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Quantum dynamical tunneling breaks classical conserved quantities
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We discover that quantum dynamical tunneling, occurring between phase space regions in a classically
forbidden way, can break conserved quantities. We rigorously prove that a conserved quantity in a class of
typical pseudointegrable systems can be broken quantum mechanically. We then numerically compute the
uncertainties of this broken conserved quantity, which remain nonzero for up to 105 eigenstates and exhibit
universal distributions similar to energy level statistics. Furthermore, all the eigenstates with large uncertainties
show the superpositions of regular orbits with different values of the conserved quantity, showing definitive
manifestation of dynamical tunneling. A random matrix model is constructed to successfully reproduce the level
statistics of pseudointegrable systems.
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I. INTRODUCTION

Dynamical tunneling is a fundamental quantum phe-
nomenon which refers to classically forbidden transitions
between phase-space regions, even without an energy barrier
in the middle [1]. It has been well studied in both classically
integrable and mixed systems (where integrable and chaotic
phase-space regions coexist) within various contexts [2–13].
In such systems, dynamical tunneling was not observed to
impact the overall integrability associated with the conserved
quantities governing the entire system. In this paper, we use
pseudointegrable systems to show that dynamical tunneling
can break classical conserved quantities other than energy,
giving rise to nonintegrable behaviors.

The pseudointegrable systems were introduced by Richens
and Berry in 1981 [14]. They are defined as classical Hamil-
tonian systems with equal degrees of freedom and conserved
quantities, where the phase trajectories are restricted to an
invariant surface R featuring a multihandled sphere with
genus larger than 1, in contrast to the genus-1 torus found
in integrable systems. Typical examples of such systems are
rational polygon billiards [see Fig. 1(a)], whose conserved
quantity other than energy is given by

T (cos θ ) � cos (Nθ ), (1)

where θ is the angle between the momentum and the hori-
zontal axis and N is the least common multiple of ni for all
vertices with rational angles miπ/ni [15]. The conservation
arises from the fact that the directions of each classical trajec-
tory follow the orbits of a dihedral group DN .

The dynamical properties of pseudointegrable systems
have been studied over decades both classically and quantum
mechanically but from very different perspectives. In classical
mechanics, people are concerned about how the unremovable
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singularities on R split the beams of trajectories [14,15]. In
the quantum counterpart, the exploration has primarily re-
volved around their energy level statistics [14,16–19]. Follow-
ing this line, Bogomolny identified a subset of them character-
ized by the semi-Poisson distribution [20–25], which had been
proposed as a universal intermediate bridging the gap between
Poisson statistics and Wigner-Dyson statistics [26,27]. Pseu-
dointegrable systems present two advantages for our study: (i)
Singularities in phase space were suggested as an important
element to provoke dynamical tunneling [3]; (ii) absence of a
classical chaotic sea makes the nonintegrable behaviors more
attributable to the effects of dynamical tunneling.

Here we focus on the rational right triangle billiards, as
depicted in Fig. 1(b). This subclass has all the features of
pseudointegrable systems. We analytically prove the absence
of conserved quantity T in their quantum counterparts. The
entire proof unfolds in two steps. First, assuming T̂ as the
quantization of T is conserved, we can expand the eigenstates
by 2N plane waves with the directions following the orbits of
group DN . Second, imposing Dirichlet boundary conditions
on the sides, we find that they cannot be satisfied, unless
the billiards are completely integrable (see Appendix A for
details).

To quantify the quantum mechanical breaking of the con-
served quantity T , we calculate the uncertainty of operator T̂
for each eigenstate, defined by

σ (ψn) � 〈ψn|T̂ 2|ψn〉 − 〈ψn|T̂ |ψn〉2, (2)

where ψn denotes the nth eigenstate. We observe that the
decreasing trend of σ (ψn) with rising energy cannot be de-
scribed by elementary functions. Instead, we examine the
probability density functions (PDFs) of unfolded σ within
an energy shell, revealing nontrivial distributions that can
be accurately fitted by the Brody distribution [28,29]. The
eigenstates with sufficiently small σ are collected and their
unfolded level spacing statistics conform to the Poisson dis-
tribution, while the eigenstates with large σ showcase a
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FIG. 1. Pseudointegrable systems. (a) Rational polygon and in-
variant surface R with constant energy and T . Each angle at the
vertex i of polygon has a rational degree miπ/ni, with mi and ni

being coprime integers. At least one vertex has mi > 1. (b) Rational
right triangle. m1 and n1 are coprime integers. The directions of
momentum can be described by two alternative variables: the angle
θ of inclination with respect to the horizontal axis or the included
angle θ̄ with respect to the outer normal vector of sides.

superposition with classical regular orbits with different T ,
regardless of whether they are periodic or not. It is the con-
sequence of dynamical tunneling, which results in avoided
crossings among regular states. Inspired by the statistics of σ ,
we develop a random matrix model for dynamical tunneling
and successfully reproduce the level spacing distributions of
pseudointegrable systems.

