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Kibble-Zurek scalings and coarsening laws in slowly quenched classical Ising chains
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We consider a one-dimensional classical ferromagnetic Ising model when it is quenched from a low temper-
ature to zero temperature in finite time using Glauber or Kawasaki dynamics. Most of the previous work on
finite-time quenches assume that the system is initially in equilibrium and focuses on the excess mean defect
density at the end of the quench, which decays algebraically in quench time with Kibble-Zurek exponent. Here
we are interested in understanding the conditions under which the Kibble-Zurek scalings do not hold and in
elucidating the full dynamics of the mean defect density. We find that depending on the initial conditions
and quench time, the dynamics of the mean defect density can be characterized by coarsening and/or the
standard finite-time quench dynamics involving adiabatic evolution and Kibble-Zurek dynamics; the timescales
for crossover between these dynamical phases are determined by coarsening time and stationary state relaxation
time. As a consequence, the mean defect density at the end of the quench either is a constant or decays following
coarsening laws or Kibble-Zurek scaling. For the Glauber chain, we formulate a low-temperature scaling theory
and find exact expressions for the final mean defect density for various initial conditions. For the Kawasaki chain
where the dynamic exponents for coarsening and stationary state dynamics are different, we verify the above
findings numerically and examine the effect of unequal dynamic exponents.
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I. INTRODUCTION

The phenomenon of phase ordering in systems exhibiting
thermal phase transition between a disordered and an ordered
phase has received considerable attention in the past few
decades [1]. Following a sudden quench from a disordered
phase to a low-temperature symmetry-broken phase, the sys-
tem does not order instantaneously; instead, the domains of
the symmetry-broken phase grow locally until the system
reaches the equilibrium state at large times [1]. Even if the
system is quenched at a finite rate, it is not in equilibrium at
the end of the quench, and there are more defects compared
to the equilibrium state at that quench temperature; one can
then ask how the number of excess defects decays with the
quench time and what the dynamics are while the system is
being slowly cooled.

Some of these questions can be addressed in the framework
of a theory first proposed by Kibble to describe the symme-
try breaking in the early universe [2,3] and later extended
by Zurek to condensed matter systems [4,5]. For a classical
or quantum system that shows a continuous phase transition
between a disordered and an ordered phase, under a time-
dependent change of a control parameter such as temperature,
the Kibble-Zurek (KZ) theory predicts that there are more
defects at the end of the slow quench than in equilibrium at
the quench temperature, and the residual density of defects, in
general, decays algebraically in quench time with an exponent

*lakshita@jncasr.ac.in
†jain@jncasr.ac.in

that depends on equilibrium critical exponents and quench
protocol.

These results can be understood by noting that if the system
is initially deep in the high-symmetry phase, there is a compe-
tition between two timescales, viz., the equilibrium relaxation
time and the time remaining until the end of the quench.
Away from the critical region where the correlation length
is small, as the equilibrium relaxation time is much smaller
than the time left until the end of the quench, the system has
sufficient time to relax in response to the changing temper-
ature and reaches the equilibrium state at the instantaneous
temperature (adiabatic phase). However, in the critical region,
as the equilibrium correlation length and hence the relaxation
time diverges, the system is unable to relax and falls out of
equilibrium (KZ phase) so that there are more defects than had
the system been in equilibrium. Assuming that the dynamics
are “frozen” in the nonequilibrium phase, the KZ argument
predicts how the excess mean defect density scales with the
quench time [3,5].

The slow annealing problem described above has been
studied theoretically in various condensed matter systems in-
cluding classical [6–21] and quantum [22–27] Ising models,
and the KZ predictions have also been verified in experiments
[28] on a wide variety of systems such as non-Newtonian
fluids [29], colloidal monolayers [30], ultra-cold atomic gases
[31], and superfluid 3He [32]. However, it has also been shown
in theoretical studies that if the system is quenched deep in
the ordered phase, the excess mean defect density follows
coarsening (and not the KZ) scaling laws [11,14], and that
the dynamics are not frozen in the KZ phase, which affects
the amplitude (but not the KZ exponent) of the mean defect
density at the end of the quench [18].
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The KZ argument described above assumes that the system
is initially in equilibrium state and far from the critical region.
However, if the system starts in a nonequilibrium state or it is
initially equilibrated to a temperature in the critical region and
the quench time is not long enough for the system to reach the
adiabatic phase, the KZ scalings may not hold. For the Ising
chains studied here, we find that if the quench time is small
compared to the equilibrium relaxation time, the system ini-
tially equilibrated to a temperature in the critical region cannot
relax to the perturbations arising due to changing temperature,
and the mean defect density (viz., the domain walls between
the consecutive up and down spins) at the end of the quench
remains close to its initial value; on the other hand, if the
system is initially not in equilibrium and quench times are
small relative to the critical coarsening timescales, the mean
defect density decreases following critical coarsening laws.
For larger quench time (relative to the appropriate relaxation
time), however, we find that the KZ scalings hold provided
the system size is large enough. Interestingly, for the infinitely
long Glauber chain, we show that the mean defect density at
the end of quench can be captured exactly by a single expres-
sion [see (21), (28), and (32) for different initial conditions]
for both small and large quench times.

In the following sections, we study these scenarios in de-
tail; besides the results mentioned above for the mean defect
density at the end of the quench, we also obtain analytical
expressions for its temporal evolution in the Glauber Ising
chain and focus on how the difference between the mean
defect density at an instant and the corresponding equilibrium
mean defect density at the instantaneous temperature (excess
mean defect density) varies with time. We find that depending
on the initial state and quench time, the dynamical evolution
can be characterized by coarsening and/or the standard adia-
batic evolution and KZ dynamics, and the crossover between
these dynamical phases occurs on timescales that depend on
the nonequilibrium and equilibrium relaxation times. Some of
these results are also verified numerically for the Kawasaki
chain for which, unlike the Glauber model, the dynamic expo-
nent characterizing coarsening phenomenon is different from
the stationary state dynamic exponent.

II. GLAUBER ISING CHAIN

A. Model

We consider a one-dimensional ferromagnetic Ising model
with nearest-neighbor interactions defined by the Hamiltonian

H = −
L∑

i=1

σiσi+1, (1)

where the spin variable σi = ±1 at site i and σL+1 = σ1 as we
assume periodic boundary condition for a finite-sized system.
In the equilibrium state, the correlation length ξeq(T ) ∼ e

2
T

diverges at the critical temperature T = 0.
To study the finite-time quench dynamics, in this sec-

tion we consider the Glauber dynamics in which the system
evolves via single spin-flip and the total magnetization is
not conserved [33]. The probability that the system is in a

configuration {σ1, σ2, . . . , σL} at time t is described by

d

dt
p(σ1, . . . , σi, . . . , σL, t )

=
L∑

i=1

[w(−σi → σi, t ) p(σ1, . . . ,−σi, . . . , σL, t )

− w(σi → −σi, t ) p(σ1, . . . , σi, . . . , σL, t )], (2)

where w(σi → −σi, t ) is the transition rate at which the spin
i flips at time t and is given by [18,33]

w(σi → −σi, t ) = 1 − γ (t )

2
σi(σi−1 + σi+1) (3)

with

γ (t ) = tanh

(
2

T (t )

)
. (4)

Previous work [12,18] has shown that if the system is
cooled faster than a logarithmic decay in time (for exam-
ple, if the temperature is decreased algebraically in time),
the dynamics are essentially the same as that for infinitely
rapid quench (up to logarithmic factors; see (23) and (24)
of [18]). We therefore consider the cooling protocol, T (t ) ∼
−4{ln[(1 − γ0)(1 − t

τ
)α]}−1, or

1 − γ (t ) = (1 − γ0)

(
1 − t

τ

)α

, α > 0, (5)

which states that the system is initially at a temperature T0

where γ0 = tanh(2/T0) and then cooled to zero temperature
in a finite time τ . Note that the above finite-time quench
protocol reduces to the instantaneous quench problem when
the parameter α → ∞.

