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Subsystem eigenstate thermalization hypothesis for translation invariant systems
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The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved
recently by using random matrices. In this paper, we study the subsystem version of the eigenstate thermalization
hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation
between the quantum variance and the Belavkin-Staszewski relative entropy. Then, by showing the small upper
bounds on the quantum variance and the Belavkin-Staszewski relative entropy, we prove the subsystem eigenstate
thermalization hypothesis for translation invariant quantum systems with an algebraic speed of convergence in
an elementary way. The proof holds for most of the translation invariant quantum lattice models with exponential
or algebraic decays of correlations.
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I. INTRODUCTION

The equilibration and the thermalization of an isolated
quantum system are fundamental for understanding the emer-
gence of quantum statistical mechanics from unitary quantum
mechanics. By thermalization, it means that either an isolated
quantum system would evolve into a thermal state or the
observables would attain their values in a statistical ensemble,
after a unitary quantum evolution of the isolated quantum
system for a period of time that is long enough. Since a unitary
quantum evolution preserves the pure state, it is not easy to
understand how the statistical mixture emerges if the initial
state of an isolated quantum system is a pure state. Numerous
approaches have been proposed to understand various aspects
of this problem; cf. the reviews [1,2].

The eigenstate thermalization hypothesis (ETH) [3,4], that
the expectation values of quantum observables in an energy
eigenstate should approximately coincide with the thermal
expectation values, provides a possible mechanism for the
thermalization of an isolated quantum system. Although the
ETH has more and more numerical and experimental evi-
dence in specific closed quantum models and systems, its
physical origin and mathematical description are not yet com-
pletely understood. In the original proposal by Deutsch and
Srednicki [5–7], a random perturbation is added to a closed
quantum system, and the ETH holds if the perturbed system
becomes chaotic. By modeling the random perturbations as
random matrices, the ETH for deterministic observables with
the Hamiltonians sampled from the Wigner random matrix
ensemble without further unitary symmetry is mathematically
proved in a recent work [8]. This scenario, however, is not uni-
versal. For one thing, if further unitary symmetries are present,
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the conserved quantities would obstruct the thermalization to
Gibbs states and the original ETH would fail. More recently,
in [9], the ETH for translation invariant spin systems is proved
using the same method from random matrices, thereby gener-
alizing its validity to various translation invariant lattice spin
models.

In many studies of the “weak” ETH, for example,
Refs. [10–14], one does not presume the random energy per-
turbations or simply the random Hamiltonians, but tries to
derive the statistical properties solely from quantum proper-
ties. From this perspective, the quantum entanglement inside a
closed quantum system, together with its dynamics under the
global unitary evolution, should play a crucial role for ther-
malization, which has indeed been experimentally observed
in [15]. To quantify the entanglement in a closed quantum
system, we need to work at the level of subsystems of the total
system to compute the entanglement entropies and alike. This
observation leads to the subsystem ETH [16,17], which hy-
pothesizes the convergence of the subsystem density matrices
to the thermal Gibbs density matrix. In fact, the trace dis-
tance between two density matrices is bounded by the relative
entropy between two density matrices. Since the entangle-
ment entropies and relative entropies are calculable in many
conformal field theories (CFTs), the subsystem ETH and its
violation have been tested in many CFTs [17–23]. Notice
that the conformal symmetry forms an infinite-dimensional
group, so the infinite number of conserved. Korteweg-de Vries
(KdV) charges make the generalized Gibbs states the proper
equilibrated states for CFTs [24,25]. It is then natural to ask
for a quantum system and model with a smaller symmetry
group such that the subsystem ETH still holds.

For translation invariant quantum lattice systems, we al-
ready know that the strong ETH [9], the weak ETH [11,12],
and the canonical typicality [26] are true. In addition, a
version of the generalized ETH, i.e., thermalization to the gen-
eralized Gibbs ensemble, for translation invariant quasifree
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fermionic integrable models is also proved in [27]. We there-
fore see that the translation invariant quantum lattice systems
are a good test for checking various versions of ETH. In
this paper, we make an effort to prove the subsystem ETH
for translation invariant systems without referring to random
matrices.

We will work in the setting of a translation invariant
quantum lattice system in the sense of [12]. Unlike the consid-
erations by Iyoda et al. [12], we find a formal relation between
the quantum variance and the Belavkin-Staszewski relative
entropy in an average sense, thereby establishing a connection
of the scaling analysis on the variance given in [12] and the
subsystem ETH formulated as the relative-entropic bounds on
the trace distance between the subsystem state and the canon-
ical thermal state. In fact, we are able to prove the following
form of subsystem ETH:∥∥ρsub − ρc

A

∥∥ ∼ O
(
N1/2

A /N1/2
)
, (1)

‖σsub‖ ∼ O
(
N1/2

A /N1/2
)
, (2)

where ρsub is the state of a subsystem A, σsub is a traceless (or
“off-diagonal”) matrix of a subsystem, and ρc

A is the reduced
density matrix of the canonical thermal state, for translation
invariant quantum lattice systems. Notice that in our results
(1) and (2) the errors decay algebraically as O(N1/2

A /N1/2),
with NA the degrees of freedom (or number of lattice sites)
in the subsystem A and N the total degrees of freedom. This
decaying behavior is weaker than the exponential decays as
usually expected in ETH, but corroborates the algebraic decay
of error terms in the random-matrix proof of ETH for transla-
tion invariant systems [9].

