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In recent decades, much attention has been focused on the topic of optimal paths in weighted networks due to
its broad scientific interest and technological applications. In this work we revisit the problem of the optimal path
between two points and focus on the role of the geometry (size and shape) of the embedding lattice, which has
received very little attention. This role becomes crucial, for example, in the strong disorder (SD) limit, where the
mean length of the optimal path (�opt) for a fixed end-to-end distance r diverges as the lattice size L increases.
We propose a unified scaling ansatz for �opt in D-dimensional disordered lattices. Our ansatz introduces two
exponents, ϕ and χ , which respectively characterize the scaling of �opt with r for fixed L, and the scaling of
�opt with L for fixed r, both in the SD limit. The ansatz is supported by a comprehensive numerical study of the
problem on 2D lattices, yet we also present results in D = 3. We show that it unifies well-known results in the
strong and weak disorder regimes, including the crossover behavior, but it also reveals novel scaling scenarios
not yet addressed. Moreover, it provides relevant insights into the origin of the universal exponents characterizing
the scaling of the optimal path in the SD limit. For example, for the fractal dimension of the optimal path in the
SD limit, dopt, we find dopt = ϕ + χ .
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I. INTRODUCTION

The geometry and dynamics of optimal paths in weighted
networks have been of major interest in the past decades
[1,2]. This is due to two principal reasons. First, because
they are closely related to important optimization problems
such as minimum spanning trees [3–7], directed polymers in
random media (DPRM) [8], optimal polymers (fixed-length
self-avoiding walks) [9,10], spin glasses [11–13], first-passage
percolation [14–16], or the traveling salesman problem [17].
Second, they play a fundamental role in relevant scientific and
technical applications which include the following: magneto-
transport in disordered thin films [18,19], fluid flow through
porous media [20–23], current flow in random resistor net-
works [24,25], fracture or crack processes in random media
[26], transport and routing in communication networks [4–7],
traffic engineering [6,7,27,28], percolation models [29], and
epidemic spreading [30]. In general, the resources of real-
world complex networks are most efficiently used when
transport follows optimal paths [31].

The formulation of the problem is simple. A network is
disordered by assigning a random weight wi to each bond i
connecting two nodes of the network. The link weights are
positive, independent and identically distributed random vari-
ables with probability distribution F (w) and density function
f (w). The independence of the weights is a good approxima-
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tion for large systems, but in some real-world networks they
might be correlated with the network topology [32].

The optimal path between two nodes is the path that min-
imizes the sum of the weights along the path, and its length
�opt is given by the number of bonds along the path. Optimal
paths have been studied both in regular lattices [5,7,11,26,32–
37] and in random networks, principally Erdös-Rényi and
scale-free networks [4–7,25,38–42].

In this work we are concerned with the lattice problem, so
in this introduction we will focus on the main results related
to disordered lattices, yet most of them apply in general. Also,
unless we say the contrary, we will use r to refer to the
Euclidean distance (in lattice units) spanned by the optimal
path. Thus, for the optimal path between two points, it is the
end-to-end distance between them, while for the problem of
the optimal path connecting two opposite edges of a lattice of
linear size L, it is given by L.

On weakly disordered lattices, almost all links contribute
to the total weight of the optimal path. Optimal paths in
weak disorder (WD) belong to same universality class as
DPRM [34,35,43], which can be mapped to the celebrated
Kardar-Parisi-Zhang (KPZ) universality class [8,14,44]. At
large length scales the optimal paths are self-affine and �opt

scales linearly with r, whatever the dimension D of the em-
bedding space [33–35].

Strong disorder (SD) is obtained from extremely broad
distributions. Then we can assume that the total weight of a
path is completely dominated by the largest bond weight along
it, wmax, so that the optimal path is the path with the min-
imum value of the maximum link weight [11,23,35–37,41].
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We should stress that this assumption is rigorously valid only
in the so-called strong disorder (or ultrametric) limit [11,41].

It is agreed that the scaling properties of optimal paths in
the SD limit are also universal [11,36,37] and that they belong
to the same universality class as the paths connecting nodes
in minimum spanning trees [3–7] and in invasion percolation
clusters [21–23], although the latter case has been questioned
[45].

Optimal paths in SD are self-similar objects, and their
mean length �opt scales with r as �opt ∼ rdopt [11,33–37]. Frac-
tal dimension dopt is universal, i.e., it depends only on the
dimension D of the system [37], and seems to be a ubiquitous
property of many natural systems [46]. There are no exact
values for dopt, yet we have accurate approximates obtained
from numerical simulations [21,35,37]. They roughly agree
in dopt = 1.22 ± 0.02 for D = 2 and dopt = 1.42 ± 0.03 for
D = 3.

The behavior of the optimal path in the SD limit is closely
related to critical percolation [11,23,41], so the application
of this theory has led to many relevant results [33–37]. The
optimal path in the SD limit belongs to the backbone of the
bond-percolation cluster obtained at probability p = F (wmax).
For r = ∞ we expect wmax = F−1(pc), where pc is the crit-
ical percolation threshold of the bond-percolation problem
in the same lattice [47]. For a finite r, wmax is distributed
around F−1(pc) [34,35] with a standard deviation that scales
as ∼r−1/ν [34], where ν is the percolation correlation length
exponent [47].

Another relevant result concerns the distribution of the
optimal path length, P(�opt), in the SD limit [36,37]. For
optimal paths between two sites separated a distance r on
a D-dimensional square lattice of linear size L � r, P(�opt)
seems to follow a power-law decay between a lower and an
upper cutoff length, with an exponent −gopt = −1.55 ± 0.05
in D = 2 and −gopt = −1.37 ± 0.05 in D = 3 [36]. The upper
cutoff is a finite-size effect and its value seems to increase with
L. This result leads to an important conjecture that is verified
here: �opt and all higher moments diverge as L → ∞.