B. Dynamics of spin-spin correlation function

In the following, we study the equal time spin-spin corre-
lation function

Gk (t ) = 〈σi(t )σi+k (t )〉, (6)

where the angular brackets denote the average with respect
to the distribution p({σi}, t ). One can write the time-evolution
equation for Gk (t ) by multiplying both sides of (2) with σiσi+k

and summing over all the possible configurations [33]. For
time-dependent γ , we then obtain [6,9,12,18]

dGk

dt
= −2Gk + γ (t )(Gk−1 + Gk+1), k = 1, . . . , L − 1

(7)

with the boundary conditions, G0(t ) = GL(t ) = 1 and the ini-
tial condition, Gk (0). The mean defect density, which is the
mean domain wall density in this article, is related to the
correlation function as

D(t ) = 1 − G1(t )

2
. (8)

We first briefly summarize the known results that are perti-
nent to the discussion in the following subsections. When an
infinitely large system is instantaneously cooled (or heated) to
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a time-independent temperature T , the general solution for the
two-point correlation function is given by (63) of [33],

Gk (t ) = Gk,eq + e−2t
∞∑

l=1

(Gl (0) − Gl,eq)

× [Ik−l (2γ t ) − Ik+l (2γ t )], (9)

where Gk,eq is given by (10) below, γ (T ) is given by (4) for
a constant temperature T , and Iν (z) is the modified Bessel
function of the first kind. At t → ∞, the system reaches
the equilibrium state at temperature T where the correlation
function is given by (54) and (56) of [33]:

Gk,eq =
(

1 −
√

1 − γ 2

γ

)k

, (10)

from which we obtain the equilibrium mean defect density at
a low temperature T � 1 to be

Deq(T ) ≈
√

1 − γ

2
, γ → 1. (11)

As shown in Appendix A, if the system is instantaneously
quenched from a high temperature to a low temperature T ,
the mean defect density at large times decays as [33]

D(t ) ≈ 1

2
√

πt
[1 + 2(1 − γ )t], 1 � t � (1 − γ )−1. (12)

Likewise, if the system is initially in the equilibrium state at
zero temperature and is instantaneously heated to 0 < T � 1,
the defects in the system increase (see Appendix A):

D(t ) ≈ 2(1 − γ )

√
t

π
, 1 � t � (1 − γ )−1. (13)

On the other hand, if an infinitely large system is cooled to
zero temperature in a finite time τ using an arbitrary protocol
γ (t ), an exact expression for Gk (t ) can be written as [9,18]

Gk,eq(t ) − Gk (t ) =
∫ t

0
dt ′ e−2(t−t ′ ) dγ (t ′)

dt ′

∫ π

0

dq

π

sin(kq) sin(q)

[1 − γ (t ′) cos(q)]2
e2 cos(q)

∫ t
t ′ dy γ (y)

+ 2

π

∫ π

0
dq sin(kq) e−2

∫ t
0 dy[1−γ (y) cos(q)]

∞∑
m=1

sin(mq) [Gm,eq(0) − Gm(0)], (14)

where due to (10), Gk,eq(t ) = ( 1−
√

1−γ (t )2

γ (t )

)k
with γ (t ) given

in (5). Using the above result, the dynamics of the spin-spin
correlation function in the KZ phase have been studied in
detail for the cooling protocol (5) starting from an infinite
temperature (γ0 = 0), and it is shown that for large τ , the
mean defect density at the end of the quench is given exactly
by [18]

D(τ ) = 1

2
√

π

(
2

1 + α

) 1
2(1+α)

	

(
1 + 2α

2 + 2α

)
× 1

τ
α

2(1+α)
, (15)

which, for a given τ , decreases monotonically with exponent
α. For α → 0, the system stays close to the initial high tem-
perature until τ and therefore carries almost all the initial
defects till the end of the quench, while for α → ∞, the
number of defects decrease via coarsening and (15) coincides
with (12) when γ = 1.

The τ scaling in (15) can be understood using the Kibble-
Zurek argument [3,5]: below a timescale t̂ , the system can
relax to the equilibrium state at the instantaneous temper-
ature (adiabatic phase: t � t̂) and therefore, the relevant
timescale in this regime is the equilibrium relaxation time,

ξ
zeq
eq (t ) ∼ e

2zeq
T (t ) ∼ [1 − γ (t )]−

zeq
2 � t̂ . But above t̂ where the

system cannot relax due to diverging correlation length (KZ
phase: t̂ � t < τ ), the only timescale is the time remaining
until the quench ends, viz., τ − t̂ . For the cooling protocol (5),
these two timescales are comparable when

τ − t̂ ∼ (1 − γ0)
−zeq

2+αzeq τ
αzeq

2+αzeq . (16)

Assuming that the dynamics during t̂ < t < τ can be ne-
glected, the mean defect density D(τ ) ∼ D(t̂ ) ∼ ξ−1

eq (t̂ ) and
yields

D(τ ) ∼ (1 − γ0)
1

2+αzeq τ−β, (17)

where the KZ exponent

β = α

2 + αzeq
, (18)

which matches the τ dependence in (15) on using that the
stationary state dynamic exponent zeq = 2 [33,34] for the
Glauber chain.

The expression for the spin-spin correlation function given
in (14) is valid for an infinitely large system and arbitrary
initial temperature T0, and has been analyzed for large τ and
high T0 [18]. Here we are interested in the scenario when
T0 � 1. But as the double integrals appearing in (14) are
quite involved, in Appendix B we develop a scaling theory for
low initial temperature or large initial correlation length. For
infinitely long chain, we find that for τ → ∞, γ0 → 1 with
finite τ (1 − γ0), the spin-spin correlation function is given by

G(y, x) = 2

π

∫ ∞

0
dq sin(qy) q e−q2x

×
∫ x

0
dw eq2w− 2λ0

α+1 ((1−w)α+1−(1−x)α+1 )

+
√

2

π

∫ ∞

0
dq sin(qy) G̃(q, 0)

× e−q2x+ 2λ0
α+1 ((1−x)α+1−1), (19)
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FIG. 1. Glauber Ising chain when the system is initially equilibrated to a low temperature T0 and then slowly quenched to zero temperature.
(a) The inset and main figure, respectively, show the dynamics of mean defect density and excess mean defect density for various quench
times, and are obtained by numerically solving the exact equation (7) (dots), which are compared for representative values of τ with (19) from
low-temperature theory (black solid lines). (b) The figure shows the mean defect density at the end of the quench as a function of τ in three
different regimes (represented by different colors) for a fixed T0 and L, where the line depicts the analytical solution (21). In these figures the
system size L = 2000, T0 = 0.5 and corresponding ξ0 ≈ 27.3, and α = 3 in the cooling protocol (5).

where

y = k√
τ

, x = t

τ
, λ0 = τ (1 − γ0) (20)

and G̃(q, 0) is the sine transform of the initial condition
G(y, 0). Furthermore, the effect of finite system size is dis-
cussed using a scaling argument. We also compare our
analytical results with the numerical solution of the exact
equation (7).