We begin in Sec. II with some preliminary results about
ETH, subsystem ETH, and, in particular, the setting of a trans-
lation invariant quantum lattice system from [12]. In Sec. III,
we introduce the main technical input, i.e., the formal relation
between the quantum variance and the Belavkin-Staszewski
relative entropy in an average sense. Using this relation, we
analyze the scaling of both the variance and the Belavkin-
Staszewski relative entropy and prove the subsystem ETH in
Sec. IV. In Sec. V, we discuss the role of correlation decay
in our proof. In the final Sec. VI, we conclude this paper and
discuss some related issues.

II. PRELIMINARIES

In this section, we recollect the basics of ETH and subsys-
tem ETH, and the weak ETH with eigenstate typicality in the
sense of [12].

A. ETH and subsystem ETH

Consider an isolated or closed quantum system B with
Hamiltonian h. This Hamiltonian h could include a ran-
dom perturbation hpert.. Suppose h has eigenvectors |Ei〉 , i =
1, 2, . . . , N , with energy eigenvalues Ei, i.e., h |Ei〉 = Ei |Ei〉.
For a few-body observable A, the local ETH can be formu-
lated in terms of the expectation values of A in the energy
eigenstates as

〈Ei|A|Ej〉 = A(E )δi j + e−S(E )/2 f (E , ω)Ri j, (3)

where E = 1
2 (Ei + Ej ), ω = Ei − Ej , and eS(E ) =

E
∑

i δ(E − Ei ) is the density of states of the system B.
The A(E ) and f (E , ω) are smooth functions, while the
fluctuation factor Ri j is of the order of 1. In particular, the
thermalization requires that A(E ) should be approximately
the thermal average of A in the canonical ensemble,
A = 〈A〉c + O(N−1) + O(e−S/2), in the large-N limit.

This local form (3) of ETH can be derived based on Berry’s
chaotic conjecture [7]. If we sample the Hamiltonian h from a
random matrix ensemble, the form of inequality for ETH,

| 〈Ei|A|Ej〉 − 〈A〉mc (E )δi j | � O(e−S/2), (4)

where 〈·〉mc denotes the thermal average in the microcanonical
ensemble, can be proved mathematically in several cases, in-
cluding the translation invariant systems, by using properties
of random matrices [8,9].

Both (3) and (4) are local conditions, as the ETH is as-
sumed for each energy eigenstate. Therefore, in analogy to
the canonical typicality of a subsystem B1,1 we can envision
the subsystem ETH,∥∥ρ

B1
i − ρc(Ei )

∥∥ ∼ O(e−S/2), (5)∥∥ρ
B1
i j

∥∥ ∼ O(e−S/2), i �= j, (6)

where ρ
B1
i = TrB̄1

|Ei〉 〈Ei| is the reduced density matrix of the
subsystem B1, ρc is a universal density matrix that could be
the thermal canonical one, and ρ

B1
i j = TrB̄1

|Ei〉 〈Ej |. The norm
here refers to the trace distance, or Schatten 1-norm, ‖ρ1 −
ρ2‖ = 1

2 Tr
√

(ρ1 − ρ2)2. The subsystem ETH as given by (5)
and (6) is, in fact, stronger than the local ETH as in (3), due to
the following inequality [17]:

| 〈A〉 − 〈A〉c | �
√

‖ρ − ρc‖Tr[(ρ + ρc)A2], (7)

where 〈A〉 = Tr(ρA) and 〈A〉c = Tr(ρcA).
What is important in the following is that the trace distance

in (5) can be bounded by the relative entropy between two
density matrices,

‖ρB1 − ρc(Ei )‖2 � 2S(ρB1 ||ρc), (8)

where S(ρ1||ρ2) = tr(ρ1 ln ρ1) − tr(ρ1 ln ρ2) is the (Umegaki)
quantum relative entropy. This inequality (8) is the so-called
quantum Pinsker inequality in quantum information theory
[28].

B. Weak ETH with eigenstate typicality

In proving the weak ETH for translation invariant quantum
lattice systems [12], the quantum uncertainty of measuring
an observable plays an important role. Conventionally, the
uncertainties, either classical or quantum, can be quantified
by the variance [29]. For instance, given a quantum state ρ,
the quantum uncertainty of measuring an observable A in the
state ρ can be quantified by the variance

V (ρ, A) =Tr(ρAA†) − |TrρA|2 =Tr[ρ(A − 〈A〉)(A − 〈A〉)†].
(9)

1We emphasize that throughout this paper, B without indices de-
notes the total system and Bi and likewise denote the subsystems.
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Let ρB = ∑
j p j�

j
B be the state of the total system B expanded

in the orthonormal basis {� j
B} of rank-1 projectors. Then,

in terms of these projectors, one can particularly define the
following quantity, which is called a fluctuation in [12]:

�(ρ, A) =
∑

j

p j

∣∣Tr� j
BA

∣∣2 − |TrρA|2. (10)