For intermediate disorder, optimal paths behave as in
the SD limit over small distances, and as in WD at large
length scales. Thus, a crossover from self-similar to self-
affine behavior is obtained in both regular [33–35] and
random graphs [38–42] which also affects the properties of
the global transport [4–6]. Similar disorder-induced transi-
tions have been reported in related models such as Ising
systems [11–13], fixed-length self-avoiding walks [10], and in
DPRM [48].

A general approach for the crossover length scale, denoted
here by r×, was proposed in Ref. [33]. It was shown that r×
scales with disorder as r× ∼ Aν , where A is a measure of the
disorder strength that depends on the weight distribution and
on pc. The model generalizes to arbitrary distributions the ex-
pression obtained for exponential disorder [18,19,24,34]. The
critical percolation exponent ν appears again as a consequence
of the close relationship between the SD limit and critical
percolation. The same scaling is obtained for the crossover
network size in random graphs [33,40–42]. Remarkably, the
scaled parameter r/r× fully determines the properties of
the optimal path length in both strong and weak disorder
[21,33,34,36,37].

Accordingly, the length of the optimal path at the crossover
point, denoted by �opt ×, scales with disorder as �opt × ∼ r

dopt

× ∼
Aνdopt [34]. Although this is the general belief, this result
disagrees with some results reported in Ref. [35]. The au-
thors obtained �opt × ∼ Aκ with exponent κ � 1.60 in both
D = 2 and D = 3, so it seems to be independent of the
dimensionality of the system. If we compare both exponents,
then we get that νdopt ≈ κ for D = 2 (1.63 ≈ 1.60), but the
equality does not hold in D = 3 (1.25 �= 1.60). To the best of
our knowledge, this disagreement has not been addressed.

While much effort has been devoted to understand the
influence of disorder on the optimal path problem [49], the
influence of the lattice geometry on the optimal path between
two nodes of the lattice has gone practically unnoticed, with
a few notable exceptions [36]. The distance spanned by the
optimal path, r, and the linear size of the lattice, L, have
been usually considered to be equal, r = L [11,33,34], or
linearly related, L ∝ r [37]. However, the issue turns out to
be very relevant in the SD limit, where �opt seems to diverge
as L → ∞ for a fixed end-to-end distance r [36].

The aim of this paper is to unify the results reported in the
literature into a more general description that also accounts
for the effects of the lattice geometry. For that purpose, we
present a unified scaling ansatz for �opt which is derived from
a thorough numerical study of the problem and from some
theoretical arguments. Our ansatz includes four scaling expo-
nents which are related to each other through a certain scaling
relation. Two of them are, to the best of our knowledge,
novel and characterize the scaling of �opt with r for fixed L,
and the scaling of �opt with L for fixed r, both in the SD
limit. We study the different scaling scenarios included in our
model, some of which have not yet been addressed. From a
fundamental point of view, it provides valuable insights into
the universality accounting for the behavior in the SD limit.

This article is organized as follows. We briefly discuss in
Sec. II the model and our basic assumptions. Next, in Sec. III
we present our unified scaling ansatz. The different scaling
regimes derived from it are presented in Sec. IV and discussed
in Sec. V. We will pay special attention in comparing our
results to those reported in the literature. Numerical results
supporting our approach and illustrating the scaling regimes
and their transitions will be shown in Sec. VI. Finally, Sec. VII
is devoted to a summary of our conclusions and our ideas
regarding future work.

II. MODEL AND DEFINITIONS

We consider a D-dimensional simple hypercubic lattice of
size L1 × L2 × · · · × LD and assign to each link i of the lattice
a random weight wi. The link weights are assumed to be inde-
pendent, identically distributed random variables, drawn from
the probability distribution F (w) with density function f (w),
and they are strictly positive, F (0) = 0. End points A and B
are centered on the lattice along the direction L1 and separated
by a Euclidean end-to-end distance r. Notice that this implies
L1 � r. For example, for square L × L lattices, points A and B
are located at sites (−r/2, 0) and (r/2, 0), while the corners of
the lattice are sites (±L/2,±L/2). Then we apply Dijkstra’s
algorithm [50] to find the optimal path between the two nodes.
Its length �opt is given by the number of links along the path

054114-2



UNIFIED SCALING FOR THE OPTIMAL PATH LENGTH … PHYSICAL REVIEW E 109, 054114 (2024)

(we set the distance between neighboring points on the lattice
equal to unity).

Two different weight distributions have been usually em-
ployed in the related literature for generating a broad disorder.
The first one is the inverse distribution f (w) = 1/(aw) with
w ∈ [1, ea] [33–42]. The positive parameter a controls the
broadness of the disorder so it can be considered as a direct
measure of the disorder strength. The limit a → ∞ is the SD
limit, where the largest wi along the path dominates the sum.
The limit a → 0 is the WD limit (homogeneous case), where
all links have the same weight, so they contribute equally to
the sum. In the WD limit, the optimal path is given by the
shortest path.

Another distribution that has also been widely used to gen-
erate disorder is the polynomial distribution F (w) = wα with
α > 0 and w ∈ [0, 1] [4–7]. It is the simplest distribution with
a distinct different behavior for small values of w than regular
distributions [4–7]. The exponent α is called the extreme value
index and controls the disorder strength. The SD and WD
limits are obtained when α → 0 and α → ∞, respectively.

Since universal behavior is expected to be independent of
the type of distribution [3,14,15,33], in this work we have
followed a different approach and considered an unbounded
weight distribution, concretely the Weibull distribution, with
probability density function

f (w) = k

λ

(w

λ

)k−1
exp[−(w/λ)k], (1)

where λ > 0 and k > 0 are the scale and shape parameters,
respectively, and which is defined only for positive w.