II. CONSERVED QUANTITY

Each classical trajectory has directions being the orbits
of dihedral group DN , which fold 0 � θ � 2π into an in-
terval [0, π/N]. This corresponds to a quotient map |θ
mod (2π/N )|, functioning as a conserved quantity [15]. For
simplicity, we use the form (1). This choice stems from the
fact that cos(Nθ ) can be expanded in terms of cos θ using the
N th-order Chebyshev polynomials of the first kind and cos θ

can be easily quantized as P̂x/P̂, where P̂ is the magnitude of
the momentum and P̂x is the momentum operator along the x
direction. Consequently, the classical trajectory in phase space
can be projected onto R. It is simple to prove T (cos θ ) is con-
served along a classical trajectory, i.e., for a certain reflection
at one side, T (cos θ ) = cos(Nθ ) → cos[N (2 jπ/N ± θ )] =
cos(Nθ ) = T (cos θ ) for j = 0, 1, . . . , N − 1. The quantiza-
tion result can be exemplified by considering the case of an
integrable isosceles right triangle billiard, where N = 4. In
this case, the operator T̂ is represented by the expression
T̂ = 8(P̂x/P̂)4 − 8(P̂x/P̂)2 + 1. When the operator P̂x/P̂ acts
on |ψn〉, it yields P̂x|ψn〉/(h̄kn), where kn is the wave number
of ψn.

III. UNCERTAINTY

We calculate the quantum right triangle billiards with one
interior angle being π/8, π/5, π/7, 2π/7, π/9, 2π/9 (these
angles are used to represent the corresponding billiards in the
following parts). The genus of R is given by the formula

FIG. 2. (a) Scatter plots of σ in relation to NWeyl for π/8 billiard,
where 104 points are sampled uniformly. (b1), (b2) PDFs of σ .
The 105 eigenstates are categorized into three groups based on their
energy levels, with three different colors representing NWeyl within
the ranges of 0–2 × 104, 4–6 × 104, and 8–10 × 104. The insets
provide a closer look at σ smaller than 0.1. Notably, (b1) and (b2)
respectively correspond to π/8 and π/7 billiards.

1 + N
∑

i(mi − 1)/(2ni ). Consequently, each pair of billiards
corresponds to R with genus-2, 3, 4. It is noted that the en-
ergy level statistics of π/8 and π/5 has been found to be
semi-Poisson distribution [20]. For each billiard, 105 eigen-
states are calculated using a hybrid of scaling method and
decomposition method [30,31]. We use Weyl’s level NWeyl to
indicate the energy of eigenstates, NWeyl = (Sk2

n − Lkn)/(4π ),
where S and L are the area and perimeter of billiard tables,
respectively [32]. It helps to compare different systems with a
unified energy scale.

The direct results of σ are depicted in Fig. 2(a). It demon-
strates that most points cluster around the small values of
σ . However, there are still eigenstates with large σ values
at higher energy levels. Since σ does not exhibit a clear
decreasing trend with NWeyl, we analyze σ statistically. If T̂
were conserved, we would expect the PDF of uncertainties,
denoted as P(σ ), to be a delta distribution at σ = 0. However,
the statistical results show that P(σ ) follow various nontrivial
distributions. This is exemplified by π/8 and π/7 billiards in
Figs. 2(b1) and 2(b2). Both P(σ ) have right tails but different
peaks. With energy rising, they exhibit a trend to converge to
delta distribution. It indicates that, in the classical limit, the
conserved quantity T will recover.

