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Verification of scaling behavior near dynamic phase transitions
for nonantisymmetric field sequences
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We investigate the scaling behavior of the magnetic dynamic order parameter Q in the vicinity of the dynamic
phase transition (DPT) in the presence of temporal field sequences H(t) that are periodic with period P but lack
half-wave antisymmetry. We verify by means of mean-field calculations that the scaling of Q is preserved in
the vicinity of the second-order phase transition if one defines a suitable generalized conjugate field H∗ that
reestablishes the proper time-reversal symmetry. For the purpose of our quantitative data analysis, we employ
the dynamic equivalent of the Arrott-Noakes equation of state, which allows for a simultaneous scaling analysis
of the period P and the conjugate-field H∗ dependence of Q. By doing so, we demonstrate that both the scaling
behavior and universality are preserved, even if the dynamics is driven by a more general applied field sequence
that lacks antisymmetry.
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I. INTRODUCTION

Phase transitions are one of the most remarkable phe-
nomenon in many-body physical systems given that they
exhibit an abrupt qualitative change of an associated order
parameter upon modifying an external control variable, such
as temperature, for instance. While originally associated with
thermodynamic equilibrium physics, phase transitions can
also be found in systems that are far from equilibrium upon
changing the driving force of the associated nonequilibrium
dynamics [1,2]. These nonequilibrium phase transitions have
been documented in a wide variety of physical systems such as
superconducting materials [3,4], brain activity [5], or charge-
density waves [6,7]. Their understanding and their analogies
with conventional thermodynamic phase transitions (TPTs)
make them crucially relevant phenomena in nonequilibrium
physics [8,9]. This is particularly true in the context of the
critical scaling behaviors of the associated order parame-
ters. Indeed, some of these dynamical systems are known
to exhibit Ising-like criticality, even if they are far from
thermodynamic equilibrium conditions, which makes them
particularly interesting systems for the purpose of investigat-
ing analogies between equilibrium and nonequilibrium phase
transitions [10,11].

A particularly important type of nonequilibrium phase
transition is the dynamic phase transition (DPT) of ferro-
magnets. The DPT is known to occur in ferromagnetic (FM)
systems at temperatures below the Curie temperature TC , and
its relevance is associated with the fact that it has substantially
contributed to the general understanding of nonequilibrium
phase transitions [12,13]. At the DPT, the dynamic magne-
tization behavior M(t) exhibits abrupt changes when varying
a time-dependent oscillating magnetic field of given ampli-
tude H0 and period P, which represent the external control
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parameters. An understanding of the DPTs in ferromag-
nets was initially advanced by theoretical work utilizing
mainly kinetic Ising-like models [14–16]. In such models, a
ferromagnet is typically described by localized spin-½ sys-
tems with nearest-neighbor exchange interactions of coupling
strength J, and a relaxation time constant τ , with which M
approaches its equilibrium value upon abruptly changing the
external field H [12,17].

In these works, it was observed that the period-averaged
magnetization

Q = 1

P

∫ t+P

t
M(t ′) dt ′, (1)

plays the role of the order parameter associated with the DPT.
Here, Q exhibits a nonzero value in a dynamically ordered
or FM phase for P below a certain critical period Pc. For
P > Pc, the system will exhibit a disordered or paramagnetic
(PM) phase with Q = 0 and, accordingly, it was found that
Pc defines the critical period at which the system exhibits a
second-order phase transition (SOPT) [12].