We have

�(ρ, A) �
∑

j,k

p jTr
(
�

j
BA�k

BA†
) − |TrρA|2 = V (ρ, A)

(11)

because the additional off-diagonal terms are positive, i.e.,
Tr(� j

BA�k
BA†) = | 〈 j| A |k〉 |2 � 0. This �(ρ, A) is related

to the following (in)distinguishability measure of quantum
states:

d
(
�

j
B, ρ; A

) = ∣∣Tr
[(

�
j
B − ρ

)
A
]∣∣2

. (12)

Indeed, �(ρ, A) can be considered as the quantification of
the probabilistic typicality or concentration with respect to the
measure (12),

�(ρ, A) =
∫

d
(
�

j
B, ρ; A

)
pd , (13)

where the probability distribution pd is obtained from the
p j’s through a Radon-Nikodym derivative. By the Chebyshev
inequality, we have that

Pρ (|Tr
(
�

j
BA

) − Tr(ρA)| � ε) � �(ρ, A)2

ε2
, ∀ε ∈ R+.

(14)
Therefore, when �(ρ, A) is very small, the expectation of the
projectively measured observable would concentrate on the
expectation of observable calculated with respect to the state
ρ. In other words, the indistinguishability of the measurement
outcomes induces a description by a mixed state.

In ETH, one considers the local energy eigenstates. So,
let σ

j
B1

= TrB̄1
�

j
B be the reduced. projection or state on the

subsystem B1. Then we should consider

d
(
σ

j
B1

, ρ; AB1
) =∣∣Tr

[(
σ

j
B1

− ρB1

)
AB1

]∣∣2

�
∥∥σ

j
B1

− ρB1

∥∥2

1‖AB1‖2
∞, (15)

where ‖ · ‖k is the Schatten k-norm. Next, let ρmc be the
density matrix for the microcanonical ensemble. According
to Eqs. (10), (11), and (14), if

�(ρmc, AB1 ) ∼ O(N−α ), (16)

with 0 < α < 1, i.e., the expectations of a local observable
AB1 with respect to the results of local measurements con-
centrate the expectation of AB1 with respect to ρmc, then we
know that each pure state σ

j
Bi

cannot be distinguished from
the microcanonical ρmc in the large-N limit. This is the weak
ETH with eigenstate typicality [12]. Furthermore, by using the
equivalence of the ensembles, one also has a similar weak
ETH on the concentration of σ

j
Bi

to the canonical-ensemble
density matrix ρc.

In the proofs of the weak ETH with eigenstate typicality
for quantum lattice systems [12], the translation invariance in

the following sense is crucial. Let us partition the lattice of
system B into C = |B|/|B1| blocks with the same size, where
|B| means the number of lattice points in B. These C blocks
are identical copies of B1. Let us also define the translational
copies ABi of AB1 defined on Bi obtained by the translations
from block to block. Then the translation invariance means

Tr
[
�

j
BABi

] = Tr
[
�

j
BAB1

]
. (17)

We can introduce the average observable,

AB = 1

C
∑

i

ABi . (18)

Then the translation invariance (17) gives �(ρ, AB1 ) =
�(ρ, AB). Therefore, the weak ETH can be proved by
bounding �(ρ, AB). Since the translation invariance of the
Hamiltonian does not guarantee the translation invariance of
the energy eigenstate, (17) is not unconditionally true for any
energy eigenstate and any measurement. If we only rely on the
average observable (18), then for the translationally invariant
state ρ, we can also consider

d
(
�

j
B, ρ; AB

) =
∣∣∣∣ 1

C
∑

k

Tr
[(

σ
j

Bk
− ρBk

)
ABk

]∣∣∣∣
2

=
∣∣∣∣Tr

[(
1

C
∑

k

σ
j,k

B1
− ρB1

)
AB1

]∣∣∣∣
2

= d

(
1

C
∑

k

σ
j,k

B1
, ρB1 ; AB1

)
, (19)

where σ
j,k

B1
is the translational copies of σ

j
Bk

. Equation (19)
actually converts the average observable and the average local
state into each other.

III. RELATING VARIANCE TO RELATIVE ENTROPY

Equations (9) and (12) depend on the measured observable
A. In order to quantify the quantum uncertainty in a way
that depends only on the quantum measurements but not on
the measured observables, the following entropic uncertainty
used in the entropic uncertainty relation [30] serves the pur-
pose:

H�(ρ) =
∑

i

piS(ρi||ρ), (20)

where ρi = �iρ�i/pi, with pi = Tr(�iρ) and {�i} being the
(not necessarily rank-1) measurement operators.