As explained in the introduction, the SD-WD crossover
length scale has the form [18,19,24,33,34]

r× ∼ Aν . (2)

Here we use the definition of the disorder strength param-
eter A given in Ref. [33], A = pc/[wc f (wc)], where wc =
F−1(pc). For the Weibull distribution we obtain

A = pc

k(pc − 1) ln (1 − pc)
. (3)

We note that, for a given lattice (hence a given pc), disorder
parameter A is completely determined by the shape parameter
k. The scale parameter λ is irrelevant and it is fixed to λ = 1.
The SD limit is obtained when k → 0, whereas the WD limit
is given by k → ∞. Indeed, limk→∞ f (w) = δ(w − λ).

The SD limit is observed at length scales below r×. Thus,
when r× is smaller than the lattice constant, which is assumed
to be the unity, the SD-limit effects are completely irrelevant.
If we consider now that the numerical prefactor in Eq. (2) is of
the order of unity, then we conclude that r× > 1 provided A >

1. The value of k yielding A = 1, denoted by k
, is k
 � 1.44
in D = 2 and k
 � 1.16 in D = 3. Moreover, k
 → 1 when
D → ∞. Therefore, SD-limit effects can only be observed
for k < 1. We display in Table I the values of Aν obtained
using Eq. (3) for some. representative values of the shape
parameter k.

TABLE I. Values of Aν in D = 2 and D = 3 obtained using
Eq. (3) for several values of the shape parameter k of the Weibull
distribution. The value of the percolation correlation length exponent
is ν = 4/3 in D = 2 and ν ≈ 0.88 in D = 3.

�
��D
k

1 0.5 0.2 0.15 0.08 0.05 0.03 0.01 0.005

2 1.63 4.11 13.9 20.5 47.3 88.5 174.9 756.7 1906.7
3 1.14 2.09 4.69 6.04 10.5 15.9 24.9 65.5 120.5

III. SCALING ANSATZ FOR THE MEAN LENGTH
OF THE OPTIMAL PATH

A comprehensive numerical study of the model, along with
some theoretical arguments based on the results found in the
literature, lead us to postulate a unified scaling for the mean
length of the optimal path between two points separated a
distance r in a disordered D-dimensional lattice with lateral
linear sizes {Li} (i = 1, . . . , D). The disorder strength is given
by A. For the sake of clarity and understanding, we have con-
sidered it more appropriate to start by presenting our ansatz
and discuss all the scaling regimes derived from it. Next we
will show the numerical results that support it.

Our unified scaling ansatz for the mean optimal path length
�opt has the form

�opt(r, {Li}, A) ∼ AκF
(

r

r×

)
G
(

L

Lsat

)
H

(
L

min{r, r×}
)

, (4)

with the following scaling functions:

F (x) ∼
{

xϕ if x � 1,

x if x � 1,

G(x) ∼
{

xχ if x � 1,

1 if x � 1,

H(x) ∼
{

xϕ−1 if x � 1,

1 if x � 1.
(5)

Although this ansatz will be analyzed in depth in the
following sections, we can highlight now some fundamental
aspects for its understanding.

We first note that the initial dependence on the lattice
geometry through the set of linear sizes {Li}, simplifies to a
new variable L, defined as the minimum of the lateral sizes of
the lattice,

L ≡ min
i

{Li}. (6)

It thus plays the role of a “reduced” linear size, and the
problem happens to have three degrees of freedom: the two
length scales given by r and L and the disorder parameter A.

With regard to the three scaling functions, without being
too rigorous, we can say that the first scaling function F (x)
controls the scaling of �opt with r in strong and weak disorder
for fixed L. The SD-WD crossover value of r, r×, was given
in Eq. (2).

The second scaling function, G(x), do the same but for L
with fixed r. As we will see, the optimal path also undergoes
a disorder-induced transition with respect to L, though it is
not a crossover. The growth of �opt with L saturates when L
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TABLE II. Values of the scaling exponents in D = 2 and D = 3.
The values of ϕ, χ , and κ , were deduced in our work; ν is a critical
exponent of the percolation theory [47]; the values of gopt were taken
from Ref. [36]; the values of dopt are the averages of the values
reported in several works [21,35,37].

D ϕ χ κ ν dopt gopt

2 0.67 0.55 1.63 4/3 1.22 1.55
3 0.53 0.89 1.25 0.88 1.42 1.37

crosses over a certain saturation value denoted as Lsat [note
that G(x) ∼ 1 for x � 1]. For L � Lsat, the optimal path
behaves (with respect to L) as in the SD limit, whereas for
L � Lsat the effects of the lattice geometry are irrelevant, as
expected for weak disorder. The numerical results show that
Lsat scales like r×,

Lsat ∼ Aν, (7)

with the numerical prefactors in both scalings being very
similar, i.e., Lsat ≈ r×.

The third scaling function H(x) has a geometrical origin
and provides a correction to the previous two scaling functions
when L becomes the smallest length scale of the problem.

Finally, the term Aκ in Eq. (4) stands for the scaling of �opt

at both the crossover (r = r×) and the saturation (L = Lsat)
points.

As will be readily shown, the scaling exponents appearing
in Eqs. (4) and (5) satisfy the following scaling relation:

κ = ν(ϕ + χ ). (8)

Furthermore, we have also found two additional scaling re-
lations between the exponents of our ansatz and the two
universal exponents characterizing the behavior of �opt in the
SD limit. For the fractal dimension dopt we have

dopt = ϕ + χ, (9)

whereas for the universal exponent −gopt of the power-law
decay of the distribution of the optimal path length [36], we
have

gopt = 1 + ϕ

ϕ + χ
= 1 + ϕ

dopt
. (10)

The values of the scaling exponents ϕ, χ , and κ , as well as
the values of ν, dopt, and gopt considered here, are indicated in
Table II for D = 2 and D = 3. It is important to note that the
values of ϕ, χ , and κ should not be taken as exact values, but
as reliable estimates of the actual values. These values were
calculated on the basis of two criteria: (i) they provided the
best fits to the scaling behaviors obtained in our numerical
simulations and (ii) they exactly satisfied the scaling relations
given in Eqs. (8)–(10). In this regard, we recall that our aim is
to provide a general and consistent theory.