Figures 1(a) and 1(b) show exemplary M(t) trajectories
corresponding to the PM and FM phases as solid red lines,
respectively, in the presence of a sinusoidal field sequence
H(t) = H0 sin(2π t/P) for two different P values, shown as
black-dotted lines [18]. Specifically, Fig. 1(a) shows the M(t)
behavior in slow-field dynamics, with P/τ = 100, correspond-
ing to the PM phase. Here, M exhibits a periodic reversal that
is slightly delayed with respect to the field, given the coerciv-
ity of the ferromagnetic spin systems. In contrast, Fig. 1(b)
shows the two equivalent stable trajectories, corresponding to
the FM phase for a lower P/τ = 8 value. In this case, M(t)
does not exhibit full magnetization switching but instead only
oscillates slightly around one of the two equivalent nonzero
magnetization values that corresponds to a nonzero Q, repre-
sented as green-dashed lines. The two equivalent dynamical
states correspond to the bifurcation of the stable states in the
magnetic phase diagram [19].
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FIG. 1. (a), (b) M(t) behavior, shown as solid red lines, in the
presence of a sinusoidal H(t) field with H0 = 0.2, displayed as dotted
black lines, showing the dynamic behaviors in the PM (P/τ = 100)
and FM (P/τ = 8) phases, respectively. The green dashed lines rep-
resent the dynamic order parameter Q. (c) Q vs P, showing the SOPT
at exactly Pc (dark-red point), and separating the FM and PM phases
together with the scaling of Q close to Pc. (d) Color-coded map of the
phase-space behavior of Q(P, Hb). The central black line represents
the phase line at Hb = 0 in the FM phase responsible for the FOPT,
whereas the dark-red dot in the center represents the SOPT. The color
bar is shown on the right-hand side of (d). The data shown here are
the results of MFA calculations, which are discussed in conjunction
with Eq. (6).

In the vicinity of Pc, Q is known to exhibit a power-
law behavior as a function of P with a critical exponent β,
namely [20]

Q ∝ (Pc − P)β for P < Pc. (2)

This behavior is formally identical to the TPT case,
in which the equilibrium magnetization M exhibits scaling
behavior as a function of the temperature T near TC . Further-
more, the TPT and DPT have the same universality class and,
thus, β is identical in both phase transitions, as shown both
in Monte Carlo [21,22] and mean-field calculations [12,23]
of the Ising model. In Fig. 1(c), we display the Q vs P de-
pendency, showing the occurrence of the FM and PM phases,
separated by a SOPT at exactly Pc, together with the critical
scaling of Q as P approaches Pc.

A constant bias field Hb, superimposed to the field oscil-
lations, was more recently confirmed to play the role of the
conjugate field of Q, at least for a specific subset of H(t)
sequences [23–26]. This implies that in the FM phase, the
system will exhibit a first-order phase transition (FOPT) upon
crossing the Hb = 0 value. Hereby, Q will exhibit a hysteretic
behavior as a function of Hb in the dynamic FM phase when
the system crosses the Hb = 0 value, an aspect that was also
verified experimentally [19]. This identification of Hb as the
conjugate field has now allowed for the definition of a proper
(P, Hb) phase space, in which Q is observed to exhibit both
FOPT and SOPT. In Fig. 1(d), we show specifically as a

color-coded map the phase-space behavior of the dynamically
stable states Q(P, Hb) with the first- and second-order phase
transitions indicated as a solid black line and dark-red point,
respectively. Here, we observe the two equivalent opposite
stable FM states for P/τ < 17.78, represented by the upper-
yellow and lower-blue regions of the map, for which the
abrupt sign change of Q is associated with the FOPT occurring
along the Hb = 0 line. In contrast, in the PM phase, Q changes
continuously as a function of Hb.

At exactly the critical point, Q is known to also exhibit
scaling behavior as a function of Hb, specifically

Q ∝ Hb
1/δ for P = Pc, (3)

with β, δ = 1 + γ /β, and γ being the relevant dynamic critical
exponents [13]. These relevant scaling relations of Q in the
vicinity of the critical point have been verified theoretically
[20–22,24], and recently, they have also been confirmed by
means of experiments on ultrathin ferromagnetic films with
in-plane uniaxial symmetry [27] and specialized magneto-
optical characterization techniques [28,29].

