is just

�e(�) =
�∑

m=0,even

(
�

m

)
ζ̂ m = 2−1{(1 + ζ̂ )� + (1 − ζ̂ )�}. (11)

The analogous result for an odd number of particles is

�o(�) =
�∑

m=0,odd

(
�

m

)
ζ̂ m = 2−1{(1 + ζ̂ )� − (1 − ζ̂ )�}. (12)

Thus the weight of a strip for given spin variables Si, S j can
be written in an Ising form

B(Si, S j ) = �
(1+SiS j )/2
e �

(1−SiS j )/2
o = AeKeffSiS j , (13)

where A2 = �e(�)�o(�) and the coupling Keff is given by
e2Keff = �e(�)/�o(�). The equation for the coupling Keff can

be rewritten as:

� ln[(1 + ζ̂ )/(1 − ζ̂ )] = ln coth Keff. (14)

We stress here that the temperature evidently does not enter
in the usual Boltzmann way in Keff, which has interesting
physical consequences, as will be shown in the following.

Having constructed effective bonds, we can now assemble
them and boxes to make up a two-dimensional “network“ lat-
tice as illustrated in Fig. 5. The long-range order will appear in
this network if the parameters can be tuned such that Keff satis-
fies Keff > Kc(d = 2) = (1/2) ln(1 + √

2) ≈ 0.440687 [37].
Thus, if the geometrical parameters L, M, and the intensive
thermodynamic variables h1 and T satisfy the following in-
equality:

� ln[(1 + ζ̂ )/(1 − ζ̂ )] < ln(1 +
√

2), (15)

then the network lattice is ferromagnetically ordered. Given
any integer-valued M of the width of the connecting strip,
the surface field h1 and temperature T < Tw(h1), it is always
possible to choose a critical integer-valued �c for which left-
and right-hand sides of Eq. (15) are equal. Because ζ̂ is small
away from the wetting temperature (w = 1), we can write

Lc

ξ‖
= ln(1 +

√
2), (16)

which implies that Lc diverges exponentially with M. The
phase diagram of the two-dimensional “network” lattice
shown in Fig. 6 for two values of the surface fields corre-
sponding to Tw = 2.2571 (|h1|/K2 = 0.1) and Tw = 1.40966
(|h1|/K2 = 0.8). Notice that for temperatures T/Tw � 0.8, the
bulk correlation length does not exceeds ξb ≈ 2, while already
at M = 12 and T/Tw = 0.8 the critical length is Lc ≈ 400 for
|h1|/K2 = 0.1 and Lc ≈ 4050 for |h1|/K2 = 0.8.

Equation (16), which determines the phase boundary be-
tween order and disorder phase of array of boxes in a
parameter space spanned by temperature and size of connect-
ing strip is the central result of this paper.

IV. STRIPS WITH OPPOSING SURFACE FIELDS:
EXACT RESULTS

In this section we determined the length ξ‖ from the de-
cay of the correlation function GM (m, n) of two spins in the
mth row separated by n columns (see Fig. 7). We calculate
GM (m, n) exactly using the transfer matrix method. In the limit
of L → ∞ and for finite M, the leading asymptotic decay
of GM (m, n) for n 	 M is given by (2/1)n = exp(−n/ξ‖)
(see, e.g., Ref. [38]), where 1 and 2 are the two largest
eigenvalues of the transfer matrix. The analysis of the spec-
trum of the transfer matrix presented in Sec. IV B shows that
below the wetting temperature these two eigenvalues corre-
spond to the imaginary wave numbers k1 = iv1 and k2 = iv2,
which are asymptotically degenerate. Thus the parallel corre-
lation length is determined by the inverse mass gap between
two asymptotically degenerate imaginary modes,

ξ−1
‖ = γ (iv2) − γ (iv1). (17)

The Onsager function [37] γ (ivk ), k = 1, 2 is cal-
culated from cosh γ (ivk ) = cosh 2K�

1 cosh 2K2 −
sinh 2K�

1 sinh 2K2 cosh vk , where exp(−2K�
k ) = tanh Kk .
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FIG. 6. The critical value of the length of connecting strips Lc of
the two-dimensional “network” lattice shown in Fig. 5 as a function
of the width of the strip M and temperature T for two values of
the reduced surface field (a) h1/K2 = 0.1 corresponding to Tw =
2.2571 and (b) h1/K2 = 0.8 corresponding to Tw = 1.40966. The
network is ordered in the gray region lying below the critical surface
Lc(M, T, h1).

The microscopic analysis of the two creation operators for the
two imaginary wave-number modes (see Sec. IV D for details)
enables us to write down states which locate the interface near
either one edge or near the other. Thus these states, which
are “not quite” eigenvectors of the transfer matrix in the
diagonalization, correspond to two phases pseudocoexisting
in the partial wetting regime. We now specify the model more
precisely.

h1

h2

1
0

M

M + 1

direction of the transfer matrix

K1

K2

+ + ++ + + ++ ++ + ++ +

+ + ++ + + ++ ++ + ++ +

FIG. 7. Ising model on a rectangular lattice (strip) with surface
fields h1 and h2 as described in the text. The ghost rows with labels
m = 0 and m = M + 1 are indicated in red.

A. Ising model and transfer matrix

We consider a planar Ising ferromagnet in strip geometry
with a zero magnetic field. We introduce lines of weakened
bonds |h1|, |h2| < K2 normal to and contiguous with the sur-
faces as shown in Fig. 7. We set σn,0 = σn,M+1 = +1 and
allow h1 and h2 to take both signs. In the following, we
only consider the perfectly antisymmetric cases h1 = −h2.
We construct transfer matrix working in (1,0) direction, i.e.,
parallel to the edges. The column to column (see Fig. 7)
transfer operator is given by:

V1 = (2 sinh 2K1)M/2 exp

[
− K�

1

M∑
m=1

σ z
m

]
, (18)

where tanh K1 = e−2K�
1 . The intrarow couplings along the

surface rows m = 0 and m = M + 1 is K0 → ∞. The dual
coupling K�

0 → 0, and therefore the indexes m = 0 and m =
M + 1 do not report in (18). Here σ i

m, i = x, y, z are spin oper-
ators1 with ordered direction taken as x, i.e., the magnetization
is given by the average of σ x

m [39]. The transfer matrix V2

which accounts for the interactions within columns is of the
diagonal form

V2 = exp

[
h1σ

x
0 σ x

1 + K2

∑M−1

m=1
σ x

mσ x
m+1 + h2σ

x
Mσ x

M+1

]
.