In view of the frequent usages of the maps between the
total system B and its subsystems Bi in the proofs in [12],
we consider the Belavkin-Staszewski (BS) relative entropy
[31,32],

Ŝ(σ ||ρ) = Tr
{
σ ln

[
J 1/2

σ (ρ−1)
]}

(21)

= Tr[σ ln(ρ−1σ )] (22)

= Tr
{
ρJ −1/2

ρ (σ ) ln
[
J −1/2

ρ (σ )
]}

, (23)

where J α
ρ (·) := ρα (·)ρα is a rescaling map. Notice that in

the above definitions of BS entropy, there is the inverse
ρ−1, which requires that the density matrix should be strictly
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positive; this requirement is naturally fulfilled in our consid-
erations, as the density matrices at the position of ρ in the
above formulas are the canonical ensemble ρc or the subsys-
tem states. Now that different ρi are orthogonal to each other
by definition, the entropic uncertainty can be generalized by
using (21) as

∑
i

piŜ(ρi||ρ) = Tr

{
ρ ln

[∑
i

J 1/2
ρi

(ρ−1)

]}
. (24)

When the Hilbert-Schmidt norm ‖X − I‖2 � 1, the power
series of the matrix logarithm,

ln(X ) = (X − I ) − 1
2 (X − I )2 + · · · , (25)

converges. Using it, we can obtain the following first-order
relations:∑

i

Trρ
[
J 1/2

ρi
(ρ−1) − 1

] =
∑

i

pi
{
Trρi

[
J 1/2

ρi
(ρ−1)

] − 1
}

=
∑

i

pi

(
Tr

{
ρ
[
J −1/2

ρ (ρi )
]2}− 1

)
=

∑
i

piV (ρ, Oi ), (26)

where, in the first line, we have used Trρi = 1, the second line
follows from (23), and

Oi := J −1/2
ρ (ρi ), (27)

with 〈Oi〉 = 1. This Oi plays the role of observable in quan-
tum variance and is defined by ρi in a one-to-one manner.
Although an observable O can be mathematically related to
a particular density matrix ρ, the physical meaning of such an
O is possibly unclear. Therefore, we do not interpret this Oi

in (27) and merely take it as an intermediate technical step.
Formally, Eq. (26) establishes a link between the variance of
Oi in the states ρ and the entropic uncertainty in the first-
order sense. Since the quantum relative entropy encodes the
closeness between two density matrices, the V (ρ, Oi ) is again
a quantity measuring the (in)distinguishability between state
ρi and ρ.

The relation (26) is suitable for studying localized states
on subsystems. Let ρB = ∑

j p j�
j
B, as before. For the pure

state �
j
B, its reduced density matrix on a subsystem, say B1,

σ
j

B1
= TrB̄1

�
j
B, is no longer pure in general, so that it can be

arbitrary subsystem states of B1. The reduced density matrix
of ρB on B1 is ρB1 = ∑

i piσ
i
B1

. In this setting, we can consider
the formal observable

OB1
i = J −1/2

ρB1

(
σ i

B1

)
. (28)

Again, we have 〈OB1
i 〉 = 1. Similar to (26), we also have

V
(
ρB, OB1

i

) =TrρB
{[
J −1/2

ρB1

(
σ i

B1

)]2 − 1
}

=Tr
{
σ i

B1

[
J 1/2

σ i
B1

(
ρ−1

B1

) − 1
]}

(29)

as the first-order expansions of Ŝ(σ i
B1

||ρB1 ). In (29), we have
used the property that TrρB = 1 as a normalized density ma-
trix. Equation (29) relates the indistinguishability of localized
states and the measurement uncertainty (of OB1

i ) in ρ, in an
average sense.

Recall that the BS relative entropy and the quantum relative
entropy satisfy Ŝ(σ ||ρ) � S(σ ||ρ) [32]; thereby,

Ŝ
(
σ i

B1

∣∣∣∣ρB1

)
� 1

2

∥∥σ i
B1

− ρB1

∥∥2

1, (30)

where the Schatten-1 norm ‖ · ‖1 is just the trace distance
introduced above. On the other hand, the variance V (ρB, OB1

i )
before the series expansion is, by definition, a Schatten-2
norm,

V
(
ρB, OB1

i

) = Tr
[(

σ i
B1

− ρB1

)
ρ−1

B1

(
σ i

B1
− ρB1

)]
= ∥∥(

σ i
B1

− ρB1

)
ρ

−1/2
B1

∥∥2

2. (31)

By Hölder’s inequality, we have∥∥(
σ i

B1
− ρB1

)∥∥2

1 =∥∥(
σ i

B1
− ρB1

)
ρ

−1/2
B1

ρ
1/2
B1

∥∥2

1

�
∥∥(

σ i
B1

− ρB1

)
ρ

−1/2
B1

∥∥2

2

∥∥ρ
1/2
B1

∥∥2

2

=∥∥(
σ i

B1
− ρB1

)
ρ

−1/2
B1

∥∥2

2 = V
(
ρB, OB1

i

)
. (32)

Similarly, we can consider the “off-diagonal” observable,

OB1
i j = J −1/2

ρB1

(
σ

i j
B1

)
, i �= j, (33)

with σ
i j
B1

= TrB̄1
�

i j
B an off-diagonal reduced density matrix.

Now we have 〈OB1
i j 〉 = 0. Again, we have∥∥σ

i j
B1

∥∥2

1 =∥∥σ
i j
B1

ρ
−1/2
B1

ρ
1/2
B1

∥∥2

1

�
∥∥σ

i j
B1

ρ
−1/2
B1

∥∥2

2

∥∥ρ
1/2
B1

∥∥2

2

=∥∥σ
i j
B1

ρ
−1/2
B1

∥∥2

2 = V
(
ρB, OB1

i j

)
, (34)

where the second line follows from Hölder’s inequality and
the third line holds by definition.