One fundamental aspect required for Eqs. (2) and (3) is
the time-reversal symmetry in the entire dynamic phase space
[25,26]. Such time-reversal symmetry results in an antisym-
metric behavior of the stable states of Q as a function of Hb

for all P, namely

Q(P, Hb) = −Q(P,−Hb). (4)

This particular relationship, however, is only valid if
the time-dependent field component exhibits half-wave anti-
symmetry, defined as H (t ) = −H (t + P/2) [26]. Half-wave
antisymmetry implies that the even-order components in the
Fourier space will be strictly null. In previous studies, it has
been demonstrated that the presence of even harmonic-field
components other than Hb in H(t) will modify the overall
phase-space behavior of Q in the vicinity of the critical point
in such a way that Eq. (4) is generally not fulfilled [25,26].

To illustrate this, we show in Fig. 2(a) an M(t) trajectory
driven by an H(t) sequence that is composed of two different
time-dependent field components: a fundamental sinusoidal
component with period P and amplitude H0, and a second
component of period P/2 and amplitude H2. Here, we observe
that Q �= 0 even if Hb = 0 and even if the system is in the
regime of the dynamic PM phase. This exemplary case shows
that the presence of additional even-order Fourier-field com-
ponents modifies the phase-space behavior of Q and destroys
its expected antisymmetry as a function of Hb. In Fig. 2(b),
we represent Q as a function of Hb for several H2 values
and for the same P/τ = 19 ratio, shown in Fig. 2(a), which
corresponds seemingly to the dynamic PM phase. Here, we
can see that Eq. (4) is only valid for the H2 = 0 case. As
|H2| becomes larger, Q deviates ever more from the purely
antisymmetric behavior.

In this context, we recently observed that the expected
time-reversal symmetry of the dynamic phase space can be
restored upon properly defining a renormalized conjugate field
H∗ [26]. The definition of H∗ allows one to recover the time-
reversal symmetry in the entire phase space, given that we use
the symmetry itself to implicitly define H∗, namely

Q(P, H∗) = −Q(P, − H∗). (5)
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FIG. 2. (a) M(t) behavior, shown as a solid red line, in the presence of H(t), displayed as dotted black line, with H0 = 0.2 and H2 = 0.06.
(b) Q vs Hb behavior corresponding to the dynamic PM phase, with P/τ = 19, for several H2 = 0, ± 0.015, and ±0.03. (c) �H as a function
of Hb calculated using Eq. (11) for the cases in (b), with P/τ = 19, and representing the bias correction required to restore time-reversal
symmetry. (d) Q represented as a function of H∗ showing the restored antisymmetry of the Q vs H∗ dependency from (b) and (c). The legend
in (d) applies to (b)–(d).

In the absence of even H(t) Fourier components, H∗ is just
identical to Hb and, thus, Eq. (4) is restored. In the presence of
even Fourier components, however, H∗ will become a nonlin-
ear superposition of the different components. This definition
of a generalized H∗ is, in principle, applicable to arbitrary
field sequences [26].

It is relevant to note that in the presence of an H2 compo-
nent, the scaling relations of Eqs. (2) and (3) cannot be valid
as a function of the conventional conjugate field Hb. However,
given that H∗ represents the conjugate field of Q, and given
that the time-reversal symmetry of Eq. (5) is restored, the scal-
ing behaviors of Q in the vicinity of Pc might be restored as
well. This general scaling behavior of the DPT based upon the
generally applicable and formal definition of H∗ according to
Eq. (5) has not been investigated or verified to date. On the one
hand, this is because most theoretical works until now have
been focused on the subspace of half-wave antisymmetric
field sequences and, thus, the much broader parameter space
of more general field sequences remains largely unexplored.
On the other hand, the phase-space behavior of Q near the
DPT is known to be substantially modified if compared to
the TPT. In the vicinity of the DPT, Q can exhibit rather
steep changes as a function of Hb in regions of the PM phase
[30]. These so-called metamagnetic anomalies, observed both
experimentally [31–33] and theoretically [34–37], constrain
the critical regime of Q to a rather narrow parameter space,
which has to be much more carefully accessed in the case of
DPTs than is necessary in the case of TPTs [27].