(21)

As noted by Kaufman [40], in order to diagonalize the sym-
metrized forms of the transfer operators it is essential to
introduce the Jordan-Wigner transformation and the lattice
spinors �m defined by

�2m−1 = Pm−1σ
x
m ,

�2m = Pm−1σ
y
m , for m = 1, . . . , M + 1, (22)

supplemented with �−1 = σ x
0 and �0 = σ

y
0 , and where

Pm =
m∏

j=0

(−σ z
j

)
, (23)

is the “fermionic tail.” The spinors we just introduced are
self-adjoint operators with square equal to unity, and they
anticommute with each other and fulfill the Clifford algebra,

[�m, �n]+ = 2δm,n. (24)

The spinors are related to the fermionic operators X (k), k =
1, . . . , M by

X (k) = 1

2
N (k)

2M+1∑
m=0

ym(k)�m, (25)

1The operator σα
m acts on the tensor product of the two-dimensional

Hilbert spaces of each lattice site in a column

σα
m =

⊗m−1

j=1
1
⊗

σα
⊗M

j=m+1
1, (19)

where σα, α = x, y, z are Pauli matrices. In particular σα
m fulfills the

on-site anticommutation relation

[σα
m , σ β

m ]+ = 2δαβ, (20)

while for n �= m, [σα
m , σ β

n ]− = 0.
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where the normalization factor N (k) ensures the canonical
anticommutation relation, i.e., [X (k1), X †(k2)]+ = δk1,k2 . The
functions ym(k) have to be determined such that in terms of
X (k) and X †(k) the transfer operator V = V1/2

2 V1V1/2
2 admits

the diagonal form

V = exp

[
−

∑
k∈�M

γ (k)
(
X †(k)X (k) − 1/2

)]
, (26)

where γ (k) is the non-negative solution of

cosh γ (k) = cosh 2K�
1 cosh 2K2 − sinh 2K�

1 sinh 2K2 cos k,

(27)
for real k. Note that operators associated with �−1 and
�2(M+1), X0 = (1/2)[�−1 + i�2(M+1)] and its conjugate, do
not appear in (26). They are zero-energy operators, which
implies that each eigenvalue is doubly degenerate. We denote
the vacuum2 for the operators X (k) and X0, which is also
the maximal eigenvector with eigenvalue 0, by |�∞ 〉. The
vacuum |�∞ 〉 includes all four possible cases in which the
spins in a given edge are parallel. The spectrum for the edge
state corresponding to h1 < 0 and h2 > 0 is constructed with
the use of appropriate projectors [14,35]

X †((k)2n+1)| + +〉, (28)

where the notation in the above is

X †((k)n) = X †(k1) · · · X †(kn), (29)

and

| + +〉 = 2−1/2(1 + X †
0 )|�∞ 〉, (30)

is the normalized state with plus boundary spins. For the
case of h1 > 0 and h2 < 0, the spectrum is constructed by
replacing | + +〉 in Eq. (30) by the state | − −〉 = 2−1/2(1 −
X †

0 )|�∞ 〉. The sum appearing in (26) is restricted to wave
numbers k compatible with the boundary conditions on the
edges of the strip. This generates the following discretization
condition [14]:

eiMk = seiδ(k) = seiδ′(k) weik − 1

eik − w
, (31)

whose solutions define the set �M . The parity number s =
±1 encodes reflection behavior of the eigenvectors, δ′(k) is
the angle introduced by Onsager (see Appendix C), and w

is the wetting parameter [Eq. (1)]. For the V symmetrization
we have

y2m+1(k) = −e−iδ∗
eimk + eiδe−imk ,

y2m(k) = i(−eimk + eiδe−iδ∗
e−imk ) ,

m = 1, . . . , M − 1, (32)

with the boundary values

y0(k) = i

√
B

B − w
(−1 + eiδe−iδ∗

)

y1(k) =
√

A

A − w
(−e−iδ∗ + eiδ ),

(33)

2The vacuum |�∞ 〉 = X0|� 〉, where |� 〉 is a vacuum determined
by X (k)|� 〉 = 0 for all k ∈ �M .

where A = exp[2(K1 + K�
2 )] and B = exp[2(K1 − K�

2 )]. The
quantities y2M (k) and y2M+1(k) are obtained by using the
reflection symmetry:

y2(M+1−m) = −is y2m−1 ,

y2(M−m)+1 = is y2m. (34)

B. Asymptotic degeneracy

In order to proceed it is crucial to discuss the allowed mo-
menta k for subcritical temperatures K2 > K�

1 . We restrict k to
the range [0, π ]. At Tw(h1) there is a special solution at k = 0
with nonzero eigenvector and the corresponding eigenvalue
0 exp[γ (0)]. For all other temperatures the values k = 0 and
k = π give trivial eigenvectors. In the partially wet regime
T < Tw(h1) there are M − 2 real solutions between 0 and π .
Two solution of the discretization condition (31) are found at
imaginary values k1 = iv1 and k2 = iv2 [14]:

v1 � v0 − A(T, h1)w−M , (s = +1)

v2 � v0 + A(T, h1)w−M , (s = −1),
(35)

with v0 = ln w and

A(T, h1) =
(

A − w

Aw − 1

B − w

Bw − 1

)1/2

(w − w−1). (36)

The symbol � in Eq. (35) denotes the omission of subdom-
inant terms of order w−2M . Note that below bulk criticality
(B > 1) and within the wetting regime (w > 1) each factor in
(36) is strictly positive since A > B > w > 1. The imaginary
modes give rise to two asymptotically degenerate eigenvectors
given by

X †(iv1)| + +〉 and X †(iv2)| + + 〉, (37)

with eigenvalues

1 = 0e−γ (iv1 ) and 2 = 0e−γ (iv2 ). (38)

Because γ (iv1) < γ (iv2) < γ (0), whereas γ (k) correspond-
ing to the real k are all larger then γ (0), these two
asymptotically degenerate eigenvectors are the lowest excita-
tion states. The asymptotic degeneracy of the transfer matrix
spectrum disappears at temperature ∼Tw(h1) − C(h1)/M. For
T > Tw(h1) all momenta k are real.