Similar to the definition (22), we can also rewrite the vari-
ance (29) as

Tr
{[
J 1/2

ρB
◦ J −1/2

ρB1

(
σ i

B1

)][
ρ−1

B J 1/2
ρB

◦ J −1/2
ρB1

(
σ i

B1

) − 1]
}
, (35)

which is the first-order expansion of Ŝ[J 1/2
ρB

◦
J −1/2

ρB1
(σ i

B1
)||ρB]. In this form (35), we find that the map

RBk→B
ρ = J 1/2

ρB
◦ J −1/2

ρBk
(36)

is just the Petz recovery map of the completely positive trace-
preserving (CPTP) map NB→Bk = TrB̄k

with respect to the
reference state ρB; cf. [33]. In this way, we can rewrite, by
using (22) and (23),

Ŝ
(
σ i

B1

∣∣∣∣ρB1

) =Tr
{
ρB1J −1/2

ρB1

(
σ i

B1

)
ln

[
J −1/2

ρB1

(
σ i

B1

)]}
=Tr

{
RB1→B

ρ

(
σ i

B1

)
ln

[
ρ−1

B RB1→B
ρ

(
σ i

B1

)]}
=Ŝ

[
RB1→B

ρ

(
σ i

B1

)∣∣∣∣ρB
]
. (37)

The final expression pulls the subsystem BS entropy to the
global one, which would be easier to make bounds.

A thing we should keep in mind is that the relations derived
in this section are mainly mathematical relations with their
physical meanings uninterpreted. The punch line is that we
can approach the subsystem ETH (5) and (6) by bounding ei-
ther V (ρB, OB1

i ) or Ŝ[RB1→B
ρ (σ i

B1
)||ρB], and V (ρB, OB1

i j ) based
on (30), (32), (34), and (37).
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IV. SUBSYSTEM ETH FOR TRANSLATION INVARIANT
SYSTEMS

Now we can turn to the proof of the subsystem ETH. The
strategy is to derive general bounds on the trace distance and
show that they are small in the large-N limit.

We consider the macroscopic observable that is composed
solely of local operators as in [13] or the translation in-
variant quantum lattice systems as in the last paragraph of
Sec. II B of [12]. As in (18), we define the average formal
observable,

OB
i = 1

C
∑

k

OBk
i = 1

C
∑

k

J −1/2
ρBk

(
σ i,1

Bk

)
, (38)

where σ i,1
Bk

are the translational copies of σ i
B1

. It can also be
obtained by translating state �i

B and then taking the partial
trace. Here, we assume an equipartition of the lattice into
subsystems with the same size, so that

C = N/NA, (39)

if the number of sites in B1 is NA. We still have 〈OB
i 〉 = 1. The

quantum variance

V
(
ρ, OB

i

)
=Tr

{[
1

C
∑

k

RBk→B
ρ

(
σ i,1

Bk

)][
ρ−1

B

1

C
∑

l

RBl →B
ρ

(
σ i,1

Bl

) − 1

]}
,

(40)

as given by (35), is the first-order expansion of the BS relative
entropy,

Ŝ

[
1

C
∑

k

RBk→B
ρ

(
σ i,1

Bk

)∣∣∣∣ρB

]
. (41)

Since the Petz recovery map RBk→B
ρ is also CPTP, we see

that 1
C

∑
k RBk→B

ρ (σ i,1
Bk

) is also a legitimate density matrix.
For example, consider that there is no correlation between the
blocks B1, . . . , BC , i.e., ρB = ρB1 ⊗ · · · ⊗ ρBC . Then,

RBk→B
ρ

(
σ i,1

Bk

) = ρB1 ⊗ · · · ⊗ σ i,1
Bk

⊗ · · · ⊗ ρBC .

By the joint convexity of relative entropy, it is easy to show
that

Ŝ

[
1

C
∑

k

RBk→B
ρ

(
σ i,1

Bk

)||ρB

]
� 1

C
∑

k

Ŝ
[
RBk→B

ρ

(
σ i,1

Bk

)||ρB
]

= 1

C
∑

k

Ŝ
(
σ i,1

Bk

∣∣∣∣ρBk

) = Ŝ(σB1 ||ρB1 ), (42)

the last expression of which is just the local
(in)distinguishability. In (42), we supposed that the state
ρB is translation invariant; this requirement is naturally
fulfilled by the canonical ensemble. As we can see from
(42), if the Ŝ(σ i,1

Bk
||ρBk ) are small for all blocks Bi, then

Ŝ[ 1
C

∑
k RBk→B

ρ (σ i,1
Bk

)||ρB] must be small, but the converse is
not true.

To prove the subsystem ETH, we need to show that

Ŝ

[
1

C
∑

k

RBk→B
ρ

(
σ i,1

Bk

)∣∣∣∣ρc
B

]
∼ O(NA/N ) (43)

or V
(
ρc, OB

i

) ∼ O(NA/N ). (44)

First, the quantum variance can be rewritten as

V
(
ρ, OB

i

) = 1

C2

∑
k

V
(
ρ, OBk

i

)

+ 1

C2

∑
k �=l

Tr
[
OBk

i ⊗ OBl
i (ρBkBl − ρBk ⊗ ρBl )

]
.