To gain further insights, we consider the unfolded uncer-
tainty, defined as σ̃ � σ/ mean(σ ), where mean(σ ) represent
the mean value of the ensemble {σ (ψn)}. The domain is ex-
tended from σ ∈ [0, 1] to σ̃ ∈ [0,∞], because mean(σ ) can
be arbitrarily small. The PDFs of σ̃ , denoted as P(σ̃ ), are
shown in Fig. 3(a). All P(σ̃ ) presented here can be well fitted
by Brody distributions PBrody(σ̃ ) = a(q + 1)σ̃ q exp(−aσ̃ q+1),
a = �[(q + 2)/(q + 1)]q+1 with a single parameter q ∈ [0, 1].
In particular, for π/8 and π/5 billiards, whose level statistics
are semi-Poissonian, P(σ̃ ) closely resemble the q = 0 Poisson
distribution exp(−σ̃ ). The differences in cumulative distribu-
tion functions (CDFs) from the best-fitted model, denoted by
UB(σ̃ ) := ∫ σ̃

0 d σ̃1[P(σ̃1) − P∗
Brody(σ̃1)] where the superscript
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FIG. 3. (a) PDFs of σ̃ for 105 eigenstates. The shaded band
represents Poisson distribution, i.e., exp(−σ̃ ). These distributions are
fitted by the Brody distribution. The inset displays the differences
in CDFs from their optimal fitting distributions, denoted as UB(σ̃ ).
The optimal fitting parameters q are approximately 1.0, 1.0, 1.4, 1.5,
1.5, 1.9 for π/8, π/5, π/7, 2π/7, π/9, 2π/9 billiards, respectively.
(b) Differences in CDFs of unfolded level spacing with different un-
certainty thresholds from the Poisson distribution, denoted as UP (̃s).
σ ′ is the selected threshold value. For π/8 billiard, σc is chosen to be
0.0189 with the number of pseudoregular states amounting to 11481.
Notably, in the absence of uncertainty threshold (σ ′ = 1), the level
spacing distribution for the whole spectrum follows Psemi-Poisson (̃s),
as indicated by the red dashed line. Additionally, the level spacing
distribution for the uncertainties less than 0.14 is shown at the inter-
mediate position between Poisson and semi-Poisson distribution.

∗ represents “optimal fitting,” are shown in the inset, which
give the errors less than 2%. This result shows that P(σ̃ ) for
genus-3, 4 billiards have a polynomial repulsion at small σ̃

and a superexponential tail at large σ̃ . Roughly, P(σ̃ ) exhibits
an elevated q with genus increasing, as shown in Fig. 3(a).
This may be understood from Diophantine approximations.
Consider a right triangle billiard, as depicted in Fig. 1(b),
where the ratio m1/n1 is a good Diophantine approximation of
some irrational number. Then, N is typically large, resulting in
a high genus. Since irrational triangle billiards lack the con-
served quantity T , an R with higher genus naturally implies a
more chaotic system.

To confirm our expectation that the level statistics of
eigenstates with small enough σ follows a Poisson distribu-
tion, we scan the values of σ to determine a small enough
threshold σc, such that the unfolded level spacing distribution
of eigenstates with σ < σc aligns with the Poisson distri-
bution with minimal fitting error. This can be formulated
as P(̃s |{ψn, σ (ψn) < σc}) 	 PPoisson (̃s), where PPoisson (̃s) =
exp(−̃s) and s̃ is the unfolded level spacing. We call the
eigenstates with σ < σc “pseudoregular” states. The results
for π/8 billiard are depicted in Fig. 3(b), where the dif-
ferences in CDFs of unfolded level spacing with different

thresholds σ ′ from the Poisson distribution are calcu-
lated, defined as UP (̃s) := ∫ s̃

0 ds̃1[P(̃s1 |{ψn, σ (ψn) < σ ′}) −
PPoisson (̃s1)]. It shows that the level statistics of pseudoregular
states approximates to PPoisson (̃s), implying an absence of level
repulsions in the spectrum if T̂ is conserved. It is established
that, when all the eigenstates are involved (σ ′ = 1), the level
spacing statistics for the whole spectrum follows a semi-
Poisson distribution, i.e., Psemi-Poisson (̃s) = 4̃s exp(−2̃s). By
increasing the threshold to σ ′ = 0.14 > σc, the level statistics
occupies an intermediate position between the Poisson and
semi-Poisson distribution. This demonstrates that, by control-
ling the uncertainty threshold σ ′, the level statistics can be
changed between these two distributions. We will see that the
eigenstates with σ > σc are characterized by the superposition
of classical trajectories with distinct values of T , which is
induced by dynamical tunneling.