1. Equilibrium initial condition

We first consider the situation when the system of size L
initially in the equilibrium state at a low temperature T0 is
slowly quenched to zero temperature using the cooling proto-
col (5). As the initial correlation length ξ0 ≡ ξeq(T0) is large,
a perturbation in the equilibrium state due to changing tem-
perature will take time ∼ξ

zeq

0 = ξ 2
0 to relax [see Appendix D,

Fig. 7(a)]. Therefore if the quench time τ � ξ 2
0 (regime I),

as shown in the inset of Fig. 1(a), the mean defect density
stays close to its equilibrium value at T0 or the excess mean
defect density increases with time [see Fig. 1(a) for τ = 100];
thus the system cannot enter the adiabatic phase, and the mean
defect density is not expected to follow the KZ scaling (17) at
late times. For larger quench times (regime II), as shown in
Fig. 1(a) for τ > 100, the excess mean defect density initially
increases as D(t ) ≈ Deq(T0) for t � ξ 2

0 , but for ξ 2
0 � t � t̂ ,

the system relaxes to the instantaneous temperature and the
excess mean defect density remains constant; this adiabatic
phase is followed by the KZ phase where the system cannot
keep up with the changing temperature due to diverging cor-
relation length and the excess mean defect density increases
for t̂ � t < τ . If the quench time is long enough that the
finite-sized system can relax (regime III), that is, τ − t̂ � Lzeq ,

the deviation of the mean defect density from its equilibrium
value is essentially zero; see Fig. 1(a) for τ = 4 × 106.

Below we describe the dynamics of mean defect density
quantitatively using the low-temperature theory discussed in
Appendix B; Fig. 1(a) shows a comparison of the mean defect
density obtained by numerically solving the exact equation (7)
and the solution (19) from the low-temperature theory for
representative values of τ , and we find a good agreement.
In view of the dynamical phases discussed above, the mean
defect density at the end of the quench falls in three distinct
regimes that are shown in Fig. 1(b). For an infinitely large
system, using (C13) and (C19), we find that in regimes I and
II, the exact expression for D(τ ) is given by

D(τ ) = 1

2
√

πτ

[(
2λ0

α + 1

) 1
2α+2

	

(
2α + 1

2α + 2

)

+ 1

2(α + 1)
E 3+2α

2α+2

(
2λ0

α + 1

)]

− e− 2λ0
α+1

2
√

πτ
[1 − e2λ0

√
2πλ0 erfc(

√
2λ0)], (21)

where λ0 = τ (1 − γ0) ∼ τ

ξ 2
0

and En(z) is the exponential in-
tegral function, and matches the numerical results shown in
Fig. 1(b). We now discuss these regimes in detail.

Regime I: For λ0 � 1 or τ � ξ 2
0 , as the system does not

get enough time to relax to the slowly changing temperature,
it is always in a nonequilibrium state. From (C9a) and (C18a),
we find that at short times

DI (t ) ≈
√

1 − γ0

2
, t � (1 − γ0)−1 (22)

054116-4



KIBBLE-ZUREK SCALINGS AND COARSENING LAWS IN … PHYSICAL REVIEW E 109, 054116 (2024)

so that the mean defect density remains close to its initial
value, viz., the equilibrium mean defect density Deq(T0) given
by (11) and the excess mean defect density changes linearly
with time [see (25a) below]. If the quench time is not too
small, the mean defect density evolves and decreases with
time [see the inset of Fig. 1(a)]. At the end of the quench,
from (21), we find that the mean defect density is given by

DI (τ ) =
√

1 − γ0

2

(
1 −

√
2λ0

π

4α

2α + 1

)
, λ0 � 1. (23)

The first factor on the r.h.s. of the above equation is simply the
equilibrium mean defect density as the system stays close to
the initial state due to diverging correlation length and small
quench time, and the second factor which depends on the de-
tails of the cooling protocol captures the reduction in the mean
defect density from Deq(T0) due to changing temperature.

Regime II: For 1 � λ0 or ξ 2
0 � τ � L1/β , from (C9) and

(C18), we find that

DII (t ) ≈
⎧⎨
⎩

√
1−γ0

2 , 0 < t � (1 − γ0)−1,√
(1−γ0 )(1− t

τ
)α

2 , (1 − γ0)−1 � t � τ
2 ,

(24a)

(24b)

which, on comparing with (11), show that the mean defect
density is close to its initial value at very short times and then

enters the adiabatic phase where D(t ) ≈ Deq(t ) ≈
√

1−γ (t )
2 . At

later times (t � t̂) where the system is in the KZ phase, the
dynamics are described by (34) of [18] for γ0 = 0, and we
do not discuss them here. As a result, the excess mean defect
density is given by

DII (t ) − Deq(t )

≈
{

α
√

1−γ0

2
√

2
t
τ
, 0 < t � (1 − γ0)−1,

α

16
√

2(1−γ0 )
1
τ
, (1 − γ0)−1 � t � τ

2 .

(25a)

(25b)

But at the end of the quench, from (21) [or, alternatively,
adapting the analyses of [18] to nonzero γ0], we obtain

DII (τ ) = (1 − γ0)
1

2(1+α) DII (τ, γ0 = 0), λ0 � 1, (26)

where DII(τ, γ0 = 0) is given by (15). As expected, the mean
defect density at the end of the quench is smaller when the
system is initially equilibrated to low temperatures than when
one starts with high temperatures.

Regime III: For τ � ξ 2
0 , in an infinitely large system, the

mean defect density at the end of the quench is inversely
proportional to the correlation length, ξ (t̂ ). But in a finite
system, we expect that

DIII (τ ) = 1

ξ (t̂ )
F̃

(
ξ (t̂ )

L

)
= 1

τβ
F

(
τ

L1/β

)
, (27)

where the scaling function F (w) is a constant for τ � L1/β

(regime II) and decays rapidly for τ � L1/β towards the equi-
librium value (viz., zero) [see Appendix D, Fig. 7(b)]. Naïvely,
one may expect that the quench time over which the finite sys-
tem reaches the equilibrium state scales as Lzeq = L2, but, as
stated above, the system relaxes to equilibrium if the quench
time τ ∼ L1/β . Thus the quench time in which the system
reaches the equilibrium state is nonuniversal, and the scaling
exponent 1

β
= 2 + 2

α
for finite-time cooling is larger than that

for instantaneous quench. Note, however, that (27) assumes

that ξ0 � L but, if the initial correlation length is as large as
the system size, the system never reaches the adiabatic phase
[see Appendix E, Fig. 8(a)], and the finite system relaxes to
equilibrium when τ ∼ L2.

2. Nonequilibrium initial condition I

We now consider a situation where the finite-sized system
is initially not in equilibrium at a low temperature T0. Specifi-
cally, we assume that the system is in the equilibrium state at a
high temperature Ti � 1 and then instantaneously cooled to a
low temperature T0 � 1; starting from the resulting nonequi-
librium state, the system is slowly cooled from T0 to zero using
the cooling protocol (5).

For t � τ where the variation in temperature can be
neglected, the system behaves as if it is instantaneously
quenched from Ti to T0 and undergoes coarsening dynamics;
as Fig. 2(a) shows, the dynamics of mean defect density under
finite-time quench match those following a rapid quench from
Ti to T0 until a time t0 ∼ ξ

zco
0 = ξ 2

0 as the system reaches the
equilibrium state at T0 on this timescale. If the quench time is
small (τ � ξ

zco
0 ) so that the system cannot equilibrate to T0,

it stays in the coarsening phase until the end of the quench
[see the inset of Fig. 2(a)] and the KZ scaling (17) is not
expected to hold. But if the quench time is long enough that
the system can equilibrate to T0, the dynamics are the same as
discussed in the last subsection; in fact, as shown in Fig. 2(a)
for τ > 100, the finite-time quench curve for nonequilibrium
initial condition now matches the finite-time quench dynamics
when the system is initially equilibrated to T0 where, as dis-
cussed in Sec. II B 1, the dynamics are in the adiabatic phase
(t0 � t � t̂) and KZ phase (t̂ � t < τ ).