IV. SCALING REGIMES

The scaling regimes obtained in our model have been
schematically summarized in Fig. 1, with the transitions be-
tween them indicated by the arrows. We now proceed to their
analysis.

FIG. 1. Scheme of the different types of disorder with the five
scaling regimes addressed here. The transitions between them have
been represented with arrows and the type of transition (crossover or
saturation) has been indicated.

A. Strong disorder

Strong disorder is obtained when r � r× and L � Lsat.
Under these conditions we have two possible cases that are
addressed separately: L � r and L � r.

1. Case SD1: L � r

Figure 2 illustrates the geometric conditions corresponding
to this case. The lattice is under SD-limit conditions and the
reduced linear size L is larger than r.

From the general ansatz presented in Eq. (4) we deduce the
following scaling, called case SD1:

�opt ∼ rϕLχ , (SD1) (11)

FIG. 2. Schematic picture of case SD1 in D = 2. The lattice
is represented by a rectangle where L is the smallest lateral size.
The rough line stands for the optimal path between points A and
B separated a distance r. The gray region represents the domain in
which the conditions for the SD limit are satisfied and has a linear
size of r× (we recall that Lsat ≈ r×).
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where we have made use of the scaling relation in Eq. (8).
Since the optimal path evolves in the SD limit, the scaling
does not depend on the disorder strength A. We compare now
this scaling to known results.

The probability density of the optimal path length,
P(�opt|r, L), in square and simple cubic lattices of linear size
L � r, was deduced in Ref. [36] from numerical simulations.
It was shown that

P(�opt|r, L) ∼ 1

rdopt

[
�opt

rdopt

]−gopt

f1

(
�opt

rdopt

)
f2

(
�opt

Ldopt

)
. (12)

Functions f1 and f2 were assumed to be stretched expo-
nential functions that model the steep drop of P(�opt|r, L) near
certain lower and upper cutoffs for the optimal path length.
We denote these bounds as �min

opt and �max
opt , respectively.

The lower cutoff value �min
opt is related to the most probable

value �

opt and is expected to scale as the mean optimal path

length [36], �min
opt ≈ �


opt ∼ rdopt . It appears to be independent
of L as long as L � r. The upper cutoff value �max

opt is due to
the finite size L and seems to scale as �max

opt ∼ Ldopt . It appears
to be independent of r as long as L � r.

For �min
opt � �opt � �max

opt , P(�opt|r, L) shows a power-law
decay with exponent −gopt � −1.55 in D = 2 and −gopt �
−1.37 in D = 3. Note that gopt decreases as D increases,
which means that the longer optimal paths have a larger prob-
ability at larger dimensions. Additionally, since gopt < 2 for
all d , �opt and all higher moments diverge as L → ∞.

We simplify now Eq. (12) by replacing the stretched expo-
nential functions by unit step functions, and assume that all
the numerical prefactors in the scaling laws are of the order of
unity. We then have

P(�opt|r, L) =
{

1
N

[ �opt

rdopt

]−gopt if �opt ∈ [rdopt, Ldopt ],

0 otherwise,
(13)

where N is a normalization prefactor. The mean optimal path
length of that distribution is

�opt(r, L) = (gopt − 1)

(2 − gopt)

(rϕLdopt − rdopt Lϕ )

(Lϕ − rϕ )
, (14)

where ϕ = dopt(gopt − 1). If we apply now condition L � r,
then we obtain �opt ∼ rϕLdopt−ϕ , which is the same as the
scaling of case SD1 given in Eq. (11) provided χ = dopt − ϕ.
This leads to the scaling relations given in Eqs. (9) and (10).

Let us consider now an isotropic scaling of the two lin-
ear scales, L ∼ r, which has been by far the most-addressed
case [11,33,34,37]. If we apply this condition to the SD1
scaling given in Eq. (11), then we obtain �opt ∼ rϕ+χ = rdopt .
Therefore, the so-called universal –(or fractal-scaling) in the
SD limit arises naturally from our model when the system is
scaled isotropically, as expected.

2. Case SD2: L � r

Figure 3 illustrates the geometric conditions corresponding
to this case. The lattice is in the SD limit and L is smaller
than r.

FIG. 3. Schematic picture of case SD2 in D = 2. The lattice
is represented by a rectangle where L is the smallest lateral size.
The rough line stands for the optimal path between points A and
B separated a distance r. The gray region represents the domain in
which the conditions for the SD limit are satisfied and has a linear
size of r× (we recall that Lsat ≈ r×). The squares with dotted line
represent patches of linear size L.

The general scaling in Eq. (4) yields a scaling regime called
case SD2,

�opt ∼ rLϕ+χ−1 = rLdopt−1 (SD2). (15)

As illustrated in Fig. 3, the optimal path can be divided into
r/L patches of linear size L. Within each patch, �opt behaves
as in case SD1 with r = L, �opt ∼ Ldopt . We then have �opt ∼
(r/L)Ldopt hence obtaining the above scaling.

B. Mixed disorder

We use the term mixed disorder to refer to cases where the
disorder is strong with respect to one of the linear scales of the
model, but it is weak with respect to the other. Since we have
two linear scales, r and L, we obtain two different cases (see
Fig. 1).

1. Case MD1: r � r× and L � Lsat

Figure 4 illustrates the geometric conditions corresponding
to this case. The optimal path behaves with respect to r as
in the SD limit, but the effects of the lattice geometry are
completely irrelevant. Notice that L � r, so this case accounts
for optimal paths in very large lattices compared to r. From
Eq. (4) we obtain the following scaling, called case MD1:

�opt ∼ rϕAκ−ϕν = rϕAν(dopt−ϕ) (MD1). (16)

As expected, the optimal path length does not vary with L be-
cause it saturates at Lsat. Accordingly, scaling MD1 is obtained
by making L = Lsat ∼ Aν in case SD1. For a given disorder
strength A, the optimal path length scales with the end-to-end
distance r with exponent ϕ.
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FIG. 4. Schematic picture of case MD1 in D = 2. The lattice
is represented by a rectangle where L is the smallest lateral size.
The rough line stands for the optimal path between points A and
B separated a distance r. The gray region represents the domain in
which the conditions for the SD limit are satisfied, and has a linear
size of r× (we recall that Lsat ≈ r×).