C. Diverging length scale

Let us consider the pair-correlation function GM (m, n) =
〈σm,lσm,l+n〉 − 〈σm,l〉〈σm,l+n〉 of two spins in the mth row sep-
arated by n columns (see Fig. 7). Using the transfer matrix we
can write

CM (m, n) = 〈σm,lσm,l+n〉 = Tr
(
VL−n

σ x
mVn

σ x
m

)
Tr(VL )

, (39)

where we have imposed periodic boundary conditions in the
strip axial direction. For the edge state corresponding to h1 <

0 and h2 = −h1, Eq. (39) reduces in the limit of L → ∞ to

CM (m, n)

= 〈+ + |X (iv1)σ x
m(V/max)nσ x

mX †(iv1)| + +〉, (40)
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where max = 0 exp[−γ (iv1)]. By applying the spectral de-
composition to V we find that the lowest-order contributions
to CM (n) come from the one-particle states, i.e., from∑

k∈�M

n
kX †(k)

(|�∞〉〈�∞| + X †
0 |�∞〉〈�∞|X0

)
X (k), (41)

where k = 0 exp[−γ (k)] is the eigenvalue of X †(k)|�∞〉
as well as of X †(k)X †

0 |�∞〉. Therefore we have

CM (m, n) �
∑

k∈�M

|〈 + + |X (iv1)σ x
mX †(k)| + +〉|2

× e−n(γ (k)−γ (iv1 )). (42)

The spectral sum can be split into a sum over the states
with imaginary wave numbers and a remainder stemming
from the real wave numbers. This generates three different
types of contributions. The wave number k1 = iv1 gives a
n-independent contribution

m2
m(M ) = |〈+ + |X (iv1)σ x

mX †(iv1)| + + 〉|2, (43)

which is the formula for the square of magnetization
mm(M ) = 〈σ (m, l )〉 at the row m of the strip [14]. From the
wave number k2 = iv2 we have a n-dependent contribution,

|〈 + + |X (iv1)σ x
mX †(iv2)| + + 〉|2e−n[γ (iv2 )−γ (iv1 )], (44)

whereas the real wave numbers generate terms which are
proportional to

exp{−n[γ (k) − γ (iv1)]}. (45)

By virtue of the inequality γ (k) > γ (iv2) > γ (iv1), provided
k is real the terms of the form (45) decay on a shorter length
scale compared to (44), and therefore they yield sublead-
ing corrections beyond the leading decay given by Eq. (44).
Because in the partial wetting regime (below the wetting tem-
perature)

min
k∈�M

[γ (k) − γ (iv1)] > γ (iv2) − γ (iv1), (46)

for n → ∞ we can write

GM (m, n) = CM (m, n) − m2
m(M ) � m̄2

m(M )e−n/ξ‖ , (47)

where � stands for the omission of subleading terms due to
real wave numbers and m̄m(M ) = |〈+ + |X (iv1)σ x

mX †(iv2)| +
+〉|. Although the factor m̄m(M ) depends on the distance from
the edges, the decay of the correlation function is always
exponential. Then, for largely separated spins, the connected
correlation function tends to zero, as it should. As follows
from Eqs. (27) and (35) [see also Eq. (D9)], the length scale
ξ‖, on which long-range order is ultimately lost, diverges
exponentially fast as M → ∞ [14],

ξ‖ = (Aw − 1)(Bw − 1)

2w
√

AB(w − w−1)2 wM, (48)

with w = ev0 . In Appendix E we calculate the edge magne-
tizations m1(M ) and m̄1(M ) entering the expression of the
spin-spin correlation function for spins placed on the edge. We
find m1(M ) = −me + O(w−M ) + O(M−3/2e−2Mγ̂ (0)), where
me is the surface magnetization in the semiinfinite system with

FIG. 8. Even and odd combinations of eigenvectors of the trans-
fer matrix V. In this figure, K1 = K2, the temperature is T = 2 and
the surface field is h1 = 0.3, corresponding to w = 1.1513.

a positive surface field (result for me was also obtained using
the Pfaffian method [41,42]):

me � w − w−1√
(w − A−1)(w − B−1)

+
[

AB

(A − w)(B − w)

]1/2 ∫ π

−π

dk

2π
[cos δ∗(k) − cos δ(k)],

(49)

and

m̄1(M ) = w − w−1√
(w − A−1)(w − B−1)

+ O(w−M ). (50)

D. Surface states

We note that the sums and differences of eigen-
vectors E±

m = iy2m(iv1) ± iy2m(iv2) and O±
m = y2m+1(iv1) ±

y2m+1(iv2), respectively with + and –, decay exponentially
from one or the other edge of the strip. In particular, the
sums E+

m and O+
m decay exponentially from the bottom edge at

m = 0, whereas the differences exhibit an exponential decay
from the top boundary m = M + 1; see Fig. 8. This can be
seen as follows. By using the discretization equation, (32)
becomes

y2m+1(iv) = −eiδ∗(iv)e−mv + se−(M−m)v. (51)

The above clearly displays a linear combination of exponen-
tially evanescent terms fading out from the two edges. By
using (51), the combination O+

m becomes

O+
m = y2m+1(iv1) + y2m+1(iv2)

= [−e−iδ∗(iv1 )−mv1 − e−iδ∗(iv2 )−mv2 ]

+ [e−(M−m)v1 − e−(M−m)v2 ]. (52)

Since v1 and v2 are exponentially degenerate for large M, the
two terms in the first bracket become equal for large M, while
the terms in the second square bracket almost cancel each
other, leaving an exponentially subleading correction. There-
fore we obtain O+

m � −2 exp[−iδ∗(iv0)] exp(−mv0), which
corresponds to an interface running bound to the edge m = 0;
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−

(a)

+

(b)
FIG. 9. Depiction of a domain wall bound to the wall at m =

0 (a) and at m = M + 1 (b).

see the green squares in Fig. 8. A similar analysis can be
carried out for the remaining combinations.