For an infinitely large system, from (C13) and (C20), we
find that the mean defect density at the end of quench is given
exactly by

D(τ ) = 1

2
√

πτ

[(
2λ0

α + 1

) 1
2α+2

	

(
2α + 1

2α + 2

)

+ 1

2(1 + α)
E 3+2α

2α+2

(
2λ0

α + 1

)]
(28)

and matches the numerical results shown in Fig. 2(b). The dy-
namics of the mean defect density are quantitatively described
below.

Regime I: for λ0 � 1 or τ � ξ 2
0 , the system is always in a

nonequilibrium state, and from (C9a) and (C20), we find that
at short times

DI (t ) ≈ 1

2
√

πt
[1 + 2(1 − γ0)t], t � (1 − γ0)−1, (29)

which matches the result (12) for rapid quench to T0. However,
for t � τ where the effect of changing temperature cannot be
neglected, the mean defect density curve starts diverging from
the instantaneous cooling curve [see the inset of Fig. 2(a)].
As a result, the mean defect density at the end of the quench
calculated from (28) is given by

DI (τ ) = 1

2
√

πτ

(
1 + 2λ0

2α2 + 3α + 1

)
, λ0 � 1. (30)

As explained for (15), the above expression shows that the
mean defect density at the end of the finite-time quench is
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FIG. 2. Glauber Ising chain when the system is first instantaneously cooled from a high temperature Ti to a low temperature T0, and then
slowly quenched to zero temperature. (a) The inset and main figure, respectively, show the dynamics of mean defect density and excess mean
defect density for various quench times, and are obtained by numerically solving the exact equation (7); in the inset, the green points show
the comparison with (19) from low-temperature theory. In these plots, the black line corresponds to the exact solution (9) when the system
is instantaneously cooled to T0, and the red dashed lines represent the excess defects obtained by numerically solving (7) when the system is
initially equilibrated to T0. (b) The figure shows the mean defect density at the end of the quench as a function of τ in three different regimes
(represented by different colors) for a fixed T0 and L, where the line depicts the analytical solution (28). The parameters are L = 2000, T0 = 0.5
and corresponding ξ0 ≈ 27.3, and α = 3 in the cooling protocol (5).

larger than that for instantaneous quench to zero temperature.
But, as the inset of Fig. 2(a) and a comparison between (12)
and (30) show, it is smaller than when the system is instanta-
neously quenched to T0.

Regime II: For 1 � λ0 or ξ 2
0 � τ � L1/β , (C9) and (C20)

show that

DII (t )

≈
⎧⎨
⎩

1
2
√

πt
[1 + 2(1 − γ0)t], 0 � t � (1 − γ0)−1,√

(1−γ0 )(1− t
τ

)α

2 , (1 − γ0)−1 � t � τ
2 ,

(31a)

(31b)

and the mean defect density at the end of the quench is given
by (26).

Regime III: For ξ0 � L, τ � L1/β , the mean defect density
has the same behavior as in regime III of Sec. II B 1. But if
ξ0 ∼ L, the mean defect density at the end of quench does
not follow KZ scaling for any quench time as the system
cannot enter the adiabatic phase, and instead it decays accord-
ing to the coarsening law until the system equilibrates [see
Appendix E, Fig. 8(b)].

3. Nonequilibrium initial condition II

We now consider a situation where a finite-sized system in
the critical state (that is, zero temperature) is instantaneously
heated to a low temperature T0 and then slowly cooled to zero
temperature using the cooling protocol (5). At short times t �
τ where the effect of changing temperature can be neglected,
as in Sec. II B 2, the system behaves as if it is instantaneously
heated from zero temperature to a finite temperature T0; this
is verified in Fig. 3(a), where the dynamics of the mean de-

fect density under finite-time quench match those following
a rapid heating from Ti = 0 to T0 till a time t0 ∼ ξ 2

0 as the
system reaches the equilibrium state at T0 on this timescale.
As in Sec. II B 2, now depending on whether τ is smaller or
larger than ξ 2

0 , the mean defect density at the end of quench
shows different scalings.

From (C13) and (C25), we find that for this protocol, the
mean defect density at the end of quench is given exactly by

D(τ ) = 1

2
√

πτ

[(
2λ0

α + 1

) 1
2α+2

	

(
2α + 1

2α + 2

)

+ 1

2(1 + α)
E 3+2α

2α+2

(
2λ0

α + 1

)
− e− 2λ0

α+1

]
(32)

and matches the numerical results shown in Fig. 3(b).
Regime I: for λ0 � 1 or τ � ξ 2

0 , from (C9a) and (C24a),
we find that at short times, the mean defect density increases
as

DI (t ) ≈ 2(1 − γ0)
√

t√
π

, t � τ

2
, (33)

which matches the result (13) for instantaneous heating to
temperature T0. For t � τ , the mean defect density decreases
so that a peak in D(t ) occurs at a time that scales linearly with
quench time. Furthermore, from (32), we find that the mean
defect density at the end of the quench is given by

DI (τ ) = 1√
πτ

(
2λ0

2α + 1

)
, λ0 � 1, (34)

which, as expected, approaches zero as α → ∞.
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FIG. 3. Glauber Ising chain when the system in the equilibrium state at zero temperature is instantaneously heated to a low temperature T0

and then slowly cooled to zero temperature. (a) The figure shows the dynamics of the mean defect density for various quench times obtained
by numerically solving the exact equation (7), and the blue dots for τ = 500 show the comparison with (19) from low-temperature theory. As
the quench time increases, the system is able to reach the equilibrium state at T0 as shown by the red dashed line, and the black line corresponds
to the exact solution (9) when the system is instantaneously heated to T0. (b) The figure shows the mean defect density at the end of the quench
as a function of τ in three different regimes (represented by different colors) for a fixed T0 and L where the line depicts the analytical solution
(32). In these figures the parameters are L = 2000, T0 = 0.5 and corresponding ξ0 ≈ 27.3, and α = 3 in the cooling protocol (5).

Regime II: For λ0 � 1 or τ � ξ 2
0 , the mean defect density

initially increases until it reaches Deq(T0) followed by the
adiabatic phase so that from (C9) and (C24), we have

DII (t ) ≈
⎧⎨
⎩

2(1−γ0 )
√

t√
π

, 0 � t � (1 − γ0)−1,√
(1−γ0 )(1− t

τ
)α

2 , (1 − γ0)−1 � t � τ
2 ,

(35a)

(35b)

which is followed by the KZ phase where the mean defect
density at the end of quench is given by (26).

Regime III: For τ � L1/β , we obtain the same behavior
as in regime III described in Sec. II B 1 provided ξ0 � L,
otherwise the regime II is absent and the mean defect den-
sity increases as

√
τ until the finite system equilibrates [see

Appendix E, Fig. 8(c)].