Correspondingly, in this work, we investigate whether the
use of a generalized conjugate field H∗ for general field
sequences H(t) that do not necessarily fulfill the half-wave
antisymmetry preserves the scaling relations of Eqs. (2) and
(3) upon using H∗ instead of Hb. For this purpose, we conduct
mean-field approximation (MFA) calculations of the phase-
space behavior of Q in the vicinity of the critical point for
more general subsets of H(t) sequences. In Sec. II of this
work, we present the technical aspects of our mean-field the-
ory and the subsequent calculations. Afterwards, we present
the key aspects of the definition and characteristics of the
generalized conjugate field H∗ in Sec. III. In Sec. IV, we show
the results of our MFA calculations and perform a scaling
analysis of these results to verify the scaling relation and
determine the corresponding critical exponents. Finally, we

summarize all key results of the present work and give an
outlook in Sec. V of this paper.

II. METHODS

The observation of the SOPT for the DPT was origi-
nally explored in the context of the MFA of the kinetic
Ising model with spin-½ systems, and considering Glauber
stochastic dynamics [12,17]. Under these conditions, the time-
dependent magnetization behavior M(t), normalized to the
low-temperature saturation magnetization Ms, satisfies the fol-
lowing equation:

τ
dM

dt
= −M(t ) + tanh

(
1

T
Heff (t)

)
. (6)

Here, T represents the temperature, normalized to TC , and
Heff (t) represents the dimensionless effective field acting upon
the spins in the system. Specifically, Heff (t) is given as

Heff (t ) = H (t ) + HMF(t ), (7)

where H(t) is the dimensionless externally applied magnetic
field, normalized to NJ, with N being the number of nearest
neighbors. HMF(t) is the effective mean field, which for bulk
systems is HMF(t) = M(t). In this work, Eq. (6) is numerically
integrated using discrete time steps with a time resolution of
P/500 . We self-consistently evaluate M(t) until convergence
is achieved. The convergence criterion used in this work is
such that the maximum error between the ith iteration of the
magnetization trajectory Mi(t) and Mi+1(t ) is smaller than
10−10 for all t . In other words,

max[Mi+1(t ) − Mi(t )] < 10−10. (8)

Further details regarding the numerical evaluation of (6)
can be found elsewhere [13,19,23].

Throughout this work, we only consider T = 0.8 for the
value of the normalized temperature to make sure that we
are restricting ourselves to a parameter space, in which the
MFA generates results that are qualitatively similar to those
obtained by more accurate techniques, such as Monte Carlo
simulations [37,38].
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For the present study, we consider a time-dependent exter-
nal magnetic field,

H (t ) = Hb + H0 sin

(
2πt

P

)
+ H2 sin

(
4πt

P

)
, (9)

where the first and second terms are the constant bias field
and the simple sinusoidal-field sequences, respectively. The
third term corresponds to a second-order Fourier compo-
nent of period P/2 which induces an additional asymmetry
to the overall H(t) sequence. This H2 term is the lowest-
order even Fourier component, other than Hb, that breaks
the half-wave asymmetry in H(t). While higher-order even
Fourier components could have been considered as well for
this purpose, they do not add another qualitative change to the
field sequence as far as their overall symmetry is concerned.
Furthermore, higher-order terms are generally less effective in
generating magnetization dynamics, given that lower periods
of the applied field generally lead to lower responses because
they become comparable to the relaxation time constant. Ac-
cordingly, we restrict ourselves to a sufficiently small, but
meaningful, parameter space. Higher-order odd Fourier com-
ponents could have been considered as well. However, these
do not contribute to breaking the half-wave asymmetry of
H(t). This is well known from Monte Carlo simulations us-
ing squarelike H(t) sequences, which are formally composed
of an infinite sum of odd Fourier components of decreasing
magnitude [15,22,25].