This behavior suggests the construction of the following
even-odd combination for putative surface states:

|e〉 = 2−1[X †(iv1) + X †(iv2)](1 + X †
0 )|�∞ 〉,

|o〉 = 2−1[X †(iv1) − X †(iv2)](1 + X †
0 )|�∞ 〉. (53)

Note that these states are not the eigenstates of the transfer
matrix. It can be shown that as M → ∞ they have the property

〈o|σ x
1 |o〉 = −me and 〈e|σ x

M |e〉 = me. (54)

We refer to Appendix E for details of the calculations of the
edge magnetizations. We can see that if n = x/a, where a = 1
is the lattice constant, then

Vn|e〉 = 2−10e−γ (iv1 )[X †(iv1)

+ e−n/ξ‖X †(iv2)](1 + X †
0 )|�∞〉. (55)

Therefore, the system initially prepared in the state |e〉 loses
coherence over a length scale ξ‖. This feature is characteristic
of the tunneling phenomenon between the two states in which
the interface runs close to one or the other edge. Thus, |e〉
and |o〉 can be interpreted as states in which the domain wall
is bound to the one side of the strip or to the other one, as
sketched in Fig. 9. It is straightforward to show that

−n
1 〈e|Vn|e〉 = 2−1[1 + exp(−n/ξ‖)],

−n
1 〈o|Vn|e〉 = 2−1[1 − exp(−n/ξ‖)]. (56)

If n 	 ξ‖, then the elements of transition matrix tend to 1/2.
This means that the system flips between different surface
states on the length scale ξ‖. Finally, we notice an interesting
analogy between the ratio of the above matrix elements and
the ratio of grand partition functions �o/�e with an odd and
even number of particles in the mesoscopic description of the
Ising strip discussed in Sec. II. We have

〈o|Vn|e〉
〈e|Vn|e〉 = tanh

n

2ξ‖
(57)

and in the dilute limit ζ̂ = σ ζ̃ � 1

�o(x)

�e(x)
� tanh

n

ζ̃
, (58)

where x = σn. Because of the exact identity ζ = (2ξ‖)−1,
Eqs. (57) and (58) are formally equivalent provided the fu-
gacity ζ̃ = exp(−Mv0) used in the mesoscopic picture (see

Sec. II) is identified with the exact one [Eq. (10)] containing
the point tension.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied a network Ising model
constructed from a 2D array of boxes and connecting strips
with wetting boundaries. We have showed that in the par-
tial wetting regime, the parameters can be tuned to produce
long-range order. If the connecting channels are long enough,
then the ordering between boxes extends over many thou-
sands of molecular diameters. We expect the similar scenario
for surface fields that are marginally long ranged [43]. The
above phenomenon is in sharp contrast with the exponential
decay of order in a bulk system in which the decay takes
place on the scale of the bulk correlation length. It has been
shown rather recently that a classical system supports such
a type of order with free boundary conditions [5] and that
this effect is not a prerogative of inherently quantum systems.
However, the potential feasibility of free boundaries in ex-
periments with binary liquid mixtures at the walls requires
fine tuning of the interactions between the walls and the fluid
components, because in general the walls tend to be wetted
by one component more than the other. This experimental
fact motivated the present study of surface fields acting on the
boundaries. One of the most important results we obtained is
that the above mentioned long-range ordering known for free
boundaries protracts also for surface fields. Our theory, which
applies to classical lattice gases and their analogs, maybe
tested in Monte Carlo simulations [44] and in experiments.
In the context of the latter, it should be noted that the long-
range order in our system is based on the asymmetry of the
connecting channels, which may be difficult to achieve in the
case of fluids. We expect that the use of a bulk ordering field
h could compensate for the slight violation of the asymmetry
of the surface fields. However, this possibility is limited to the
extremely small range of h centered around h = 0 because, as
predicted by the Fisher-Privman theory of finite-size scaling
in first-order phase transitions [16], the correlation length ξ‖
in the strip is only exponentially in M large provided the bulk
magnetic field h is exponentially small in M. Other realistic
physical conditions that may influence the long-range order in
the network are, for example, the roughness of the channels
or the fact that their widths are not the same but subject to
a random distribution. Investigating this latter effect would
require considering a network Ising lattice model with random
bonds. Regarding the roughness effect, it is very likely that
pinning the domain wall to rough surfaces would prevent it
from switching from one side of the strip to the other and thus
destroy asymptotic degeneracy and thus long-range order.

Our paper also contains, to the best of knowledge, new
exact results regarding the Ising model in two dimensions.
We have given a microscopic analysis of surface states for
the Ising strip with opposing surface fields. Surface states
produce an asymptotic degeneracy of the transfer matrix in
a partial wetting region [10]. We calculated exactly the free
energy associated with a domain wall running at the angle
to the edges of the strip and the point tension for boundaries
subject to surface fields.
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Θ

M cot Θ
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FIG. 10. A domain wall composed of two flat pieces running
parallel to the wall and section inclined at an angle � (called wetting
angle). The optimal value of M cot � is obtained by minimizing the
excess free energy associated with such an interfacial configuration.
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APPENDIX A: CONTACT ANGLE

Consider a strip with boundary conditions that introduce a
domain wall pinned on two edges, as shown in Fig. 10. The
pinning points are offset by N in the horizontal direction and
M in the vertical direction. In the presence of surface fields
at the boundaries, the surface attracts the domain wall, and,
therefore, below the wetting temperature, the domain wall
cannot be a straight line connecting the pinning points at
the edges of the strip. Rather, it will adopt the shape shown
in Fig. 10 with the contact angle that can be determined
from minimization of the excess free energy associated with
such a domain wall. Let f0 be the surface free energy of a
flat interface pinned to the wall and let τ (ϑ ) be the angle-
dependent surface tension [35,36] for an inclined interface
forming a tilt angle ϑ with the wall as shown in Fig. 10.
The angle-dependent surface tension was calculated in the
case where there is no attracting bonds at the edges, i.e., for
|h1| = |h2| = K2, in Ref. [35]; it satisfies

τ (ϑ ) = (cos ϑ )γ [ivs(ϑ )] + (sin ϑ )vs(ϑ ), (A1)

with vs(ϑ ) given by the saddle-point calculations as [36]

γ (1)[ivs(ϑ )] = i tan ϑ, (A2)

where here the superscript denotes the first derivative with
respect to k of Onsager’s γ (k) function given by Eq. (27).
Thus the excess free energy for the domain wall shown in

Fig. 10 can be written as

F (ϑ ) = (M csc ϑ )τ (ϑ ) + (N − M cot ϑ ) f0 − N f0. (A3)