C. Dynamics of autocorrelation function

In the last section, we discussed the equal time spin-spin
correlation function, and here we briefly consider the unequal
time spin-spin correlation function

Cn(t, tw ) = 〈σi(tw )σi+n(t )〉, (36)

where tw � t is the waiting time. Using the conditional proba-
bility p(σ, t |σ ′, tw ) of finding an infinitely large system in the
state σ at time t , given that it was in state σ ′ at time tw < t ,
as for the equal time correlation function, we can write the
differential equation for the unequal time spin-spin correlation
function as

∂

∂t
Cn(t, tw ) = −Cn(t, tw ) + γ (t )

2
[Cn−1(t, tw ) + Cn+1(t, tw )],

(37)

where −∞ < n < ∞ with the boundary conditions C−∞(t ) =
0 and C∞(t ) = 0 and the initial condition Cn(tw, tw ) = Gn(tw ).

When the system is instantaneously quenched from a high
to a low temperature, the autocorrelation function C0(t, tw ) de-

cays as
√

tw
t−tw

, t � tw [35,36]. But if the system is quenched

at a finite rate, one expects that for tw < t̂ , since the system is
far from the critical point, a spin at the end of the quench is
uncorrelated to its value at tw, while for tw > t̂ , the autocorre-
lation function is expected to increase to one as the system is
close to the critical point where the correlation length is large.
The autocorrelation function C0(τ, tw ) in Fig. 4 is indeed in
agreement with these expectations and shows that unlike the
mean defect density which is almost frozen in the KZ phase
(see, for example, inset of Fig. 3 in [18]), the autocorrelation
function undergoes a large change over the same range of
time. Furthermore, the inset of Fig. 4 shows that the data for
different quench and waiting times can be collapsed onto a
single curve if we assume the following scaling form:

C0(τ, tw ) = C
(

Z = τ − tw
τ − t̂

)
= C

(
Z = τ − tw

τ
αzeq

2+αzeq

)
, (38)

which is in accordance with the KZ scaling (16).

III. KAWASAKI ISING CHAIN

A. Model

In the last section, we have seen that both coarsening and
stationary state dynamics play an important role in the finite-
time quench dynamics. However, as the dynamic exponents
for coarsening and stationary state dynamics are identical for
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FIG. 4. Glauber Ising chain when the system is quenched slowly
from a high temperature to zero temperature. The main figure shows
the autocorrelation function between quench time τ and waiting time
tw , and the inset figure shows the data collapse according to KZ
scaling ansatz (38). The parameters are L = 2000 and α = 3 in the
cooling protocol (5) with γ0 = 0.

the Glauber chain, below we consider the Kawasaki chain, for
which these exponents are different, to understand how these
affect the finite-time quench dynamics.

Under Kawasaki dynamics [37], the neighboring antiparal-
lel spins exchange so that the magnetization remains strictly
conserved. For time-dependent temperature, the master equa-
tion for the evolution of spin configurations can be written as

d

dt
p(σ1, . . . , σi, σi+1, . . . , σL, t )

=
L∑

i=1

[w(σi+1 ↔ σi, t ) p(σ1, . . . , σi+1, σi, . . . , σL, t )

−w(σi ↔ σi+1, t ) p(σ1, . . . , σi, σi+1, . . . , σL, t )], (39)

where the transition probability for the ith and (i + 1)-th sites
to exchange their spins is given by [37]

w(σi ↔ σi+1, t )

=
(

1 − γ (t )

2
(σi−1σi + σi+1σi+2)

)
1

2
(1 − σiσi+1), (40)

and, as in Sec. II A, γ (t ) = tanh [2/T (t )] and its time depen-
dence is described by (5). Thus in Kawasaki dynamics, the
allowed moves are

↑ · ↓ · ↑ · ↓ 1+γ−→ ↑↑ · ↓↓, (41a)

↑↑ · ↓↓ 1−γ−→ ↑ · ↓ · ↑ · ↓, (41b)

↑ · ↓ · ↑↑ 1−→ ↑↑ · ↓ · ↓, (41c)

where the dot represents the domain wall. While the number
of domain walls decrease and increase, respectively, via the
moves (41a) and (41b), it remains unchanged due to the diffu-
sion move in (41c).

Before considering the finite-time quenches, we discuss
the situation when the system is instantaneously quenched
to zero temperature; due to conserved magnetization, at zero
temperature, the system always gets stuck in a metastable state
which consists of domains of length two or more. Then, from
(41b), only the energy-raising transition is possible, but that
is not allowed at zero temperature (as the rate 1 − γ = 0).
Hence, the Kawasaki chain never reaches the equilibrium state
of zero temperature. If now one quenches the system to a tem-
perature slightly above zero, energy-raising events are allowed
which can lead to domain growth (and hence equilibrium
state) via diffusion and annihilation moves, but as the domain
wall creation rate 1 − γ ∼ e−4/T is very small at low tem-
peratures, one can define a new timescale t ′ = te−4/T so that
the move (41b) takes a finite time but other processes occur
instantaneously. Using these accelerated dynamics [38,39], it
has been shown numerically and analytically that the mean
domain length grows as t1/zco where the coarsening exponent
zco = 3. In contrast, in the stationary state, the relaxation time
grows as ∼ξ

zeq
eq where zeq = 5 [40]. Thus as a consequence of

the conservation, the Kawasaki dynamics are slower than the
Glauber dynamics where both these exponents are equal to
two.

B. Dynamics of spin-spin correlation function

Using the master equation (39), we find that the evolu-
tion equation for the n-point correlation function, 〈σi1 . . . σin〉
is not closed as it depends on the (n + 2)-point correlation
functions resulting in an infinite hierarchy of equations [8],
and it does not seem possible to obtain analytical expres-
sions for the mean defect density. Therefore, the results in
the following subsections are obtained by simulating long
Kawasaki chains in continuous time. In our simulations, an
antiparallel spin pair at site i and i + 1 exchange their value at
time t with probability w(σi↔σi+1,t )∑

j w(σ j↔σ j+1,t ) , and the time t + δt at

which the next update occurs is found using that the increment
time δt is approximately exponentially distributed with rate∑

j w(σ j ↔ σ j+1, t ). When there are large number of defects
in the system, spin exchange occurs frequently, but when
very few defects are left, the time between successive updates
becomes large and therefore, close to zero temperature, the
finite-time quench dynamics grind to a halt, and it seems dif-
ficult to obtain accurate numerical results. However, for zero
magnetization, we have measured the mean defect density in
simulations by averaging over 5000 independent runs, which
are discussed below.

1. Equilibrium initial condition

We first consider the situation when the system ini-
tially equilibrated to a high temperature (γ0 = 0) is slowly
quenched to zero temperature according to (5). Using Monte
Carlo simulations described above, we measured the mean
defect density as a function of time for various quench times
and find that at short times the excess mean defect density
remains close to zero and then increases as the system falls
out of equilibrium at time ∼t̂ (data not shown). We expect that
in the KZ phase (t̂ � t < τ ), the excess mean defect density
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FIG. 5. Kawasaki Ising chain when the system initially equilibrated to a high temperature is slowly quenched to zero temperature. (a) The
figure shows the mean defect density at the end of the quench for two different α values in the cooling protocol (5). Note that the exponents
obtained are the best fits from numerical simulations, which do not match exactly but are in close agreement with the KZ exponents quoted in
the legend. (b) The figure shows the collapse of scaled excess mean defect density with the scaling variable Z according to (42) for α = 3 in
the cooling protocol (5). The system size L = 2000 in both figures.

scales as [18]

D(t ) − Deq(t ) = 1

τβ
K

(
Z = τ − t

τ − t̂

)

= 1

τ
α

2+5α

K
(

Z = τ − t

τ
5α

2+5α

)
(42)

on using that the remaining time and the exponent β, respec-
tively, are given by (16) and (18), and the exponent zeq = 5 for
these dynamics.