IV. DYNAMICAL TUNNELING

The direct approach to investigate dynamical tunneling
is mapping the eigenstates into phase space [33–35]. Fortu-
nately, in pseudointegrable systems, each classical orbit has a
specific value of T . As a result, each eigenstate that may be
a superposition of different classical orbits can be converted
into a distribution of different T values. This distribution is
expressed by the boundary function un(θ̄ ) of ψn, where θ̄ is the
included angle between the outer normal vector of sides and
the momentum as shown in Fig. 1(b). un(θ̄ ) can be obtained by
two steps. First, we choose the Poincaré section as the bound-
ary of a billiard table. Then, the wave function on boundary u′

n

can be evaluated as the normal derivative of ψn, i.e., u′
n(s) �

n̂(s) · ∇ψn(x(s), y(s)), where (x(s), y(s)) is a point on the
boundary parametrized by the arc length s and n̂(s) is the outer
normal unit vector at (x(s), y(s)). Secondly, we perform the
Fourier transformation of u′

n(s) to obtain its conjugate func-
tion un(θ̄ ), i.e., un(θ̄ ) = ∮

∂B ds exp(ikns sin θ̄ )u′
n(s), where ∂B

is the boundary curve. The details are given in Appendix B or
Ref. [36]. With θ̄ , the conserved quantity T can be rewrit-
ten as T = |T (cos θ̄ )| = | cos(N θ̄ )|, where the absolute value
arises at the hypotenuse θ̄ = π/2 + mπ/n − θ . In this way, θ̄

becomes the connection between un(θ̄ ) and T .
The results of the π/8 billiard are shown in Fig. 4. For this

billiard, there are only two types of classical orbits: periodic
orbits (POs) and uniformly distributed orbits (UDOs) that
cover the entire billiard table [37]. It has been established that,
in rational right triangle billiards, nearly every periodic orbit
contains segments that are perpendicular to a specific side.
Consequently, almost all POs have T = 1, while UDOs have
various values of T . Quantum mechanically, there exists “su-
perscar” states, named by Bogomolny [22,38,39], exhibiting
a superposition of spatially parallel POs. T cannot be used to
distinguish different superscar states as they are all equal to 1.

In both Figs. 4(a) and 4(b), |un(θ̄ )|2 exhibit a single peak,
illustrating the features of superscar and UDO, respectively.
Both of them are pseudoregular states, characterized by un-
certainties σ smaller than σc. However, in Figs. 4(c1) and
4(d1), orbits with different values of T are superposed [one
superscar plus one UDO in (c1) and two UDOs in (d1)], caus-
ing their relatively large σ . Notably, eigenstates with small
wave numbers may distribute with a considerable width on
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FIG. 4. Profiles of different types of eigenstates for π/8 bil-
liard, illustrated by un(θ̄ ) with respect to |T (cos θ̄ )|. (a) Superscar
state with NWeyl ≈ 10017.3 and σ ≈ 0.006. (b) Spatial uniformly
distributed orbit with NWeyl ≈ 40090.0 and σ ≈ 0.002. (c1) Superpo-
sition of a single superscar and a single UDO with NWeyl ≈ 60144.6
and σ ≈ 0.563. Panel (c2) is the eigenstate next to (c1) with NWeyl ≈
60144.1 and σ ≈ 0.489. (d1) Superposition of two UDOs with
NWeyl ≈ 61476.4 and σ ≈ 0.461. Panel (d2) is the eigenstate next to
(d1) with NWeyl ≈ 61476.6 and σ ≈ 0.509.

the values of T , leading to an elevated σ . But the presence of
separated peaks here eliminates this concern. The eigenstates
neighboring to Figs. 4(c1) and 4(d1) are shown in Figs. 4(c2)
and 4(d2). And each pair of them shares common peak posi-
tions, signifying common tunneled components. Additionally,
their individual level splittings are much smaller than the
mean level spacing 1. This is another indication of dynamical
tunneling. In Fig. 4(c2), there emerge subpeaks at small T
comparing to Fig. 4(c1), which may illustrate more resonant
orbits. Therefore, the results indicate that dynamical tunneling
destroys the conservation of T̂ by superposing trajectories
with different directions.