The dynamic order parameter is numerically integrated
from the obtained M(t) trajectories using Eq. (1). Then, we
systematically evaluate Q in the entire (P, Hb) phase space in
the vicinity of the critical point and for different H2 values.
Previous works have shown that one can either vary P or H0

to go through the relevant portion of the dynamic phase space
and the SOPT [13,26,32]. Here, we fix the field amplitude H0

and vary P near Pc to facilitate the scaling analysis according
to Eqs. (2) and (3). For a fixed P value, we calculate Q
for different Hb such that we map the entire phase space in
the vicinity of the SOPT and, at the same time, access the
bistability regime of the dynamic FM phase.

III. DEFINITION OF THE GENERALIZED
CONJUGATE FIELD

As we have observed in Sec. I in conjunction with
Figs. 2(a) and 2(b), the presence of a nonzero H2 Fourier com-
ponent leads to a modification of the phase-space behavior of
Q such that the Hb-based time-reversal symmetry according
to Eq. (4) is not preserved. More specifically, in Fig. 2(b) we
observe that for larger opposite H2 values, the curves seem to
become increasingly asymmetric.

The antisymmetry can be restored upon utilizing the H∗
axis and considering a nonlinear effective bias-field correction
�H, such that

H∗ = Hb + �H. (10)

Such a �H bias-field correction can be computed as

�H = − 1
2 [Hb(Q) + Hb( −Q)], (11)

where Q depends implicitly on Hb and H2 [26]. Figure 2(c)
shows the �H vs Hb behavior for the specific cases shown

in Fig. 2(b). Here, we observe that �H becomes increasingly
relevant for larger |H2| values and exhibits opposite tendencies
for opposite H2 signs. Figure 2(d) shows the Q values of
Fig. 2(b) along the H∗ axis, which we calculated by means
of Eq. (10). Here, we observe a restored antisymmetry of the
dynamic phase-space behavior of Q for all H2 cases such that
all the lines lie essentially on top of each other. The small
differences between lines are associated with the fact that the
presence of a nonvanishing H2 modifies Pc and consequently
the actual P/Pc ratios are not identical for the different curves
shown in Fig. 2(d), as we will discuss in detail in the next
section. It is worthwhile to mention that our procedure is
widely applicable to nearly any Q(P, Hb) data, because the
construction of �H(P, Hb) does not depend on the knowledge
of H(t). However, we have to implicitly assume that all field
components other than Hb are identical throughout the phase
space, so that the (P, Hb) plane is indeed an adequate phase-
space representation.

The results of Fig. 2 are obtained for a single P value in the
dynamic PM phase. However, the definition of H∗ is formally
valid for the entire dynamic phase space and can be used
accordingly. Figure 3 shows, in several color-coded maps, the
entire phase-space behavior of Q for different H2 values and
H0 = 0.2. The calculated datasets here utilize a step size of
better than 6.3 × 10−3 in the P axis and 7 × 10−6 in the
Hb axis. The step size in Hb is chosen to be much smaller
than in P because the accuracy of the �H calculations relies
heavily on having a sufficiently high Hb resolution in the entire
dynamic phase space. Specifically, Fig. 3(c) shows the phase-
space behavior of Q(P, Hb) for H2 = 0. Here, we observe the
expected antisymmetry as a function of Hb, as well as the
occurrence of both dynamic PM and FM phases, as described
in conjunction with Fig. 1(d). The FOPT occurs at Hb = 0, as
expected. In the different maps of Figs. 3(a)–3(e), we observe
increasing deviations from the ideal antisymmetric behavior
as a function of H2. First, the line corresponding to the FOPT,
which separates equivalent stable states in the dynamic FM
phase, shifts relevantly for increasing |H2| values [39]. On the
other hand, the dynamic PM phase is observed to gradually
change as well such that on the Hb = 0 line, Q increases or
decreases with H2.