Figure 5(a) shows that the exponent β obtained from our
simulations does not match exactly with (18) but its values
are in fair agreement with the KZ predictions. Recently, the
slowly quenched Kawasaki chain was studied numerically in
[20], where, for α = 3, the KZ exponent was found to be
≈0.163, which is closer to the exact exponent, β = 3/17 ≈
0.176, as compared to our best fit 0.15 in Fig. 5(a), perhaps be-
cause much larger values of quench time (τ � 107) were used
in [20]. In Fig. 5(b), the scaling ansatz (42) is tested, and we
find that a fairly good data collapse in the KZ phase is obtained
so long as the temperature is not too close to zero; however,
we also note that close to zero temperature (Z ≈ 0), the data
collapse improves with increasing quench times. These results
therefore support the KZ scaling following slow quench in the
Kawasaki chain.

We also simulated the case where the system is initially
equilibrated to a low temperature T0 and then slowly quenched
to zero temperature via the cooling protocol (5). However, we
were not able to check the scalings reliably due to the inability
of the system to evolve at low temperatures as it gets stuck
in the metastable states. But, as in the Glauber chain [see
Fig. 1(b)], we expect that the mean defect density at the end
of the quench has the following scaling form:

Deq(τ ) = 1

ξ0
feq

(
τ

ξ
zeq

0

)
∝

{
ξ−1

0 , τ � ξ
zeq

0 ,

ξ
βzeq−1
0 τ−β, τ � ξ

zeq

0 ,

(43a)

(43b)

with zeq = 5. The behavior of the scaling function is deduced
from the fact that at small quench times, the mean defect
density remains essentially close to its initial value, but for
larger quench times, the system can enter the adiabatic phase
leading to KZ scaling at the end of the quench.

2. Nonequilibrium initial condition

We now consider the situation when the system initially
at a high temperature Ti is instantaneously cooled to a low
temperature T0 and then slowly quenched to zero temperature
using cooling protocol (5). For initial temperature T0 � 1,
as discussed in Sec. II B 2 for the Glauber chain, we expect
that the mean defect density will decrease via coarsening
and the system will reach the equilibrium state at temper-
ature T0 at time t0 ∼ ξ

zco
0 . However, as T0 is small and the

correlation length ξ (t0) ∼ ξ0 is large, it will take time ∼ξ
zeq

0
for a perturbation due to changing temperature to relax, and
we therefore expect that D(t ) ∼ ξ−1

0 for ξ
zco
0 � t � ξ

zeq

0 . For
t � ξ

zeq

0 , the system can enter the adiabatic phase followed by
the KZ phase. We further conjecture that for an infinitely large
system, at the end of the quench

Dneq(τ ) ∝
⎧⎨
⎩

τ−1/zco, τ � ξ
zco
0 ,

ξ−1
0 , ξ

zco
0 � τ � ξ

zeq

0 ,

ξ
βzeq−1
0 τ−β, τ � ξ

zeq

0 .

(44a)
(44b)
(44c)

For the Glauber chain, as zco = zeq, the regime (44b) with
constant mean defect density is not observed [see Fig. 2(b)].

To test the above expectations, using Monte Carlo simu-
lations, we measured the mean defect density for two initial
temperatures as shown in Fig. 6. At short times t � τ , the
system behaves as if it is instantaneously quenched from a
high temperature Ti to T0 and the finite-time quench curve
matches the instantaneous quench dynamics. As the temper-
ature is varying with time, the two curves start diverging at
larger times, but the defects keep decreasing via coarsening.
Note that unlike for the Glauber chain, here at a fixed t ,
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FIG. 6. Kawasaki Ising chain when the system is first instanta-
neously cooled to a low temperature T0 and then slowly cooled to
zero temperature: The figure shows the dynamics of excess mean
defect density for two initial temperatures T0 at a fixed value of τ =
5 × 105. The black dashed line corresponds to the dynamics when
the system is instantaneously cooled to T0 and the red dashed lines
represent the excess defects when the system is initially equilibrated
to T0. The parameters are L = 2000 and α = 3 in the cooling protocol
(5).

on quenching the system from higher temperature results in
lower number of defects because at higher T0, the system does
not get stuck in the metastable states and the spin updates oc-
cur more frequently (at least at short times), resulting in fewer
defects. The excess mean defect density reaches a minimum
when the system is in the adiabatic phase and then increases
in the KZ phase where the finite-time quench curve matches
the corresponding curve if the system started in equilibrium
state at T0.

As discussed above, due to different dynamic exponents,
we expect that the excess mean defect density will remain ap-
proximately constant (and close to zero) for ξ

zco
0 � t � ξ

zeq

0 ;
however, we do not observe this phase in Fig. 6, which, we
believe, is because the initial correlation length ξ0 ∼ 10 is
quite small and the scaling regimes have not set in. Also, for
the same reason, we have not been able to verify the scalings
for the mean defect density at the end of the quench stated
in (44). To observe these scalings and dynamical phases, we
need to consider initial temperatures lower than those consid-
ered in Fig. 6. But even for T0 = 0.5, ξ0 ∼ 25 (as considered
in Glauber chain), the time δt between successive updates
is ∼(1 − γ0)−1 ∼ 600, which gets longer as the temperature
approaches zero, and therefore, we need a better algorithm to

capture the low-temperature dynamics of the slowly quenched
Kawasaki chain.

IV. DISCUSSION

The Kibble-Zurek argument is a powerful and general the-
ory that predicts the mean defect density when a classical or
quantum system that exhibits a second-order phase transition
is quenched from the disordered phase to critical region or
ordered phase [3,5]. It assumes that if the system starts in an
adiabatic phase, it will reach the KZ phase where the mean
defect density decays as a power law with the quench time.
In previous studies on finite-time quench dynamics in the
Ising model, the system is assumed to be initially equilibrated
to a high temperature and then cooled to the critical point
[9,12,18,19,21] or deep in the ordered phase [11,14] at a finite
rate, and one focuses on the mean defect density at the end of
the quench (see, however, [18]). In contrast, here we studied
the effect of initial conditions specified by the initial state and
initial temperature on the full dynamics till the end of the
quench; we also elucidated how the system size affects the
mean defect density.

We find that depending on the initial condition, besides the
well-known adiabatic and KZ phase, other dynamical phases
such as coarsening are also possible; these are observed when
the system starts in a nonequilibrium initial state, which, to
our knowledge, have not been considered in previous work.
We formulated a low-temperature theory for the Glauber Ising
chain using which we obtained exact expressions (21), (28),
and (32) for the mean defect density at the end of quench for
different initial conditions that are shown in Figs. 1(b), 2(b),
and 3(b).