V. AVOIDED CROSSING

The dynamical tunneling can be modeled by a random
matrix Hamiltonian

h =
(

ε γ

γ −ε

)
, (3)

where the diagonals ±ε are energy levels of classical orbits
with different values of T and the off-diagonal γ repre-
sent tunneling rates between these. γ is real due to the
time-reversal symmetry. As different classical orbits are not
correlated [as shown in Fig. 3(b)], it is reasonable to assume
that ε has a Poisson distribution, i.e., P(ε) = exp(−2|ε|).

We reproduce the level spacing distribution of π/8 or π/5
billiard, which is already known to be Psemi-Poisson (̃s). Sug-
gested by Figs. 2(b1) and 3(a), we semiempirically estimate
that the distribution g(γ ) of γ has an exponential shape similar
to P(σ̃ ), specifically,

g(γ ) = g(−γ ) ≈ 1
2 exp (−|γ |). (4)

Once P(ε) and g(γ ) are known, we can compute the unfolded
level spacing distribution of (3), which is compared with

FIG. 5. Unfolded level spacing distribution of model (3) using
the tunneling rate (4). The level spacings are collected from 106

ensembles. The red line represents the semi-Poisson distribution.

Psemi-Poisson (̃s) in Fig. 5, demonstrating a perfect fit. Therefore,
combining the results in Figs. 3(b) and 5, we can conclude
that dynamical tunneling is responsible for distorting the level
spacing distribution from a Poisson distribution to the semi-
Poisson distribution. We expect this mechanism applies to all
pseudointegrable systems with diverse level spacing distribu-
tions.

VI. DISCUSSION

The dynamical tunneling observed in pseudointegrable
systems shows different effects compared to those in inte-
grable and mixed systems. We break them down into three
aspects. (i) Conserved quantity. In mixed systems, one can
define a “local” conserved quantity for the trajectories within
symmetry-related integrable islands. Dynamical tunneling
among these integrable islands or from them into the chaotic
sea can destroy this local conserved quantity [3–13]. How-
ever, here, dynamical tunneling has the potential to break the
conserved quantity T governing the entire systems by super-
posing classical orbits with different values of T (as shown
in Figs. 2 and 4). (ii) Level statistics. For mixed systems, dy-
namical tunneling can only introduce subleading corrections
to the Berry-Robnik level statistics, since it weakly couples
regular and chaotic states, thus increasing small distances
between the corresponding levels [4–8,40]. The level repul-
sion in pseudointegrable systems is completely induced by
dynamical tunneling [as shown in Fig. 3(b)]. (iii) Tunneling
rate. In principle, the tunneling rate between two resonant
“double-well states” decreases exponentially with h̄−1, which
can be expressed as ln γ ∝ −ξ h̄−1 + O(ln h̄), where ξ is a
parameter related to systems and resonant orbits (for a double-
well system, ξ is the imaginary part of action over the energy
barrier in the middle) [3,4,41]. In the presence of more reso-
nant states, the tunneling rates between the original pair can be
enhanced or suppressed by several orders of magnitude at cer-
tain values of h̄−1 [9–13]. We formulate this qualitatively as
ξ = ξ (h̄−1) = ξ̄ + ∑

i λiδ(h̄−1 − h̄−1
i ), where ξ̄ is the average

value over a shell of h̄−1, h̄−1
i is the enhanced (or suppressed)

point, and λi is the corresponding strength. In the limit of
strong tunneling, the distribution of h̄−1

i becomes dense on
the shell, allowing us to treat ξ as a random variable centered
around ξ̄ . This is consistent with our semiempirical distribu-
tion of tunneling rate (4). However, a rigorous quantitative
derivation of the tunneling rate remains an open problem.
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APPENDIX A: PROOF OF CONSERVED QUANTITY
BREAKING IN RATIONAL RIGHT

TRIANGLE BILLIARDS

Consider a rational right triangle billiard described in
Fig. 6. The direction θ can undergo three kinds of reflec-
tions by sides: θ → −θ (reflection at y = 0), θ → π − θ

(reflection at x = L cos α), and θ → 2α − θ (reflection at
y = x tan α). These can generate a dihedral group DN (N =
n1) with dimension 2N , yielding a conserved quantity T =
cos Nθ independent with the energy. T can be quantized after
expanding to the polynomial of cos θ = Px/P, where Px is the
momentum along the x direction and P is the magnitude of
total momentum.