The first term is due to the inclined interface, and the second
is due to the horizontal portions. The third term is the free
energy for a flat interface pinned to the wall; the subtraction
ensures that F (ϑ ) is actually the excess free energy. Now we
look for the wetting angle � which minimizes the function
F (ϑ ). By using the identity

τ ′(ϑ ) = −(sin ϑ )γ [ivs(ϑ )] + (cos ϑ )vs(ϑ ), (A4)

which follows from (A1) and (A2), we find

∂ϑF (ϑ ) = M csc2 ϑ{ f0 − γ [ivs(ϑ )]}. (A5)

The stationary condition gives

f0 = γ [ivs(�)], (A6)

in agreement with the result of earlier studies with vs = v0

[14,25]. This, together with Eq. (A1), leads to a rather com-
pact expression for the excess free energy associated to the
insertion of an inclined domain wall,

F (�) = Mv0(�). (A7)

Equation (A2) gives the contact angle � as the solution of

s�
1s2 sinh v0(�)

sinh γ [iv0(�)]
= tan �, (A8)

with the shorthand notation s1 = sinh 2K1 and s�
2 = sinh 2K�

2 .
Hence, if v0 ↘ 0 at the wetting transition, then � ↘ 0 as
anticipated. In Appendix D we will demonstrate by exact mi-
croscopic calculation of F (�) that indeed vs(�) in Eq. (A6)
is equal to v0 = ln w. Figure 11 shows the contact angle � as
a function of the surface field and temperature.

APPENDIX B: HARD ROD LATTICE GAS
AND THE TONKS GAS

Proceeding with the exact grand partition function of the
hard rod lattice gas given by Eq. (4) is not a simple task. For
this reason it makes sense to find a way to simplify the expres-
sion of the partition function. At this point it is very useful to
show how we can approximate the hard rod lattice gas with a
Tonks-Rayleigh hard rod gas in the continuum [32,33]. Recall
that the canonical partition function of Tonks-Rayleigh hard
rod gas with j particles on the line of length L in the absence
of any external potential is equal to

QTonks
j = (L − jσ + j) j

j!
; (B1)

this equation appeared in the seminal paper by Lee and Yang
on the theory of equations of state (see Eq. (51) of Ref. [45]).

By applying Stirling’s formula to the binomial
(L− jσ+ j

j

)
for

fixed j and large L − jσ + j, we find

Qlattice HR
j =

(
L − jσ + j

j

)
≈ (L − jσ + j) j

j!
= QTonks

j (L, σ − 1), (B2)
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(a)

(b)

FIG. 11. The contact angle �(h1, T ) as a function of the rescaled
field h1/K2 for fixed temperature (a), and as a function of the
temperature for fixed rescaled field h1/K2 = a (b). In panel (a) the
temperature takes the values T = 2.2, 2.1, 2.0, 1.75, 1.5, 1.0 (from
left to right curves). In panel (b) the rescaled field ranges from 0.1 to
0.9 with spacing 0.1 (from top to bottom curves). The dashed black
lines in (a) and (b) show the linear vanishing of the contact angle on
approaching the wetting phase boundary. In these figures, K1 = K2.

where Qlattice HR
j is the canonical partition function of the

lattice hard rods model. Having established a connection be-
tween the canonical partition function for hard rods on the
lattice and hards rods in the continuum (Tonks gas), we now
show how this enables us to simplify the grand partition func-
tion [Eq. (4)]. To this end we write the grand partition function
of the Tonks gas,

�Tonks (̃ζ , L, σ ) =
[L/σ ]∑
j=0

ζ̃ j (L − jσ ) j/ j!

≈
[L/σ ]∑
j=0

(̃ζσ ) j (L/σ ) j/ j! ≈
[L/σ ]∑
j=0

(̃ζσ ) j

(
Lσ

j

)
= (1 + ζ̃ σ )L/σ = �lattice gas (̃ζσ, L/σ ),

where �lattice gas(ζ , L) = (1 + ζ )L is the grand partition func-
tion for the hard rod gas with unit diameter encountered
in the free edge problem. The approximation then connects
the Tonks gas to the lattice gas, thus providing a bridge
between the continuum and the discrete descriptions of the
one-dimensional gases of impenetrable particles. The chain
of approximations is valid in the regime of small ζ̃ , which
predominantly weights those configurations with small j.
Therefore at small fugacity the Tonks gas behaves as an ideal

lattice gas with enhanced fugacity ζ̃ σ in a reduced volume
L/σ .

APPENDIX C: ONSAGER ANGLES

The functions δ′(k) and δ∗(k), introduced by Onsager [37],
are elements of a hyperbolic triangle whose edges have length
K�

1 , K2, and γ (k). The angle δ∗(k) is related to the other
geometrical elements via

c�
1 = c2 cosh γ (k) − s2 sinh γ (k) cos δ∗(k), (C1)

which is formally analogous to Eq. (27) [46]. Here we use the
following shorthand notation: s�

1 = sinh 2K�
1 , c�

1 = cosh 2K�
1 ,

s2 = sinh 2K2, and c2 = cosh 2K2. Furthermore, by combin-
ing the above with Eq. (27) we find

cos δ∗(k) = c�
1s2 − s�

1c2 cos k

sinh γ (k)
. (C2)

The above angles admit the factorized expressions

e2iδ′(k) = eik − A

Aeik − 1

eik − B

Beik − 1
, (C3)

and

e2iδ∗(k) = eik − A

Aeik − 1

Beik − 1

eik − B
, (C4)

Physical arguments demand that γ (0) > 0 for both T < Tc

and T > Tc. On the other hand, the behavior at k = 0 of the
Onsager angles depends on the temperature, as can be realized
by plugging k = 0 into Eq. (C2). For subcritical temperatures
(A > B > 1) the sheet of the square root is selected such that
δ∗(0) = 0, thus eiδ∗(0) = +1. For supercritical temperatures
(B < 1) we have δ∗(0) = π , and hence eiδ∗(0) = −1. An anal-
ogous treatment applies to the angle δ′(k) by noting that it can
be obtained by mapping B to B−1 in the expression of δ∗(k).
Therefore, for subcritical temperatures eiδ′(0) = −1.