As an application and extension of the scaling ideas de-
veloped for the Glauber chain, we also studied the Kawasaki
Ising chain to understand the significance of different station-
ary state dynamic exponent and coarsening exponent. Since
the equations do not close for these dynamics, we performed
Monte Carlo simulations, but these simulations are also very
hard as the system gets stuck in the metastable states at low
temperatures. Therefore it remains to be seen if the scalings
conjectured in (44) can be tested at low temperatures in the
Kawasaki model or in some other model where the two dy-
namic exponents are quite different.
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APPENDIX A: RAPID HEATING AND COOLING OF GLAUBER CHAIN

When an infinitely long Glauber chain is rapidly cooled or heated to a low temperature T and then evolved at constant
temperature T , the exact equation (7) can be written as

∂G

∂x
= ∂2G

∂y2
− 2G, (A1)
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where x = t (1 − γ ), y = k
√

1 − γ and the boundary conditions are G(0, x) = 1, G(∞, x) = 0. The mean defect density (8) is
then given by

D(x) = 1 − G(
√

1 − γ , x)

2
γ→1→ −

√
1 − γ

2

∂G

∂y

∣∣∣∣
y=0

. (A2)

On taking the sine transform defined as G̃(q, x) =
√

2
π

∫ ∞
0 dy sin (qy) G(y, x) of (A1), we obtain

G̃(q, x) = q

√
2

π

∫ x

0
dwe−(2+q2 )(x−w) + G̃(q, 0)e−(2+q2 )x, (A3)

where G̃(q, 0) is the sine transform of the initial condition G(y, 0). The inverse sine transform then yields

G(y, x) = 2

π

∫ ∞

0
dq sin(qy)

∫ x

0
dwqe−(2+q2 )(x−w) +

√
2

π

∫ ∞

0
dq sin(qy)G̃(q, 0)e−(2+q2 )x (A4)

= 1

2
√

π

∫ x

0
dw

ye
−y2

4(x−w) −2(x−w)

(x − w)3/2
+

√
2

π

∫ ∞

0
dq sin(qy)G̃(q, 0)e−(2+q2 )x, (A5)

where we have interchanged the order of integration in the first term. The above integrals correspond to α = 0, λ0 = 1 of (C1)
and (C2), which are analyzed in Appendix C.

Alternatively, if we work with H (y, x) = Geq(y) − G(y, x) with homogeneous boundary conditions, H (0, x) = H (∞, x) = 0,
we find that H also obeys (A1) so that H̃ (q, x) = H̃ (q, 0)e−(2+q2 )x. The mean defect density can be written as

D(x) =
√

1 − γ

2

(√
2 +

√
2

π

∫ ∞

0
dqqH̃ (q, x)

)
. (A6)

For quench from high temperature to a low temperature T , using the initial condition H̃ (q, 0) =
√

2
π

q
2+q2 , we obtain

D(x) =
√

1 − γ

2
+

√
1 − γ

π2

(√
πe−2x

2
√

x
− πerfc

(√
2x

)
√

2

)
(A7)

x→0≈
√

1 − γ

π

(
1

2
√

x
+ √

x

)
(A8)

= 1

2
√

πt
+ (1 − γ )

√
t

π
, t � (1 − γ )−1. (A9)

Similarly, on heating the system from zero temperature to a low temperature T , as H̃ (q, 0) =
√

2
π

q
2+q2 −

√
2
π

1
q , we obtain

D(x) =
√

1 − γ

2
erf(

√
2x) (A10)

x→0≈ 2(1 − γ )

√
t

π
, t � (1 − γ )−1. (A11)

APPENDIX B: LOW-TEMPERATURE SCALING THEORY FOR GLAUBER CHAIN

To describe the finite-time quench dynamics when an infinitely long Glauber chain is quenched from a low temperature T0 to
zero, we first rewrite the exact equation (7) as

dGk

dt
= γ0(Gk−1 + Gk+1 − 2Gk ) − 2Gk[1 − γ (t )] + [γ (t ) − γ0](Gk−1 + Gk+1 − 2Gk ). (B1)

The first term on the r.h.s. of the above equation states that the dynamics are the same as when the system evolves at a time-
independent, low temperature for which γ0 → 1 [see (7) on replacing γ (t ) by γ0] which is expected to be true for t � τ as the
temporal variation of the temperature can be neglected. To take the effect of changing temperature into account, we consider the
above equation in continuous space by writing k′ = ka, where a is the lattice spacing, and define x = t

τ
to obtain

∂G(k′, x)

∂x
= a2τγ0

∂2G(k′, x)

∂k′2 − 2τ (1 − γ0)(1 − x)αG(k′, x) + a2(1 − γ0)τ {1 − (1 − x)α}∂
2G(k′, x)

∂k′2 . (B2)
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For quenches from low temperatures, as γ0 → 1, we choose the lattice spacing a = √
1 − γ0 ∼ ξ−1

0 . Then in the scaling limit
τ → ∞, γ0 → 1 such that λ0 = τ (1 − γ0) and y = k′

a
√

τ
= k√

τ
are finite, as the last term on the r.h.s. of the above equation is of

order 1 − γ0 ∼ ξ−2
0 , it can be neglected, and we finally arrive at

∂G(y, x)

∂x
= ∂2G(y, x)

∂y2
− 2λ0(1 − x)αG(y, x). (B3)

The above equation is subject to boundary conditions G(0, x) = 1 and G(∞, x) = 0 (as the correlations are expected to vanish
at large distances) and initial condition, G(y, 0). The exact solution for G(y, x) can be obtained by taking the sine transform of
(B3) with respect to y, which yields the following first-order differential equation:

∂G̃(q, x)

∂x
+ [2λ0(1 − x)α + q2]G̃(q, x) =

√
2

π
q, (B4)

where the sine transform is defined as G̃(q, x) =
√

2
π

∫ ∞
0 dy sin (qy) G(y, x). Solving the above equation, we obtain

G̃(q, x) = G̃(q, 0) e−q2x+ 2λ0
α+1 [(1−x)α+1−1] + e

2λ0
α+1 (1−x)α+1−q2x

∫ x

0
dw eq2w− 2λ0

α+1 (1−w)α+1

√
2

π
q, (B5)

where G̃(q, 0) is the sine transform of the initial condition G(y, 0). The inverse sine transform then yields

G(y, x) = 2

π

∫ ∞

0
dq sin(qy) q e−q2x

∫ x

0
dw eq2w− 2λ0

α+1 [(1−w)α+1−(1−x)α+1]

+
√

2

π

∫ ∞

0
dq sin(qy) G̃(q, 0) e−q2x+ 2λ0

α+1 [(1−x)α+1−1], (B6)

and the mean defect density (8) is given by

D(x) = G(0, x) − G(τ−1/2, x)

2
τ→∞→ − 1

2
√

τ

∂G(y, x)

∂y

∣∣∣∣
y=0

. (B7)

APPENDIX C: MEAN DEFECT DENSITY DYNAMICS FOR GLAUBER CHAIN

As shown in Appendix B, the two-point correlation function can be written as G(y, x) = I1 + I2 where y = k√
τ
, x = t

τ
, λ0 =

τ (1 − γ0),

I1(y, x) = 2

π

∫ ∞

0
dq q sin(qy) e−q2x

∫ x

0
dw eq2w− 2λ0

α+1 [(1−w)α+1−(1−x)α+1], (C1)

I2(y, x) =
√

2

π
e

2λ0
α+1 [(1−x)α+1−1]

∫ ∞

0
dq sin(qy) G̃(q, 0) e−q2x, (C2)

and G̃(q, 0) is the sine transform of the initial condition G(y, 0).

1. Integral I1

We first analyze the double integral I1 which is independent of the initial condition. Interchanging the order of integration and
on carrying out the integral over q exactly in (C1), we obtain

I1(y, x) = y

2
√

π

∫ x

0
dw e− 2λ0

α+1 [(1−w)α+1−(1−x)α+1] e
−y2

4(x−w)

(x − w)3/2
(C3)

= 1√
π

∫ ∞

y2

4x

du
e−u

√
u

e− 2λ0
α+1 [(1−x+ y2

4u )α+1−(1−x)α+1]. (C4)

Short-time dynamics (x < 1/2): The above integral is not exactly solvable but for x < 1/2, as y2

4x <
y2

4(1−x) < u, on expanding

the integrand in the above expression in powers of y2

4(1−x)u and retaining terms to leading order, we obtain

I1(y, x)
y�1≈ 1√

π

∫ ∞

y2

4x

du
e−u

√
u

e−λ0(1−x)α y2

2u (C5)

= 1

2

∑
ε=±1

eεy
√

2(1−x)αλ0 erfc

(
y + 2εx

√
2(1 − x)αλ0

2
√

x

)
. (C6)
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Hence

∂I1(y, x)

∂y

∣∣∣∣
y=0

= −e−2λ0x(1−x)α

√
πx

+ 1

2

√
2λ0(1 − x)α

∑
ε=±1

ε erfc(ε
√

2x(1 − x)αλ0) (C7)

≈ −e−2λ0x

√
πx

+ 1

2

√
2λ0(1 − x)α

∑
ε=±1

ε erfc(ε
√

2xλ0), (C8)

where we have written x(1 − x)α ≈ x for x < 1/2, which gives

∂I1(y, x)

∂y

∣∣∣∣
y=0

≈
{

− 1√
πx

− 2λ0
√

x√
π

, λ0x � 1

−√
2λ0(1 − x)α, λ0x � 1.