Figures 3(f)–3(j) show the bias-field correction �H(P, Hb)
data according to Eq. (10) as color-coded maps for the cases
of Figs. 3(a)–3(e) right above them. First, in Fig. 3(h) we note
that �H = 0 in the entire phase space, as expected, given that
H2 = 0 and the phase-space behavior of Q is antisymmetric
as a function of Hb alone. In the different maps, we observe
that the required field corrections �H(P, Hb) become more
significant in the dynamic PM phase and increasingly larger
for increasing |H2|, as already discussed in conjunction with
Fig. 2.

Figures 3(k)–3(o) now show color-coded maps of the
phase-space behavior of Q in the (P, H∗) phase space. Along
the H∗ axis, we observe that antisymmetry is fully restored in
all cases, making the color-coded maps virtually identical to
each other. This is true even in cases in which H2 becomes
significantly larger than Hb. The figures also verify that the
FOPT occurs along the H∗ = 0 line as it should for a properly
defined conjugate field. Thus, our definition of the generalized
conjugate field is valid for all points in the dynamic phase
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FIG. 3. (a)–(e) Color-coded maps of the phase-space behavior of Q(P, Hb) in the vicinity of Pc for the H2 values listed in each subfigure.
(f)–(j) Color-coded maps of �H in the (P, Hb) phase space for the cases shown in (a)–(e) and calculated by utilizing Eq. (11). (k)–(o)
Color-coded maps of the Q(P, H∗) phase-space behavior for the same parameters utilized in (a)–(e) and showing the restored antisymmetry
upon utilizing the proper bias-field corrections, shown in (f)–(j) The color bars displayed on the right-hand side of (e), (j) and (o) apply to the
entirety of each row.

space, and applicable for any given H2 value such that the
time-reversal symmetry is completely restored.

IV. SCALING ANALYSIS

Given our definition of H∗ as the conjugate field of Q,
which enabled us to restore time-reversal symmetry, we now
want to verify if the scaling of Eqs. (2) and (3) is preserved in
the (P, H∗) phase space near the critical point for all those field
sequences that lack half-wave antisymmetry. For this purpose,
we now have to formally rewrite Eq. (3) as

Q ∝ H∗1/δ for P = Pc. (12)

In order to simultaneously verify that Eqs. (2) and (12) are
indeed accurate, we utilize the analogy of the DPT with the
TPT. In the case of TPTs, the scaling behavior of M(T, H)
near TC led to the postulation of the Arrott-Noakes equation
of state, given as [40]

T = TC + T1

[(
H

M

)1/γ

−
(

M

M1

)1/β
]
, (13)

where β and γ are the thermodynamic equilibrium critical
exponents, from which δ = 1 + γ /β can be extracted and M1,
T1 are material-specific constants. Equation (13) encompasses
the scaling behavior of the equilibrium magnetization M as a

function of temperature T and field H in the vicinity of the
Curie temperature TC , and has been employed and confirmed
in a wide variety of ferromagnetic systems to investigate their
equilibrium critical exponents and universality [41–44].

Based on the previously documented equivalence between
the scaling behavior of M and Q in the TPT and DPT,
respectively, we now assume that data near the DPT fol-
low the dynamic equivalent of the Arrott-Noakes equation,
namely,

P = Pc + P1

[(
H∗

Q

)1/γ

−
(

Q

Q1

)1/β
]
. (14)

Here as well, P1 and Q1 are material-specific constants.
This expression is formally identical to Eq. (13) and encom-
passes both scaling behaviors described by Eqs. (2) and (12).
This equation of state was recently verified experimentally in
ultrathin Co (1010) films and allowed for an accurate quan-
tification of the dynamic critical exponents of this material
system [27].