2. Case MD2: r � r× and L � Lsat

In this case we necessary have L � r. Figure 5 illustrates
the geometric conditions applying to this case. The “effective”
lattice of linear size L is in the SD limit, but the end-to-end
distance is much larger than r×, so the optimal path “sees” a
weak disorder along this direction.

From Eq. (4) we obtain the scaling called case MD2,

�opt ∼ rLϕ+χ−1 = rLdopt−1 (MD2), (17)

which is equal to scaling SD2, so the same arguments em-
ployed for that case also apply here.

C. Weak disorder

Weak disorder is obtained when r � r× and L � Lsat.
Figure 6 illustrates the geometric conditions corresponding to
this case. The relation between r and L is irrelevant as long
as the above conditions are satisfied. From Eq. (4) we obtain

FIG. 5. Schematic picture of case MD2 in D = 2. The lattice
is represented by a rectangle where L is the smallest lateral size.
The rough line stands for the optimal path between points A and
B separated a distance r. The gray region represents the domain in
which the conditions for the SD limit are satisfied and has a linear
size of r× (we recall that Lsat ≈ r×). The squares with dotted line
represent patches of linear size L.

FIG. 6. Schematic picture of case WD in D = 2. The lattice is
represented by a rectangle where L is the smallest lateral size. The
rough line stands for the optimal path between points A and B
separated a distance r. The gray region represents the domain in
which the conditions for the SD limit are satisfied, and has a linear
size of r× (we recall that Lsat ≈ r×).

case WD,

�opt ∼ rAκ−ν = rAν(dopt−1) (WD), (18)

which coincides with the WD scaling reported in the literature
[24,33–35].

V. DISCUSSION

Transitions between the five scaling regimes described
above, indicated in Fig. 1 by arrows, are distinguished into
two classes: saturations and crossovers.

Saturations take place when the effective lattice size L
crosses over the saturation value Lsat and are mediated by the
scaling function G(x) in Eq. (5). Saturations are observed in
the transitions SD1 → MD1 and MD2 → WD. To obtain the
final scaling we only need to replace L by Aν in the initial
scaling.

Crossovers mean changes of the scaling exponents of r and
L. The first crossover occurs in the SD limit between SD1
and SD2, and takes place when L becomes of the order of r.
It is mediated by the scaling function H(x) in Eq. (5). The

crossover value of �opt, denoted as �
(a)
opt ×, is obtained at L = r

and scales as �
(a)
opt × ∼ rdopt . It thus stands for the fractal scaling

reported in the literature [11,33,34,37].
The second crossover is the transition between MD1 and

WD and takes place when the lattice size effects are irrelevant
(L � Lsat) and the end-to-end distance r reaches its crossover
value r×. The crossover mean length, denoted as �

(b)
opt ×, scales

with disorder as

�
(b)
opt × ∼ Aκ = Aνdopt , (19)

which is in perfect agreement with previous results
[18,19,24,33,34].

A specially interesting case of the second crossover hap-
pens when L = r. Then the crossover takes place directly
between SD1 and WD because both r and L cross over their
transition values r× and Lsat, respectively, at the same time.
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This is the transition that has been recognized in the literature
as the strong-weak disorder crossover [24,33–35].

Finally, the WD scaling presented in Eq. (18) can be inter-
preted as follows. As illustrated in Fig. 6, for WD conditions
the optimal path becomes equivalent to a directed polymer in
an effective lattice consisting of cells of linear size r× [34].
The number of cells scales as r because the transversal devi-
ation of the optimal path, h, scales with r with an exponent
smaller than 1. Indeed, h ∼ rζ , where ζ is the DPRM wan-
dering exponent (ζ = 2/3 in D = 2 and ζ � 0.62 in D = 3
[8,51]), which is related to the KPZ dynamical exponent z
through ζ = 1/z [8,14,51]. The length of the optimal path

inside each cell is �
(b)
opt × ∼ Aκ . Thus, we can write �opt ∼

(r/r×)�
(b)
opt × ∼ rAκ−ν , and we obtain the WD scaling given in

Eq. (18).
We would like to end our discussion by addressing a dis-

agreement that has gone completely unnoticed. Porto et al.

[35] obtained that �
(b)
opt × scales with disorder according to

Eq. (19) but with an exponent κ � 1.60 in both D = 2 and
D = 3. While the value in D = 2 is in good agreement with
κ = νdopt � 1.63, the value in D = 3 is considerable dif-
ferent, κ = νdopt � 1.25. In that work, the authors studied
numerically the scaling of the radius of gyration of the optimal
path, denoted here by Rg, with the path length �opt, in square
and simple cubic lattices with fixed size L and for different
disorder strengths.