(45)

The first term in (45) is the local variance, in which the terms

V
(
ρ, OBk

i

) = ∥∥(
σ i,1

Bk
− ρBk

)
ρ

−1/2
Bk

∥∥2

2 = V
(
ρ, OB1

i

)
(46)

will not grow with C. So we have

1

C2

∑
k

V
(
ρ, OBk

i

) = V
(
ρ, OB1

i

) × C−1. (47)

The second term in (45) depends on the correlations between
Bk and Bl . Suppose that the correlations of the canonical
thermal state decay algebraically, i.e.,∥∥ρc

BkBl
− ρc

Bk
⊗ ρc

Bl

∥∥ � d (Bk, Bl )
−γ , γ � DL, (48)

where DL is spatial dimension of the lattice and d (A, B) is the
shortest lattice path length between two regions A and B. The
γ characterizes the decay of the correlations, which is related
to the specific model. Then the second term of (45) is less than
or equal to

O2
max

C2

∑
k

∞∑
d=1

nd d−γ = d−γ

eff × O2
max

C , (49)

where Omax = ‖OB1
i ‖∞, and nd is the number of blocks that

are of distance d from Bk . For lattices with spatial dimension
DL, we have, in general, nd ∝ dDL−1. The deff is the effective
distance given by

∑∞
d=1 nd d−γ , while the

∑
k in (49) gives

C. Combining the above bounds, we see that (44) holds. Due
to the translation invariance of ρc, the variance for different
blocks should give the same result. Therefore, for many OB

i or
equivalent σ i, there should be

V
(
ρ, OB

i

) ∼ V
(
ρ, OBk

i

) = V
(
ρ, OB1

i

)
. (50)

This is an analog of the relation �(ρ, AB1 ) = �(ρ, AB) below
(18) since the OBk

i are also the translational copies of OB1
i

according to (38). With (50), we can rewrite (45) as

V
(
ρ, OB

i

) ∼ 1

C(C − 1)

∑
k �=l

× Tr
[
OBk

i ⊗ OBl
i (ρBkBl − ρBk ⊗ ρBl )

]
. (51)

It can provide a slightly tighter bound.
Second, we study the bounds on the BS relative entropy

(41). To this end, define the mth moment of the (expanded
logarithm) operator OB

i − 1,

M (m) = Tr
[
ρc

B

(
OB

i − I
)m]

, (52)
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which is the higher-moment generalization of (29). Then, by
the power series of the matrix logarithm, we have

Ŝ

[
1

C
∑

k

RBk→B
ρ

(
σ i,1

Bk

)∣∣∣∣ρc
B

]

= 1

C
∑

k

Tr

[
ρc

BOBk ln

(
1

C
∑

l

OBl

)]

= V
(
ρc, OB

i

) + · · · + (−1)n

n − 1
(M (n) + M (n−1)) + · · ·

= 1

2
V

(
ρc, OB

i

) +
∞∑

n=3

(−1)n

(n − 1)n
M (n). (53)

The first term V (ρc, OB
i ) has been bounded as in (49). The

other terms in (53) depend on the multipartite correlations,
and the higher moments M (m) in them can be bounded in the
same way as in [13],

M (m) � 1

Cm
O(Cm/2) ∼ O(C−m/2), (54)

where we omit those parts that do not increase with C. This
O(C−m/2) behavior decays faster than O(C−1), so the BS
entropy should be mainly bound by the behavior of the first
variance term. Thus, we obtain the overall bounds (43) on the
BS relative entropy.

Third, if we replace the canonical thermal state ρc by
another local state σBl in the above formulas, we will find that
the scaling analysis still holds. In other words, for two local
states, we have ∥∥σ i

Bk
− σ i

Bl

∥∥ ∼ O(C−1/2). (55)

This means the concentration of states of different subsystems
to a certain common equilibrium state. However, this (55) is
not the off-diagonal subsystem ETH (6). In fact, (6) holds in
the following sense: From the inequality (34) and the fact that
the bound on variance in the first step of the proof does not
depend on the specific forms of measurements, one obtains

‖σ i j‖1 ∼ O(C−1/2). (56)

We have therefore successfully proved the subsystem ETH
by showing the bounds or decaying behaviors (43) and (44).
We remark that this decay behavior O(N1/2

A /N1/2) is qual-
itatively consistent with the observations made in [16] that
the subsystem must be small compared to the total system
size. This is simply because for larger NA, the faster the de-
caying speed, and hence the remaining bound should be the
smaller NA.

In the previous proof, we mainly considered the case where
ρB is a Gibbs state. But in fact, our proof mainly uses the strict
positivity of ρB and the correlation decay (48). Therefore, as
long as these two properties are satisfied, other states can
also be used, such as microcanonical ensembles or certain
evolutionary steady states. Of course, when other states are
selected, the bounds of Omax will also be affected, thus affect-
ing the tightness of the bound.