(C9a)

(C9b)

At the end of quench (x = 1): For 1/2 < x < 1, we have not been able to find a suitable approximation, but we can obtain an
expression for I1 when x = 1 (that is, at the end of the quench). For arbitrary λ0 and u0 = ( 2λ0

α+1 )
1

α+1 ( y2

4 ), we rewrite (C4) as

I1(y, 1) = 1 +
√

u0

π

∫ ∞

0
du

e−uu0

√
u

(
e−( 1

u )α+1 − 1
) − 1√

π

∫ y2

4

0
du

e−u

√
u

e−( u0
u )α+1

(C10)

y→0≈ 1 +
√

u0

π

∫ ∞

0
du

e−( 1
u )α+1 − 1√

u
− 1√

π

∫ y2

4

0
du

1√
u

e−( u0
u )α+1

(C11)

= 1 − y√
π

(
2λ0

α + 1

) 1
2α+2

	

(
2α + 1

2α + 2

)
− y

2(α + 1)
√

π
E 3+2α

2α+2

(
2λ0

α + 1

)
. (C12)

We therefore have

∂I1(y, 1)

∂y

∣∣∣∣
y=0

= − 1√
π

[(
2λ0

α + 1

) 1
2α+2

	

(
2α + 1

2α + 2

)
+ 1

2(α + 1)
E 3+2α

2α+2

(
2λ0

α + 1

)]
, (C13)

where En(z) = ∫ ∞
1 dww−ne−zw is the exponential integral function. We then obtain

∂I1(y, 1)

∂y

∣∣∣∣
y=0

=
⎧⎨
⎩

− 1√
π

(
1 + 2λ0

2α2+3α+1

)
, λ0 � 1,

− 1√
π

[( 2λ0
α+1

) 1
2α+2 	

(
2α+1
2α+2

) + e− 2λ0
α+1

4λ0

]
, λ0 � 1.

(C14a)

(C14b)

2. Integral I2

We now analyze the integral I2 for different initial conditions.
Equilibrium state at T0: For G(k, 0) = Gk,eq ≈ e−k

√
2(1−γ0 ) = e−y

√
2λ0 , we obtain

I2(y, x) = 2

π
e

2λ0
α+1 ((1−x)α+1−1)

∫ ∞

0
dq sin(qy)

q

q2 + 2λ0
e−q2x, (C15)

which gives

∂I2(y, x)

∂y

∣∣∣∣
y=0

= e− 2λ0
α+1 [1−(1−x)α+1]

[
1 − e2λ0x

√
2πλ0x erfc(

√
2λ0x)√

πx

]
(C16)

x�1≈ e−2λ0x

[
1 − e2λ0x

√
2πλ0x erfc(

√
2λ0x)√

πx

]
, (C17)

and therefore

∂I2(y, x)

∂y

∣∣∣∣
y=0

≈
{

−√
2λ0 + 1√

πx
+ 2λ0

√
x√

π
, λ0x � 1

O(e−2λ0x ), λ0x � 1.

(C18a)

(C18b)

However, at the end of the quench (x = 1)

∂I2(y, 1)

∂y

∣∣∣∣
y=0

= e− 2λ0
α+1

[
1 − e2λ0

√
2πλ0 erfc(

√
2λ0)√

π

]
. (C19)
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FIG. 7. Glauber Ising chain when the system initially equilibrated to a low temperature T0 is slowly quenched to zero temperature. (a) Effect
of initial temperature: The main figure shows the mean defect density at the end of the quench for various quench times for two different T0

values. The black dashed lines correspond to the equilibrium value (11) at the respective initial temperatures. The inset figure shows the
scaling collapse with τ ∼ ξ 2

0 in the regime I. (b) Effect of system size: The main figure shows the effect of finite system size on the mean
defect density at the end of the quench for various quench rates. The black solid line correspond to (26). The inset figure shows the scaling
collapse in accordance with (27). The parameters are L = 2000, T0 = 0.5 with ξ0 ≈ 27.3, and α = 3 in the cooling protocol (5).

Paramagnetic state at T0: If the system is in a paramagnetic state, G(k, 0) = δk,0 or G(y, 0) ∼ δ(y) but the sine transform
G̃(q, 0) = 0 so that

I2(y, x) = 0 (C20)

at all times.
Critical state at T0: If the system is initially in the critical state, the correlation function Gk (0) = 1 for all k and its sine

transform G̃(q, 0) =
√

2
π

1
q . Using this in (C2), we obtain

I2(y, x) = e− 2λ0
α+1 [1−(1−x)α+1]erf

(
y

2
√

x

)
, (C21)

which yields

∂I2(y, x)

∂y

∣∣∣∣
y=0

= 1√
πx

e− 2λ0
α+1 [1−(1−x)α+1] (C22)

x�1≈ 1√
πx

e−2λ0x, (C23)

which is also true for x < 1/2 and therefore

∂I2(y, x)

∂y

∣∣∣∣
y=0

≈
{

1√
πx

− 2λ0
√

x√
π

, λ0x � 1,

O(e−2λ0x ), λ0x � 1.

(C24a)

(C24b)

However, at the end of the quench (x = 1)

∂I2(y, 1)

∂y

∣∣∣∣
y=0

= 1√
π

e− 2λ0
α+1 . (C25)

APPENDIX D: GLAUBER CHAIN FOR EQUILIBRIUM INITIAL CONDITION

Figure 7 shows the mean defect density at the end of the quench for Glauber Ising chain for equilibrium initial condition for
different values of initial temperature T0 and the system size L, respectively.
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FIG. 8. Glauber Ising chain when quenched to zero temperature for various initial conditions and small system size. (a) Equilibrium: The
figure shows that the KZ phase is absent in the mean defect density at the end of the quench because the system is initially in equilibrium at a
very low temperature where the correlation length ξ0 is comparable to the system size. In (b) nonequilibrium (cooling) and (c) nonequilibrium
(heating), the system is in a nonequilibrium state at T0, the initial correlation length ξi ∼ O(1) but ξ0 ∼ L due to which system behaves as
if it is instantaneously cooled or heated to zero temperature. The numerical data are obtained by solving the exact differential equation (7),
and the analytical data are obtained from (21), (28), and (32), respectively, for panels (a)–(c). The parameters are L = 2000, T0 = 0.2 and
corresponding ξ0 ≈ 11 000, and α = 3 in the cooling protocol (5).

APPENDIX E: GLAUBER CHAIN FOR VARIOUS INITIAL CONDITIONS

Figure 8 shows the mean defect density at the end of the quench for Glauber Ising chain for various initial conditions and
small system size ξ0 ∼ L. Here λ0 = τ (1 − γ0) with γ0 = tanh( 2

T0
).
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