The conserved quantity T originates from the existence of
quotient projection mapping each classical trajectory on the
surface S1/DN , where S1 is the unit circle. It means that, for
a classical trajectory, the possible directions, denoted as ±θ j ,
can be related to a reference θ0 ∈ [0, π/N] so that

θ j = θ0 + 2 jπ

N
, j = 0, 1, . . . , N − 1. (A1)

If the quantized operator T̂ remains conserved in quantum me-
chanics, the eigenstate should also follow the orbits of group
DN , just as each classical trajectory does. In this manner, the
eigenstate, denoted as |ψ〉, can be expanded by plane waves

= 1 / 1

gcd 1, 1 = 1

̅

FIG. 6. Rational right triangle billiard. This billiard includes at
least one vertex with angle α being m1π/n1, where n1 is even and
m1 (m1 �= 1) and n1 are coprime integers. L is the length of the
hypotenuse. The directions of billiard can be described by either of
two alternative variables: the angle θ of inclination with respect to
the x axis or the included angle θ̄ with respect to the outer normal
vector of sides.

with direction ±θ j ,

|ψ〉 =
N−1∑
j=0

(c+
j |k cos θ j, k sin θ j〉 + c−

j |k cos θ j,−k sin θ j〉),

(A2)
where c±

j are the superposing parameters. Then, the Dirichlet
boundary conditions at y = 0, y = x tan α, and x = L cos α

can be evaluated sequentially:

N−1∑
j=0

(c+
j + c−

j )eikx cos θ j = 0, (A3)

N−1∑
j=0

[c+
j eikr cos(θ j−α) + c−

j eikr cos(θ j+)] = 0, (A4)

N−1∑
j=0

(c+
j eiky sin θ j + c−

j e−iky sin θ j )eikL cos α cos θ j = 0, (A5)

where r =
√

x2 + y2 ∈ [0, L]. Suppose the subscript of c±
j has

a cyclic relation c±
j := c±

j mod N for j ∈ Z; Eq. (A4) can be
rewritten as

N−1∑
j=0

(c+
j+m + c−

j )eikr cos(θ j+α) = 0. (A6)

We can prove that Eq. (A3) and Eq. (A6) are equivalent to

c+
j + c−

j = c+
j+m + c−

j = 0, j = 0, 1, . . . , N − 1. (A7)

We take the ith (i = 1, 2, . . . , N − 1) derivative of the both
sides of Eq. (A3) and make x equal to zero. In this way,
we obtain N homogeneous linear equations by defining aj :=
c+

j + c−
j ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

cos θ0 cos θ1 . . . cos θN−1

cos2 θ0 cos2 θ1 . . . cos2 θN−1

...
...

. . .
...

cosN−1 θ0 cosN−1 θ1 . . . cosN−1 θN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

...

aN−1

⎤
⎥⎥⎥⎥⎥⎦ = 0.

(A8)

Its determinant is known as the Vandermonde determinant,
yielding

det[cosi−1 θ j]N×N =
∏

0�i< j�N−1

(cos θ j − cos θi ). (A9)

If we let cos θ j = cos θi, we obtain θ0 = (N − i − j)π/N ,
which cannot be confined in the domain (0, π/N ). As a result,
this determinant is nonzero for θ0 ∈ (0, π/N ). In this way, the
solution to Eq. (A8) is a null vector, i.e.,

a j = c+
j + c−

j = 0. (A10)

When θ0 = 0, π/N , the billiard has N directions
corresponding to degenerate cases with θ j = −θN− j .
We redefine the superposing parameter as c j , so that
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|ψ〉 = ∑N−1
j=0 c j |k cos θ j, k sin θ j〉. For θ0 = 0, the degenerate versions of boundary conditions Eq. (A3) and Eq. (A4) become

c0eikx + cN/2e−ikx +
N/2−1∑

j=1

(c j + cN− j )e
ikx cos θ j = 0, (A11)

(m−1)/2∑
j=0

(c j + cm− j )e
ikr cos(θ j−α) +

(m+N−1)/2∑
j=m+1

(c j + cm+N− j )e
ikr cos(θ j−α) = 0. (A12)

These two relations are equivalent to c j + cN− j = c j + cm− j = 0, yielding cm− j = c− j . Consequently, all c j must equal c0 = 0.
For θ0 = π/N , we have

N/2−1∑
j=0

(c j + cN−1− j )e
ikx cos θ j = 0, (A13)

c(m−1)/2eikr + c(m+N−1)/2e−ikr +
(m−3)/2∑

j=0

(c j + cm−1− j )e
ikr cos(θ j−α) +

(m+N−3)/2∑
j=m

(c j + cm+N−1− j )e
ikr cos(θ j−α) = 0. (A14)

They are equivalent to c j + cN− j−1 = c j + cm− j−1 = 0, yield-
ing cm− j−1 = c1− j . Consequently, all c j must equal c(m−1)/2 =
0. So far, we have proved an absence of common eigenstates
for the degenerate cases of θ0 = 0, π/N .