APPENDIX D: BOLTZMANN WEIGHT FOR OPPOSING
SURFACE FIELDS

The free energy F (N, M ) of the domain wall shown in
Fig. 10 can be calculated from a canonical partition function
ratio Z×/Z for a system with and without a domain wall (see
Fig. 12 for clarification of notations) using a transfer matrix
approach,

Z×/Z = Tr
[
(V′)L−N

(−σ z
0

)
(V′)N

(−σ z
M+1

)]
Tr[(V′)L]

, (D1)

where L denotes the length of the lattice shown in Fig. 12.
[For correlation functions of the Ising system in the geometry
of Fig. 12(a) with N = 0 and Fig. 12(b) see Refs. [47,48]
and Refs. [49,50], respectively.] Technically, the lattice is
wrapped onto a cylinder; more correctly, there is another do-
main wall but it is assumed to be far away. We have used V′ =
V1/2

1 V2V1/2
1 as symmetrization [40]. This symmetrization is

more convenient here because the rotation operators −σ z
0 and

−σ z
M+1 involved in (D1) anticommute with V1. These opera-

tors reverse the spins on the bottom m = 0 and top m = M + 1
edges and thus introduce a domain wall across the strip. For
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h1

h2

1
0

M
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K1

K2
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+ + ++ − − − − −
N

+ + ++ ++

− + + ++

h1

h2

1
0

M

M + 1

direction of the transfer matrix

K1

K2

+ + ++ + + ++ ++ ++
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− − − −

− − − − − − − −

N

(a)

(b)

FIG. 12. Lattice used for the calculation of the free energy for
the inclined (upper panel) and “flat” (bottom panel) domain walls.

the edge state corresponding to h1 > 0 and h2 = h1, Eq. (D1)
reduces in the limit L → ∞ to

e−F (N,M ) = 〈+ + |(−σ z
0

)
(V′)N

(−σ z
M+1

)| − − 〉
〈+ + |(V′)N | + + 〉 , (D2)

where the in- and out-asymptotic states | + +〉 and | − −〉
are defined in the same way as in Sec. IV A, but with X0 in
Eq. (30) replaced by X ′

0 for the V′ symmetrization. By using
the relations −σ z

0 = iσ x
0 σ

y
0 = i�−1�0 = [X ′

0 + (X ′
0)†]i�0 and

−σ z
M+1 = iσ x

M+1σ
y
M+1 = i�2M+1�2M+2 = �2M+1[X ′

0 − (X ′
0)†]

(see Sec. IV A) and applying the spectral decomposition to
the operator V′, we find that the lowest-order contributions to
e−F (N,M ) come from the one-particle states, and therefore

e−F (N,M )

=
∑

k∈�M

e−Nγ (k)〈�∞|i�0(X ′
k )†|�∞〉〈�∞|X ′

k�2M+1|�∞ 〉.

(D3)

By using the expressions for �0 and �2M+1 in terms of Fermi
operators [see Eq. (E5)], we find

e−F (N,M ) =
∑

k∈�M

[N ′(k)]2i[y′
0(k)]∗y′

2M+1(k)e−Nγ (k), (D4)

where the eigenvectors for the V′ symmetrization are as fol-
lows:

y′
2m−1(k) = eiδ′(k)eimk + eiδ(k)e−i(m−1)k,

iy′
2m(k) = eimk + eiδ(k)eiδ′(k)e−i(m−1)k,

(D5)

for m = 1, . . . , M, with boundary values

y′
0(k) = i

sinh(2h1) cosh K�
1

sinh γ (k)
y′

1(k),

y′
2M+1(k) = i

sinh(2h1) cosh K�
1

sinh γ (k)
y′

2M (k). (D6)

The allowed momenta k are the same as for the V symmetriza-
tion and are found as the solutions of Eq. (31). It is convenient
to single out from the spectral sum the contributions from the
two imaginary wave numbers and write

e−F (N,M ) = T (iv1) + T (iv2) + (real modes), (D7)

where

T (iv) = (N ′)2(iv)

[
sinh(2h1) cosh K�

1

sinh γ (iv)

]2

e−Nγ (iv)

× [
se2iδ′(iv)e−2v + 2eiδ′(iv)e−(M+1)v + se−2Mv

]
.

(D8)

Since γ (k1) < γ (k2) < γ (k3) . . . < γ (kM ), contributions
from the real wave number decay faster than those from
imaginary modes and can therefore be neglected in the
regime of our interest. In the limit M → ∞ the sum of
imaginary terms cancel out because the two imaginary
solutions k1 = iv1 and k2 = iv2 are asymptotically degenerate
and have the opposite parity number s [defined by Eq. (31)].
We expand T (ivi ) around iv0 for large M at fixed N 	 M
and keep the leading terms in M. From Eqs. (27) and (35), we
have

γ (ivi ) � γ (iv0) + s/(2ξ‖) (i = 1, 2), (D9)

and thus

e−Nγ (ivi ) � e−Nγ (iv0 )[1 + Ns/(2ξ‖)] (i = 1, 2), (D10)

where s = +1 for v1 and s = −1 for v2 and ξ‖ is given by
Eq. (48). In the limit M → ∞, the normalization constant
takes the following form:

(N ′)2(iv) � w2 − 1

2e2iδ′(iv0 )

− 2sw−1eiδ′(iv0 )

[
w2 − 1

2e2iδ′(iv0 )

]2

Me−Mv0 , (D11)

and the prefactor multiplying the square brackets in Eq. (D8)
can be factorized:

sinh(2h1) cosh K�
1

sinh γ (iv0)
= w

√
AB − 1

(Aw − 1)(Bw − 1)
. (D12)

Neglecting all terms of the order of e−Mv0 and higher as
subdominant with respect to Me−Mv0 and using Eq. (C3), we
find

T (iv1) + T (iv2)

� −e−Nγ (iv0 )−Mv0

√
AB(AB − 1)w2(w − w−1)3

(Aw − 1)2(Bw − 1)2

×
{

N −M
[(Aw−1)(Bw−1)(w−A−1)(w−B−1)]1/2

w2−1

}
.

(D13)
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+−

M

+−

FIG. 13. Displacements of the inclined portion of the domain
wall which do not alter the free energy.