Compared to the proofs given in (the Appendix) of [12],
we have changed the (in)distinguishability measure (12) to
the variance or BS relative entropy. We can apply such a re-
placement back to the proofs of the weak ETH with eigenstate

typicality as in [12] to see what happens. Similar to Eqs. (15)
and (32), the (in)distinguishability measure in (19) satisfies

|Tr[(�i − ρB)AB]|2 � V

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ i,k

B1

)]‖AB1‖2
∞.

(57)
By replacing d (� j

B, ρ; A) with the variance, we see that the
probabilistic typicality (13) becomes

〈Vdg〉 :=
∑

i

piV

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ i,k

B1

)]
. (58)

Similarly, we can consider the off-diagonal probabilistic typi-
cality,

〈Voff〉 :=
∑
i �= j

piV

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ

i j,k
B1

)]
. (59)

Similar to Eqs. (15) and (32), the off-diagonal measure also
satisfies∣∣Tr

[
�

i j
B AB

]∣∣2 � V

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ

i j,k
B1

)]‖AB1‖2
∞, i �= j.

(60)
Let ρB1 = ∑

α p′
α�α

B1
be the state of the subsystem B1 ex-

panded in the orthonormal basis {�α
B1

} of rank-1 projectors.
With these projectors and Eqs. (31) and (34), one can rewrite
Eqs. (58) and (59) as

〈Vdg〉 + 〈Voff〉 =
∑
i,α,β

pi p
′
α

−1
∣∣∣∣Tr

[(
1

C
∑

k

σ i,k
B1

− ρB1

)
�

αβ
B1

]∣∣∣∣
2

+
∑

i �= j,α,β

pi p
′
α

−1
∣∣∣∣Tr

[(
1

C
∑

k

σ
i j,k
B1

)
�

αβ
B1

]∣∣∣∣
2

.

(61)

Notice that the transformation (19) also applies to off-
diagonal terms,∣∣∣∣Tr

[(
1

C
∑

k

σ
i j,k
B1

)
AB1

]∣∣∣∣
2

=
∣∣∣∣Tr

[
�i j

(
1

C
∑

k

ABk

)]∣∣∣∣
2

, i �= j.

(62)
Using Eqs. (19) and (62), we can convert the average local
state back to the average observable. Then, according to the
form of variance in formula (11), we have

〈Vdg〉 + 〈Voff〉 =
∑
β,α

p′
βV

[
ρ,

1

C
∑

k

J −1/2
ρBk

(
�

αβ
Bk

)]
, (63)

where �
αβ
Bk

is the translational copies of �
αβ
B1

. In (63), we have
used the property that

J −1/2
ρBk

(
�

αβ
Bk

) = (p′
α p′

β )−1/2�
αβ
Bk

. (64)

Since we assume that state ρ is translation invariant, therefore
�α

Bk
is still the diagonal basis of ρBk . The right-hand side of

inequality (63) can be bounded like inequality (45). It should
be pointed out that due to the orthogonal relationship between
operators,

J −1/2
ρBk

(
�α

Bk

)[
J −1/2

ρBk

(
�

αβ
Bk

)]† = 0, β �= α,

J −1/2
ρBk

(
�

αγ

Bk

)[
J −1/2

ρBk

(
�

αβ
Bk

)]† = 0, β �= γ , (65)
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the corresponding local variance term satisfies

p′
αV

[
ρ,J −1/2

ρBk

(
�α

Bk

)] +
∑

β,β �=α

p′
βV

[
ρ,J −1/2

ρBk

(
�

αβ
Bk

)]

= p′
αV

[
ρ, p′

α

−1
(

�α
Bk

+
∑

β,β �=α

�
αβ
Bk

)]
. (66)

The other terms are very small as long as the correlations
decay fast enough. Combining Eqs. (58), (59), and (63), we
have the Chebyshev-type inequality,

Pρ

{ ∑
j

V

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ

i j,k
B1

)]
� ε2

}

� 1

ε2

{ ∑
β,α

p′
βV

[
ρ,

1

C
∑

k

J −1/2
ρBk

(
�

αβ
Bk

)]}
, (67)

for ε > 0. When the right-hand side of Eq. (67) is very
small, we can conclude that the measurement results concen-
trate on the results predicted by ρ. It is similar to the weak
ETH with eigenstate typicality, but it includes both diago-
nal and off-diagonal ETH and does not depend on specific
measurements.

The local observable in Vdg and Voff only measures the
state of B1, but it is determined by the average state of each
block. On the contrary, the observable (38) will measure the
state of each block, but is only determined by the state of B1.
They look very different, but they are deeply connected, as
we will show below. In Eq. (61), we use the variation form
(31) and the spectral decomposition of ρB1 . If we use the vari-
ation form (35) and the spectral decomposition of ρB instead,
we get

〈Voff〉 + 〈Vdg〉 =
∑
i, j

piV

[
ρ,

1

C
∑

k

J −1/2
ρB1

(
σ

i j,k
B1

)]

=
∑

i �= j,α,β

pi pα

∣∣∣∣Tr

[
J −1/2

ρB1

(
1

C
∑

k

σ
i j,k
B1

)
σ

αβ
B1

]∣∣∣∣
2

+
∑
i,α,β

pi pα

∣∣∣∣Tr

[
J −1/2

ρB1

(
1

C
∑

k

σ i,k
B1

− ρB1

)
σ

αβ
B1

]∣∣∣∣
2

=
∑

i, j,α �=β

pi pα

∣∣∣∣Tr

[
1

C
∑

k

σ
i j
Bk
J −1/2

ρBk

(
σ

αβ,1
Bk

)]∣∣∣∣
2

+
∑
i, j,α

pi pα

∣∣∣∣Tr

[
1

C
∑

k

σ
i j
Bk
J −1/2

ρBk

(
σα,1

Bk
− ρBk

)]∣∣∣∣
2

=
∑
α,β

pαV

[
ρ,

1

C
∑

k

J −1/2
ρBk

(
σ

αβ,1
Bk

)]
. (68)

This equation establishes the connection between Vdg, Voff, and
V (ρ, OB

i ), V (ρ, OB
i �= j ).