These results offer us the possibility of testing the ability
of our model to deduce the behavior of other observables
such as the radius of gyration. If we analyze the conditions
used in the work, then we find that L � Lsat for all noise
levels considered. According to our theory, the strong-weak
disorder crossover shown in the work actually corresponds to
the crossover from case MD1 to WD. For a fractal polymer
of length � and fractal dimension d f , its radius of gyration
scales as Rg ∼ �1/d f . This is equivalent to the fractal law
m ∼ Rd f for the mass m of a fractal that is contained in a
hypersphere of radius R. Therefore, Rg scales as the linear size
R of the hypervolume containing the polymer. If that volume
is a D-dimensional lattice of size L1 × L2 × . . . × LD, then we
then expect Rg ∼ (L1L2 · · · LD)1/D. In the MD1 case we have
the configuration illustrated in Fig. 4. Since L � Lsat � r,
the optimal path behaves as if the lateral size of the lattice
in all directions except for the r direction was given by Lsat.
Thus, the average linear size R of the volume comprised by the
optimal path should scale as R ∼ [rAν(D−1)]1/D, so we expect
for the MD1 case Rg ∼ [rAν(D−1)]1/D. On the other hand, in
the WD case the optimal path behaves as a self-affine directed
polymer, so we expect Rg ∼ r. We then conclude

R2
g ∼

{
r2/DA2ν(D−1)/D if r � r×,

r2 if r � r×.
(20)

Now we use the scaling of �opt in cases MD1 (r � r×) and
WD (r � r×), given in Eqs. (16) and (18), respectively, to
obtain r as a function of �opt. By introducing the resulting

expressions in Eq. (20) we obtain

R2
g ∼

⎧⎨
⎩

�
2/(ϕD)

opt A2ν[1−dopt/(ϕD)] if �opt � �
(b)
opt ×,

�
2

optA
2ν(1−dopt ) if �opt � �

(b)
opt ×.

(21)

The crossover mean length is the value of �opt that makes the

two parts equal, and coincides with �
(b)
opt × given in Eq. (19).

We now rewrite the above scaling in the form

R2
g ∼ [

�
(b)
opt ×

]2/doptZ

⎡
⎣ �opt

�
(b)
opt ×

⎤
⎦, (22)

with the scaling function

Z (x) ∼
{

x2/(ϕD) if x � 1,

x2 if x � 1,
(23)

and we obtain the same scaling reported in that work provided
ϕ = dopt/D (see Fig. 2 in Ref. [35]). In conclusion, our theory
successfully reproduces the scaling of the radius of gyration,
but disagrees on the value of κ in D = 3. Interestingly, a new
scaling relation ϕ = dopt/D has been deduced. Its validation is
beyond the scope of the present work, but it certainly deserves
an in-depth study. The values of ϕ obtained from it do not
differ notably from those considered here: In D = 2 we have
0.61 vs 0.67, respectively, and in D = 3 we have 0.47 vs 0.53.

VI. NUMERICAL RESULTS

Now we present a series of numerical experiments which
are intended to show the role of the different terms involved
in our unified scaling ansatz, as well as to illustrate the afore-
discussed scaling regimes and transitions. In particular, we
will focus on showing the scaling functions given in Eq. (5).
We recall that we tune the strength of the disorder by varying
the shape parameter k of the Weibull distribution, and that
disorder strength parameter A is obtained from k using Eq. (3).
However, in the following figures we will represent the degree
of disorder by the term Aν because it provides more informa-
tion as it determines the scaling of both r× and Lsat. Thus,
a given value of Aν corresponds to a certain value of k (see,
e.g., Table I for some representative values). Unless we say
the contrary, the averages are performed over 5 × 103 paths.

One of most interesting results of our study is the satu-
ration of the optimal path length when L crosses over Lsat.
Figure 7(a) shows the scaling of �opt with the linear size L
of square lattices, for fixed r � r× and different degrees of
disorder. We are thus displaying the transition from SD1 to
MD1 with fixed r. From the general ansatz given in Eq. (4)
we obtain the following scaling:

�opt ∼ Aκ−ϕνG
(

L

Aν

)
, (24)

which has the same form as the Family-Vicsek scaling for the
roughness of growing surfaces [51].

The results displayed in the figure are in good agreement
with this scaling. The mean optimal path length grows as
Lχ up to a saturation size Lsat which increases with disorder.
From this point on, �opt saturates at a value that also increases
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FIG. 7. (a) Mean optimal path length �opt as a function of the
linear size L of square lattices for r = 10 and different disorder
strengths. (b) Data collapse obtained after applying the scaling given
in Eq. (24) with exponents given in Table II for D = 2. Broken lines
represent power-law behavior with exponent χ .

with disorder. In Fig. 7(b) we have scaled L by the saturation
size Lsat ∼ Aν , and �opt by its saturation value, which scales
as Aκ−ϕν . Data nicely collapse to the scaling function G(x)
given in Eq. (5). The corresponding Family-Vicsek relation
between the exponents takes the form κ = ν(ϕ + χ ) and was
previously presented in Eq. (8).

We focus now on the crossover from MD1 to WD. We fix
L to a constant value such that L � Aν , and we vary r for
different values of A. Under these conditions our ansatz in
Eq. (4) reduces to

�opt ∼ AκF
( r

Aν

)
. (25)

We have carried out this numerical experiment on square
lattices of linear size L = 2000 with the following particular-
ity. We have considered the optimal path connecting the center
node to nodes on the axis, so r is the Euclidean distance to the
origin, r = 1, . . . , 1000. The increase of the average length of
these paths with r has been displayed in Fig. 8(a) for several
disorders ranging from Aν ≈ 2 to Aν ≈ 760. In Fig. 8(b) we
have scaled data according to Eq. (25). Despite the fact that the

FIG. 8. (a) Mean length of the optimal path connecting the center
node of a square lattice of linear size L = 2000, to nodes on the axis,
as a function of their distance r to the origin for different disorder
strengths. (b) Data collapse obtained after applying the scaling given
in Eq. (25) with exponents given in Table II for D = 2. Broken
lines in both panels represent power-law behaviors with the indicated
exponents. The averages are performed over 4 × 104 paths.

optimal path “sees” a different lattice geometry as r increases,
data nicely collapse to the scaling function F (x) given in
Eq. (5). Small deviations are observed for the smaller values
of r, and are due to the discreteness of the lattice, which
becomes relevant.