The contact angle � can be identified by expressing Eq. (A8),
which is an implicit equation for �, in the factorized form√

(w − A)(w − B)(w − A−1)(w − B−1)

w2 − 1
= cot �. (D14)

The final result for the free energy F (N, M ) of the domain
wall can be written as

e−F (N,M ) = (N − M cot �)
(AB − 1)(w2 − 1)

(Aw − 1)(Bw − 1)
e−Nγ (iv0 )︸ ︷︷ ︸

horizontal

× e−2τpe−Mv0 , (D15)

where

e−2τp = w
√

AB(w2 − 1)2

(Aw − 1)(Bw − 1)
. (D16)

Let us analyze the meaning of the various factors appearing
in Eq. (D15). The quantity in parentheses is the entropic
factor, which gives the number of ways in which it is possible
to displace the inclined portion of the domain wall without
altering the free-energy cost; see Fig. 13 for an illustration.

Additional calculations show that the contribution labeled
“horizontal” is due to a flat portion of a domain wall pinned
to the surface with fixed ends (lines AC and DB in in Fig. 10).
Since Nγ (iv0) = N f0 [see Eq. (A6)] is the free energy of
such domain wall with length N , the other factor must be the
contribution from the end points (points A and B in in Fig. 10).
For additional calculations we have considered a lattice with
spins reversed between 1 and N at a bottom edge of the strip
as shown in Fig. 12(b) to introduce a domain wall running
parallel to the (1,0) axis. The free energy of such domain
wall is given by Eq. (D1) but with −σ z

M+1 replaced by −σ z
0

and can be computed in the similar way as above. The final
result reduces in the limit of M → ∞ at fixed and large N
to the expression labeled as “horizontal” in Eq. (D15). The
interpretation of the remaining terms is now straightforward.
Mv0 is the excess free energy corresponding to the cost of
replacing a piece of flat domain wall of length M cot � (line
CD in Fig. 10) by the inclined one. Thus we can write

Mv0 = M csc �τ (�) − M cot � f0, (D17)

where τ (�) is the angle-dependent surface tension at the wet-
ting angle. This agrees with expression (A3) for F (ϑ ) from
the free-energy considerations in Appendix A. Finally, τp in
Eq. (D16) can be interpreted as a point tension (contributions
from points C and D in Fig. 10).

As the wetting temperature Tw is approached, v0 = ln w ↘
0 and therefore F (�) = |α(h1)|M(Tw − T ) + O[M(Tw −

T )2], where the prefactor α(h1) depends on the surface field.
This reveals the finite-size scaling of Parry and Evans [23]
with the scaling variable M1/βs (Tw − T ), where βs = 1 is the
Abraham result for the adsorption critical exponent [25]. The
scaling Ansatz is based on the conjecture that Tw − Tc(M ) ∝
M−(1/βs ) for the shift of the critical temperature Tc(M ) in
the asymmetric strip (or slab). Therefore pseudocoexistence
and the associated asymptotic degeneracy only occur for the
scaling variable M(Tw − T ) 	 1. This in turn guarantees that
the Boltzmann weight ζ̃ = exp[−F (�)] � 1 in this regime.

APPENDIX E: THE SURFACE STATES
AND EDGE MAGNETIZATION

Here we outline calculations of 〈o|σ x
1 |o〉 and 〈e|σ x

M |e〉
and of the edge magnetization for equal and opposing sur-
face fields. First, we express the spin operators in terms of
spinors. From Eqs (22) and (23) we find σ x

1 = i�−1�0�1

with �−1 = X0 + X †
0 and σ x

M = −i�2M�2M+1PM+1(X0 − X †
0 ).

PM+1 is the parity operator given by Eq. (23) with
m = M + 1. We need to know the action of PM+1 on
the vacuum and the excited states. It can be shown
that PM+1|�∞〉 = −|�∞〉 and PMX †(k1) . . . X †(kn)|�∞〉 =
(−1)n+1X †(k1) . . . X †(kn)|�∞〉. Using definitions of the sur-
faces states [Eq. (53)], we find

〈o|σ x
1 |o〉 = − 1

2 (A1 + A2 − B12 − B21),

〈e|σ x
M |e〉 = 1

2

(
Ã1 + Ã2 + B̃12 + B̃21

)
, (E1)

where for i = 1, 2

Ai = 〈�∞|X (ivi )i�0�1X †(ivi)|�∞ 〉
Ãi = 〈�∞|X (ivi )i�2M�2M+1X †(ivi )|�∞ 〉, (E2)

and for i, j = 1, 2 and i �= j

Bi j = 〈�∞|X (ivi )i�0�1X †(iv j )|�∞ 〉
B̃i j = 〈�∞|X (ivi )i�2M�2M+1X †(iv j )|�∞ 〉. (E3)

In order to evaluate these form factors, we employ the relation
between spinors and fermionic operators,

�m =
∑

k∈�M

N (k)[ym(k)(Xk )† + (ym)∗(k)Xk], (E4)

which corresponds to the inversion of Eq. (25). This gives

Ai = −iN2(ivi )y1(ivi)y
∗
0(ivi ) + i

∑
k �=i

N2(k)y1(k)y∗
0 (k)

Ãi = −iN2(ivi )y1(ivi)y
∗
0(ivi ) − i

∑
k �=i

N2(k)y∗
1 (k)y0(k), (E5)

for i, j = 1, 2 and

Bi j = iN (ivi)N (iv j )[y0(ivi)y
∗
1(iv j ) − y∗

0(iv j )y1(ivi )]

B̃i j = iN (ivi)N (iv j )[y1(ivi)y
∗
0 (iv j ) − y∗

1 (iv j )y0(ivi )], (E6)

for i, j = 1, 2 and i �= j, where we have used the reflection
symmetry [Eq. (34)] to express the eigenvectors y2M and
y2M+1 in terms of y0(k) and y1(k); the latter ones are given
in Eq. (33).