Using the same tricks on Eq. (A6), we can obtain c+
j+m +

c−
j = 0.

Applying the relation Eq. (A7) on the eigenstates |ψ〉, we
get

ψ (x, y) =
N/2−1∑

j=0

sin(kx cos θ j ) sin(ky sin θ j ). (A15)

One can verify ψ (x, y) is invariant under the action of dihe-
dral group DN , θ j → 2βπ/N ± θ j for β ∈ Z. ψ (x, y) is an
irreducible representation of group DN .

We apply the boundary condition Eq. (A5) to Eq. (A15),
yielding

N/2−1∑
j=0

sin(kL cos α cos θ j ) sin(ky sin θ j ) = 0. (A16)

We can prove that Eq. (A16) is equivalent to

sin(kL cos α cos θ j ) = 0 or kL cos α cos θ j = Mjπ,

(A17)

where Mj ∈ Z,∀ j = 0, 1, . . . , N/2 − 1. This proof is simi-
lar to the proof of Eq. (A7). We take the (2i − 1)th (i =
1, 2, . . . , N/2) derivatives of both sides of Eq. (A11) and
make y equal to zero. We obtain N − 1 homogeneous linear
equations by defining bj := sin(kL cos α cos θ j ) sin θ j ,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

sin2 θ0 sin2 θ1 . . . sin2 θN−1

sin4 θ0 sin4 θ1 . . . sin4 θN−1

...
...

. . .
...

sinN−2 θ0 sinN−2 θ1 . . . sinN−2 θN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b0

b1

...

bN−1

⎤
⎥⎥⎥⎥⎥⎦ = 0.

(A18)

Its determinant is nonzero, so the solution is b j = 0, yielding
sin(KL cos α cos θ j ) = 0.

The relation Eq. (A17) can be used as the quantization
condition. We divide it by itself with a different subscript and
obtain

cos θ j

cos θ j′
= Mj

Mj′
∈ Q, j, j′ = 0, 1, . . . , N − 1, (A19)

where Mj = −MN− j−1 for j = N/2, N/2 + 1, . . . , N − 1. By
using the identity

cos θ j + cos θ j′ = 2 cos
θ j + θ j′

2
cos

θ j − θ j′

2
(A20)

and setting j′ to be j + 2, we find that

2 cos
2π

N
= cos θ j

cos θ j+1
+ cos θ j+2

cos θ j+1
∈ Q, (A21)

illustrating the left-hand side (LHS) is rational. It is known
that if the cosine of a rational angle is a rational number,
the only possible cosine values are ±1,±1/2, and 0 (a proof
was provided in [42]). They correspond to the right triangle
billiards with α = π/6 and π/4, which are the only two com-
plete integrable cases. For others, Eq. (A21) is not satisfied.
Therefore, we conclude that, in rational right triangle billiards,
T̂ is not conserved unless the billiards are integrable.

APPENDIX B: POINCARÉ-HUSIMI REPRESENTATION

Poincaré-Husimi representation is used to compare the
eigenstates with classical trajectories [36,43]. In this represen-
tation, the Poincaré section is typically chosen at the boundary
of billiards, yielding the boundary function defined as the
normal derivative of eigenfunction, i.e.,

u′
n(s) � n̂(s) · ∇ψn(x(s), y(s)), (B1)

where (x(s), y(s)) is a point on the boundary parametrized by
the arc length s and n̂(s) denotes the outer normal unit vector
at (x(s), y(s)). Conversely, the wave function can be obtained
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by boundary integral