The two set of results discussed above showed the transi-
tion from SD1 to WD in two steps: first SD1 → MD1 and
then MD1 → WD. However, as discussed in Sec. V, we can
simplify this path by assuming that L = r. In that case the
transition from the SD limit to WD takes place in one single
step because both r and L cross over Aν simultaneously. From
the general ansatz given in Eq. (4) we obtain

�opt ∼ AκJ
( r

Aν

)
, (26)

with scaling function J (x) = F (x)G(x):

J (x) ∼
{

xdopt if x � 1,

x if x � 1.
(27)
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FIG. 9. (a) Mean optimal path length �opt as a function of the
reduced linear size L of rectangular r × L lattices for points with L <

r, and square L × L lattices for points with L � r, for different values
of r at a constant disorder strength Aν = 756.7. (b) Data collapse
obtained after applying the scaling given in Eq. (29) with exponents
given in Table II for D = 2. Broken lines in both panels represent
power-law behaviors with the indicated exponents.

This transition has been reported in the literature as the
strong-weak disorder crossover [24,33–35]. The scaling factor
Aκ and the scaling function J (x) may take different forms, but
they all lead to the same scaling behaviors on both sides of the
crossover.

The next set of results show another relevant result of
our model, the crossover between WD1 and WD2, i.e., the
transition that takes place in the SD limit when L crosses
over r. After applying the SD-limit conditions r � r× and
L � Lsat in Eq. (4), we obtain

�opt ∼ rϕLχH
(

L

r

)
. (28)

We display in Fig. 9(a) the scaling of �opt with L for different
values of r. Disorder has been fixed to a constant value such
that the SD-limit conditions r � Aν and L � Aν are satis-
fied. For cases L < r we have employed r × L rectangular
lattices, whereas for L � r we have considered square L × L

lattices. Results show that, for a given value of r, �opt grows
as �opt ∼ Ldopt−1 until L becomes of the same order as r. Then,
a crossover takes place to the scaling �opt ∼ Lχ displayed in
Fig. 7.

We can rewrite Eq. (28) in the more suitable form:

�opt ∼ rdoptH′
(

L

r

)
, (29)

with the modified scaling function H′(x):

H′(x) ∼
{

xdopt−1 if x � 1,

xχ if x � 1.
(30)

In Fig. 9(b) we have scaled �opt by rdopt , and plotted it against
L/r, obtaining a good collapse to the scaling function H′(x).
We observe a smooth inflexion above the crossover point
L = r, before the scaling behavior (L/r)χ is attained. This is
probably a small effect of the lattice geometry, since we go
from rectangles with points A and B located on opposite sides,
to squares in which points A and B are inside the lattice.

We complete the numerical analysis of the scheme in Fig. 1
by addressing the transition from MD2 to WD. We thus con-
sider r � r×, and the argument of the scaling function H(x)
is x = L/Aν . From Eq. (4) we have

�opt ∼ Aκ−νS
(

L

Aν

)
, (31)

with the new scaling function

S (x) = G(x)H(x) ∼
{

xdopt−1 if x � 1,

1 if x � 1.
(32)

It is again a “Family-Vicsek”-like scaling [51], from which we
obtain again the scaling relation given in Eq. (8).

We display in Fig. 10(a) the scaling of �opt with L for a
fixed r and different disorder strengths. Most of the disor-
der strengths satisfy condition r � Aν corresponding to case
MD2, but we have also shown one case with r � Aν corre-
sponding to case SD2 (both MD2 and SD2 cases have the
same scaling). Points with L < r are obtained using r × L
rectangular lattices, and for points with L � r we have used
L × L squares. The mean optimal path length grows initially
as �opt ∼ Ldopt−1. When L crosses over the saturation value
Lsat, �opt saturates to a constant value that increases with
disorder. According to the scaling given in Eq. (32), if we
scale L to the saturation value Aν , and �opt to Aκ−ν , then data
should collapse to the scaling function S (x), as it is indeed
displayed in Fig. 10(b).

We have found implicitly in Figs. 8–10 some evidences
that the effects of the lattice size and its geometry are con-
trolled by the reduced linear size L = min{L1, L2}. The next
set of numerical results is aimed to verify this assump-
tion. We have repeated the case Aν = 174.9 displayed in
Fig. 7 but using rectangles of size L1 × L2 instead of L × L
squares. We plot in Fig. 11(a) the scaling of �opt with L1

for different values of L2, and in Fig. 11(b) the result of
exchanging the roles of L1 and L2. The square lattice case
displayed in Fig. 7 has been indicated with a solid line for
comparison.

The similarity between the two figures is striking, since
A and B lie in both cases along the L1 direction. Yet, the
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FIG. 10. (a) Mean optimal path length �opt as a function of the
reduced linear size L of rectangular r × L lattices for points with
L < r, and square L × L lattices for points with L � r, for fixed
r = 300 and different disorder strengths. (b) Data collapse obtained
after applying the scaling given in Eq. (31) with exponents given in
Table II for D = 2. Broken lines in both panels represent power-law
behaviors with the indicated exponents.

results indicate that both directions have the same effect. We
analyze the results of Fig. 11(a) [the same arguing applies
to Fig. 11(b)]. For L2 � Lsat (Lsat ≈ 175), �opt grows with
L1 initially according to the expected scaling �opt ∼ Lχ

1 , no
matter the value of L2. When L1 becomes of the same order as
L2 (square lattice case), the mean length saturates to a value
that remains constant (on average) even though L1 increases
above L2. On the other hand, for L2 � Lsat, the curves col-
lapse to a single curve which coincides with the square lattice
case.

There appear some deviations from this behavior when
L2 is small and comparable to r. In that case we observe a
slight increase of �opt with L1 after L1 ≈ L2. This effect of
geometry vanishes as L2 increases, so for scaling purposes
we can indeed assume that the relevant length scale is L. To
support this conclusion we have plotted in Fig. 12 all the
results displayed in Fig. 11 against the reduced linear size
L, and we obtain an acceptable data collapse. The vertical

FIG. 11. Mean optimal path length �opt as a function of (a) the
lateral size L1 of rectangular L1 × L2 lattices, for different values
of L2, and (b) the lateral size L2 of rectangular L1 × L2 lattices,
for different values of L1. Results correspond to r = 10 and Aν =
174.9. Case L1 = L2 = L displayed in Fig. 7 has been indicated with
solid thick lines. Broken lines represent power-law behavior with
exponent χ .