Now we briefly discuss the equivalence between the micro-
canonical and canonical ensembles. To this end, we consider a
microcanonical energy shell (E − δ, E ] with width δ with the
index set

ME ,δ = {i|Ei ∈ (E − δ, E ]}. (69)

The (in)distinguishability of the microcanonical and canonical
ensembles can be bounded with∥∥ρmc

B1
− ρc

B1

∥∥
1 �

∑
i∈ME ,δ

1

D

∥∥∥∥ 1

C
∑

k

σ i,k
B1

− ρc
B1

∥∥∥∥
1

�
∑

i∈ME ,δ

1

D

{
V

[
ρc,

1

C
∑

k

J −1/2
ρc

B1

(
σ i,k

B1

)]}1/2

,

(70)

where we have used the joint convexity of Schatten norm
and (32). In the large-N limit, we have, from (67), that the
right-hand side of (70) is very small, so we can conclude
the equivalence between the microcanonical and canonical
ensembles in this case.

V. THE BOUND FROM THE CLUSTERING OF
CORRELATIONS

It seems that the Hamiltonian of the system does not make
an appearance in the above proof, but, in fact, the Hamiltonian

is important in the condition (48) of correlations leading to
(49). We see that as long as the correlations decay fast enough,
i.e., γ � DL, the scaling (49) and hence the above proof of the
subsystem ETH holds. For models with exponentially decay-
ing correlations, the above conditions can be easily satisfied.

We remark that the behavior of (49) holds not only for
short-range interactions, but also for some types of long-range
interactions. To see this, let us recall that the mutual informa-
tion of the Gibbs state has some general bounds; in particular,
for long-range interactions of the form 1/dη+DL , η > 0, we
have, for high temperatures, the following bound on mutual
information between two regions A and C:

I (A : C) � β min(NA, NC )
Cβ

d (A,C)η
, (71)

where Cβ is a function of the inverse temperature β indepen-
dent of the system size which can be found in [34]. The mutual
information can be related to the relative entropy through
I (A : C) = S(ρAC ||ρA ⊗ ρC ), whence

∥∥ρc
BkBl

− ρc
Bk

⊗ ρc
Bl

∥∥ �
√

2I (Bk : Bl ) �
N1/2

A

√
2βCβ

d (Bk, Bl )η/2
, (72)

where we have assumed NA < NC and used (30). Since nd ∝
dDL−1, we obtain

lim
C→∞

C1/DL∑
d=1

dDL−1d−η/2 ×
( ∑

k

1

C2

)
= O(C−η/(2DL ) ). (73)
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When η > 0, it is possible that the estimate (49) still holds.
We see that for one-dimensional systems (DL = 1), we require
η = 2 to conform to the estimate (49). Compared to the nu-
merical results reported in [35], this value is within the range
of validity of strong ETH, i.e., η + DL � 0.6, although with a
slower speed of convergence.

VI. CONCLUSION AND DISCUSSION

We have studied the subsystem ETH for translation in-
variant quantum systems. We develop upon the setting for
translation invariant systems given in [12] by relating the
quantum variance to the BS relative entropy. Surprisingly,
with this technical input, we are able to prove the subsystem
ETH for translation invariant systems using the similar scaling
analysis as in [12]. The proof given above is elementary, with-
out referring to the advanced techniques from random matrix
theory. Since the subsystem is stronger than the local ETH,
our results corroborate the previous results for local ETH for
translation invariant systems [9,11,12].

We have remarked that our results apply to some long-
range interacting systems. Compared with the recent numer-
ical test for one-dimensional translation invariant systems
[35], the constraint on the interaction parameter here is less

stringent, but can be applied to other dimensions. However,
adding an external driving field will make the system nonequi-
librium [36], even when the system is translation invariant.
Another point is that our results only restrict the decaying of
error terms algebraically. The exponential decays of errors is
a quite strong result, which might not be universal in view of
the examples from large-c CFTs with O(c0) decay [20,21,23].

In the analysis of (53), the higher moments are relevant.
The higher-moment versions of ETH can be related to many
interesting structures, such as the out-of-time-ordered corre-
lation functions indicating quantum chaos [37]. This could
be a possible approach to relating the chaotic conjecture and
the present analysis without referring to random matrices.
Moreover, it is also interesting to study the eigenstate fluc-
tuation theorems [12,38] at the subsystem level, which might
be a suitable situation for thermalized open quantum systems.
These aspects are left to future investigations.
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