ψn(x, y) = −
∮

∂B
ds u′

n(s)G[x, y; x(s), y(s)], (B2)

where ∂B is the billiard boundary curve, (x, y) is the point
inside the billiard table, and G[x, y; x(s), y(s)] is the two-
dimensional free particle Green’s function. In phase space,
the conjugate variable to s is sin θ̄ , where θ̄ represents the
included angle between the outer normal vector of sides and
the velocity of billiard flow, as shown in Fig. 6. The conjugate
function un(θ̄ ) is expressed as

un(θ̄ ) =
∮

∂B
ds exp(iks sin θ̄ )u′

n(s), (B3)

where k is the wave number. It should be emphasized that the
relations between θ and θ̄ have three kinds depending on the
sides: θ̄ = θ + π/2 (for y = 0), θ̄ = θ (for x = L cos α), and
θ̄ = π/2 + α − θ (for y = x tan α). Hence |T (cos θ̄ )| remains
the classical conserved quantity. Without ambiguity, we also
use the symbol T to denote |T (cos θ̄ )|. The values of T can
be used to distinguish different trajectories. For example, in
the π/8 billiard, there are only two types of classical orbits:
periodic orbits (POs) and uniformly distributed orbits (UDOs)
that cover the entire billiard table. It has been established
that almost each PO possesses segments perpendicular to
the side of the right triangle. Consequently, almost all POs
have T = 1, while UDOs have various values of T . Quan-
tum mechanically, there exists “superscar” states, exhibiting
a superposition of spatially parallel POs. T cannot be used
to distinguish different superscar states as they all equal 1.
But the complete details of trajectories can be obtained by
projecting the eigenstate using Husimi functions on the phase
space expanded by s and sin θ̄ .

The Husimi function h(q, p) with q = s, p = sin θ̄ is de-
fined as

h(q, p) � 1

A

∣∣∣∣
∮

∂B
ck

(q,p)(l )u′
n(l )dl

∣∣∣∣2

, (B4)

where A is the normalization parameter. ck
(q,p)(l ) is the stan-

dard coherent state, i.e.,

ck
(q,p)(l ) =

∑
j∈Z

exp[ikp(l − q + jL )]

× exp

[
−k

2
(l − q + jL )2

]
, (B5)

where L is the length of the boundary and the sum of j
ensures the coherent states being periodic with a period of L .

The results for the π/8 billiard are shown in Fig. 7. And
the Poincaré-Husimi representations and the plot of the con-
jugate boundary function un(θ̄ ) with respect to the conserved
quantity T are compared to illustrate the trajectories of typ-
ical eigenstates with different σ (the uncertainty of T̂ ). The
eigenstate in Fig. 7(a) is a superscar state, superposed by two
parallel POs with segments perpendicular to the hypotenuse.
The eigenstate in Fig. 7(b) illustrates a UDO. Both of these
are pseudoregular states, each exhibiting a single peak at the
corresponding value of T and thus possessing the conserved
quantity T̂ . The eigenstate in Fig. 7(c1) is a superposition
of one superscar (including four parallel POs) and one UDO

FIG. 7. Trajectories of typical eigenstates for the π/8 billiard.
The left column are the distributions of Husimi functions h(s, sin θ̄ )
on the phase space spanned by s and sin θ̄ . c, b, and a respectively
represent the hypotenuse, the adjacent side, and the opposite side of
the π/8 corner. The right column is the conjugate boundary func-
tion un(θ̄ ) with respect to the conserved quantity |T (cos θ̄ )|. Each
row corresponds to the same eigenstate. (a) A superscar state with
NWeyl ≈ 10017.3 and σ ≈ 0.006, typically exhibiting a superposi-
tion of parallel periodic orbits. (b) A spatial uniformly distributed
orbit with NWeyl ≈ 40090.0 and σ ≈ 0.002. (c1) A superposition
of a single superscar and a single UDO with NWeyl ≈ 60144.6 and
σ ≈ 0.563. Panel (c2) is the eigenstate next to (c1) with NWeyl ≈
60144.1 and σ ≈ 0.489. (d1) A superposition of two UDOs with
NWeyl ≈ 61476.4 and σ ≈ 0.461. Panel (d2) is the eigenstate next to
(d1) with NWeyl ≈ 61476.6 and σ ≈ 0.509.

from the observation on h(s, sin θ̄ ). Consequently, it has two
separated peaks on the distribution of T , causing an elevated
σ . The eigenstate in Fig. 7(c2), which is next to the one
in Fig. 7(c1), includes the trajectories in Fig. 7(c1) plus an
additional UDO [this UDO also exists in Fig. 7(c1) but with
a minimal peak]. The eigenstates in Figs. 7(d1) and 7(d2) are
another pair with the energy splitting much smaller than the
mean level spacing and exhibit a dynamical tunneling between
two UDOs’ regular state.
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