FIG. 12. Same results displayed in Fig. 11 (using the same sym-
bols) but plotted as a function of min{L1, L2}.
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FIG. 13. (a) Mean optimal path length �opt as a function of the
linear size L of simple cubic lattices for r = 10 and different disorder
strengths. (b) Data collapse obtained after applying the scaling given
in Eq. (24) with exponents given in Table II for D = 3. Broken lines
represent power-law behavior with exponent χ .

dispersion of the points is due to the fluctuations of �opt at
saturation, so it should decrease as we increase the sampling.

We finish this section by showing the results obtained in
simple cubic lattices of linear size L. Corners are located
at positions (±L/2,±L/2,±L/2), and points A and B at
(−r/2, 0, 0) and (r/2, 0, 0), respectively. Figure 13 is the 3D
equivalent of Fig. 7 and shoes the transition from SD1 to MD1
for fixed r. As for the 2D case, data displayed in Fig. 13(a)
collapse to scaling function G(x) when L is scaled to Aν , and
�opt to Aκ−ϕν , as displayed in Fig. 13(b). We also show in
Fig. 14 the 3D equivalent of Fig. 8 with fixed L = 100. Data
displayed in Fig. 14(a) collapse to scaling function F (x) when
r is scaled to Aν , and �opt to Aκ , as displayed in Fig. 14(b).

VII. CONCLUSIONS AND FURTHER WORK

We have presented a general scaling for the mean length
of the optimal path length between two points that accounts
for the effects of the geometry (size and shape) of the lattice
to which the points belong. It is shown that these effects are

FIG. 14. (a) Mean optimal path length �opt as a function of the
end-to-end distance r for simple cubic lattices of constant linear size
L = 100 and different disorder strengths. (b) Data collapse obtained
after applying the scaling given in Eq. (25) with exponents given in
Table II for D = 3. In both parts broken lines represent power-law
behaviors with the indicated exponents.

controlled by a single parameter, the smallest lateral size of
the lattice, L, which reduces the number of degrees of freedom
to three: the two length scales given by r and L and the
disorder parameter A.

Interestingly, this result agrees in somehow with the invari-
ance property of diffusive random walks. It has been proved
[52], and observed in different real systems [53], that the
average length of the trajectories performed by random walks
through a closed finite system, from entry point to first exit
point, is given by aV/S, where a is a numerical constant, V
is the system volume, and S its boundary. That means that it
depends only on the geometry of the system. For example, for
a rectangular lattice of size L1 × L2 with L1 � L2, the above
expression takes the form aL1/2 to a good approximation,
which means that the average length is controlled by the
smallest linear size of the medium.

We have shown that the optimal path also experiences a
strong-weak disorder transition with respect to L, when L
reaches a certain characteristic length Lsat that scales with
disorder in the same way as the crossover end-to-end distance,
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Lsat ∼ r× ∼ Aν . The numerical results presented here indicate
that the numerical prefactors in the scaling relations for r× and
Lsat are nearly the same. They are approximately equal to 1 in
D = 2, and above 2 in D = 3. However, there is remarkable
difference between these two disorder-induced transitions. In
the case of L, the mean length saturates to a constant value,
whereas for r, it experiences a crossover.

The general scaling proposed here considers three scaling
exponents (besides the percolation connectivity exponent ν).
The exponent ϕ determines the power-law growth of �opt with
r in a fixed lattice with SD-limit conditions with respect to r.
The exponent χ determines the power-law growth of �opt with
L, for a fixed r, in the SD limit. The exponent κ characterizes
the scaling, with the disorder strength, of the mean optimal
path length at both saturation and crossover points. The three
exponents are related through the “Family-Vicsek”-like scal-
ing relation κ = ν(ϕ + χ ).

The decoupling of r and L allowed us to go deeper into the
origin of the universal scaling in the SD limit. In particular, we
deduced two scaling relations between our scaling exponents
and universal exponents dopt and gopt: dopt = ϕ + χ and gopt =
1 + ϕ/dopt. We showed how the scaling behaviors reported
in the literature arise naturally from our model as particular
cases, and we completed the casuistry of the problem by
addressing the new scaling regimes revealed by the model.

The next steps in future work should focus on elucidating
the dependence of the scaling exponents on the dimension
D of the system. It has been conjectured [21,37] that dopt

monotonically increases with D, from dopt = 1 in D = 1, to
dopt = 2 for D � Dc = 6, which is the upper critical dimen-
sion of percolation [47]. For D � Dc the optimal path has a

fractal dimension of 2 corresponding to a random walk. On the
other hand, we have that gopt < 2 for D > 1, and it seems to
decrease with D [36]. In addition, for L = ∞, the integrability
condition imposes condition gopt > 1.

We can now assume that the scaling relation ϕ = dopt/D
derived from our analysis of the radius of gyration, and
whose verification certainly deserves additional work, holds
for D � Dc. After considering all the above conditions, we
can conjecture the following: (i) ϕ decreases with D accord-
ing to ϕ = dopt/D, ranging from ϕ = 1 in D = 1 to ϕ = 1/3
in D = Dc; (ii) χ increases with D following the relation
χ = dopt(1 − D−1), from χ = 0 in D = 1 up to χ = 5/3 in
D = Dc; and (iii) exponent gopt decreases with D according
to gopt = 1 + D−1, taking the value gopt = 7/6 in D = Dc. As
discussed above, more research is needed in this regard. An-
other issue of great importance that also deserves additional
work is obtaining accurate values of the exponents ϕ and χ .
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