Now we take the limit M → ∞ in which v1, v2 → v0.
In this limit the contributions from imaginary wave numbers
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cancel each other in Ai and Ãi and we have

A1 = A2 = Ã1 = Ã2 = 2

√
AB

(A − w)(B − w)

× lim
M→∞

∑
k∈real

N2(k)[cos δ∗(k) − cos δ(k)]. (E7)

In order to calculate Bi j and B̃i j , we use the quantization
condition [Eq. (31)] and eliminate eiδ from the eigenvectors
y0(ivi ) and y1(ivi ). Then we take the limit of M → ∞ to find

Bi j = −B̃i j = −2N2(iv0)

√
AB

(A − w)(B − w)
e−iδ�(iv0 )

= w − w−1√
(A−1 − w)(B−1 − w)

. (E8)

The second line in the above equation is obtained using the
asymptotic form of the normalization constant:

N−2(iv0)eiδ�(iv0 ) = B

B − w
eiδ∗(iv0 ) + A

A − w
e−iδ∗(iv0 )

+ 1

w2 − 1
[eiδ∗(iv0 ) + e−iδ∗(iv0 )]. (E9)

Bringing together all contributions and taking the limit M →
∞ of the sum over the real wave numbers [51], we finally
obtain:

〈o|σ x
1 |o〉 = w − w−1√

(A−1 − w)(B−1 − w)
−

√
AB

(A − w)(B − w)

×
∫ π

−π

dk

2π
[cos δ∗(k) − cos δ(k)], (E10)

and

〈e|σ x
M |e〉 = − w − w−1√

(A−1 − w)(B−1 − w)
+

√
AB

(A − w)(B − w)

×
∫ π

−π

dk

2π
[cos δ∗(k) − cos δ(k)]. (E11)

In order to demonstrate the relations (56), let us calculate
the edge magnetization me(α, β ), where α = ±1 is the sign of
spins at the bottom edge and β = ±1 is the sign of spins fixed
by the top edge—they are fixed by the surface field h1 and h2,
respectively. For the bottom edge we have

mb
e(α, β ) = Tr[VLP0(α)σ x

1 PM+1(β )]

Tr[VLP0(α)PM+1(β )]
, (E12)

where the projection operators are as follows:

P0(α) = α

2
[I + α(X0 + X †

0 )]

PM+1(β ) = 1

2
[I + β(X †

0 − X0)PM+1]. (E13)

Proceeding just like in the calculations for the surface states,
we find

mb
e(+,−) = −mb

e(−,+) = 〈φ∞|X (iv1)i�0�1X †(iv1)|φ∞〉

=
√

AB

(A − w)(B − w)

×
∫ π

−π

dk

2π
([cos δ∗(k) − cos δ(k)], (E14)

and

mb
e(+,+) = −mb

e(−,−) = 〈φ∞|i�0�1|φ∞〉

= − w − w−1√
(A−1 − w)(B−1 − w)

+
√

AB

(A − w)(B − w)

×
∫ π

−π

dk

2π
[cos δ∗(k) − cos δ(k)]. (E15)

For the top edge we have

mt
e(α, β ) = Tr

[
VLP0(α)σ x

MPM+1(β )
]

Tr[VLP0(α)PM+1(β )]
. (E16)

An analogous evaluation gives

mt
e(−,+) = −mt

e(+,−)

= 〈φ∞|X (iv1)i�2M�2M+1X †(iv1)|φ∞〉

=
√

AB

(A − w)(B − w)

∫ π

−π

dk

2π
[cos δ∗(k) − cos δ(k)].

(E17)

We can see that mt
e(−,+) = −mb

e(−,+). On the other hand

mt
e(+,+) = −mt

e(−,−) = 〈φ∞|i�2M�2M+1|φ∞〉

= − w − w−1√
(A−1 − w)(B−1 − w)

+
√

AB

(A − w)(B − w)

∫ π

−π

dk

2π
[cos δ∗(k)−cos δ(k)],

(E18)

thus

mt
e(±,±) = mb

e(±,±) = me (E19)

Comparing results for the edge magnetization with expres-
sions for the surface states expectation values Eqs. (E10) and
(E11), we arrive at the relation (56).

APPENDIX F: SOLUTION OF THE DISCRETIZATION
EQUATION

Here we show how the discretization equation [Eq. (31)]
admits two nearly degenerate imaginary solutions; see
Ref. [14] where it was originally found. In order to pro-
ceed we set k = iv with positive v. The left-hand side is
the exponential exp(−Mv). The right-hand side, s exp[iδ(iv)]
requires special care because of the branch cut exhibited by
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v0

v+ v−

FIG. 14. Discretization equation for imaginary wave numbers.
The left-hand side, exp(−Mv), is indicated with the solid black
curve. The right-hand side, s exp[iδ(iv)], is shown with a solid red
(s = +1) and blue line (s = −1). The corresponding solutions v+
and v− are shown. In this figure, M = 15 and the other parameters
are the same as in Fig. 8.

the Onsager angle exp[iδ′(k)]. Since we are interested in the
regime T < Tc, the branch is selected such that exp[iδ′(0)] =
−1 because δ′(0) = π . Therefore, the right-hand side of the
discretization equation for a wave number along the imaginary
axis is

eiδ(iv) = −
(

Aev − 1

A − ev

Bev − 1

B − ev

)1/2 ev − w

wev − 1
. (F1)

Since we are interested in large values of M, the left-hand
side is exponentially small; hence, the solution has to be found

in the closeness of the zero of the right-hand side. The zero
occurs when the second factor of (F1) vanishes, which is at
v = ln w ≡ v0. In view of the large-M asymptotic result we
need, it is sufficient to perform a Taylor expansion of (F1)
around v = v0 of the second factor in (F1), which reads

ev − w

wev − 1
= v − v0

w − w−1
+ O[(v − v0)2] , v → v0. (F2)

It is thus clear that the equation we need to solve is of the form

exp(−Mv) = sQ(v − v0) + O[(v − v0)2], (F3)

where

Q = −
(

Aw − 1

A − w

Bw − 1

B − w

)1/2 1

w − w−1
, (F4)

can be identified as the prefactor of v − v0 appearing in (F3)
evaluated at v = v0. In Fig. 14 we show the left-hand side of
the discretization equation together with the right-hand side
with s = +1 and s = −1. The inclusion of additional terms
beyond the linear one is necessary in order to work out an
iterative solution beyond the leading order. By focusing on
the leading-order term, the solution of (F3) is

v = v0 + sQ−1e−Mv0 + O(e−2Mv0 ). (F5)

It turns out that Q defined above is related to the quantity A
defined in Eq. (36) via Q = −A−1. Neglecting the exponen-
tially subleading terms of order exp(−2Mv0), the solution is

vs = v0 − sAe−Mv0 , (F6)

with s = +1 and s = −1. The solution closest to the real axis
is the one with parity number s = +1.
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