Following this assumption, we now conduct least-squares
fits to Eq. (14) for each of the individual Q(P, H∗) maps that
we have computed. Given that the dynamic Arrott-Noakes
equation of state is a transcendental equation in Q, we fit
our datasets as P(Q, H∗) rather than Q(P, H∗), as already
indicated by the formulation of Eq. (14). The critical regime
for the fit is chosen to encompass a phase-space range of
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FIG. 4. (a)–(c) Color-coded maps of the phase-space behavior of the dynamic order parameter Q(P, H∗) for several selected values of
H2 = 0, 4.4 × 10−3, and 8.9 × 10−3. The dark-red rectangles represent the phase-space region selected for our scaling analysis. (d)–(f)
Color-coded maps representing the results of the least-squares fits of the Q(P, H∗) data in (a)–(c) inside the dark-red rectangle regions to
Eq. (14). (g)-(i) Color maps showing the residual differences between MFA calculations (a)-(c) and least-squares fits (d)–(f) showing negligible
systematic deviations in the analyzed critical region. The color bars on the right-hand side of (g)–(i) apply to each entire row. (j)–(l) Arrott
plot representation of the renormalized order parameter |Q|/|p|β from (a)–(c) as a function of the renormalized conjugate field |H∗|/|p|β+γ

.
The blue and red points represent data in the FM and PM phase, respectively. The critical exponents resulting from our analysis are shown in
(j)–(l).

±5% of Pc in the P axis and ±0.1% of H0 in the H∗ axis,
utilizing more than 104 computed data points for each indi-
vidual map. In Fig. 4, we represent the results of this analysis
for three exemplarily chosen H2 values as color-coded maps.
Figures 4(a)–4(c) show the MFA calculations of the Q(P, H∗)
behavior for three H2 values as color-coded maps. The regions
inside the dark-red rectangle represent the critical regimes
selected for our analysis.

Figures 4(d)–4(f) show the resulting least-squares fits of
the data in Figs. 4(a)–4(c) to Eq. (14). Here, we observe that
the results from the fits, conducted in the region inside the
dark-red rectangle only, clearly follow the MFA calculations,
with a determination coefficient R2 > 0.9990 for the cases
shown here. Furthermore, the fits also reproduce accurately
the behavior of the MFA calculations outside the selected
scaling regime, implying that our description of Eq. (14)
is quantitatively correct in a significantly larger phase-space
range than what we utilized here for our scaling analysis. The
excellent quality of the fits is also visible in Figs. 4(g)–4(i),
where we represent the residual differences between MFA
Q(P, H∗) calculations and their corresponding fits to Eq. (14)
[45]. Here, we obtain essentially zero systematic deviations

in the entire analyzed critical regime, further verifying the
validity of our results and data analysis approach.

If scaling is preserved in the analyzed critical regime,
then all the data should collapse onto only two curves when
the renormalized order parameter |Q|/|p|β is plotted versus
the renormalized conjugate field |H∗|/|p|β+γ

, with p being
the reduced period p = (P–Pc)/P1. These plots are shown in
Figs. 4(j)–4(l) for the datasets displayed and analyzed here
[40]. Indeed, we observe here that all the data collapse onto
two separate lines, which correspond to the points of the
dynamic PM and FM phases. Furthermore, it is important to
mention that this scaling is preserved over more than 5 orders
of magnitude in both axes, which illustrates the quantitative
relevance and precision of our study here.

These results verify that scaling is present in all cases
upon utilizing H∗ as the proper conjugate field. Further-
more, our analysis reports critical exponents β = 0.5 ± 0.006
and γ = 1.006 ± 0.002, leading to δ = 3.012 ± 0.020, which
fully agree with the critical exponents of the conventional
mean-field model [24,46].

We have repeated this entire analysis for a large number
of H2 values. In Fig. 5(a), we show in blue the obtained
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FIG. 5. (a) Critical exponents β (filled circles) and γ (squares)
extracted from the least-squares fits of our numerical Q(P, H∗)
datasets to Eq. (14) represented as a function of H2 for T = 0.8. Data
for two different H0 = 0.2 (blue) and 0.3 (red) are shown as indicated
in the legend. (b) Pc as a function of H2 for the two different H0 values
displayed in (a), utilizing the same color code for identification.

critical exponents for many different H2 values and H0 =
0.2. The exponents remain essentially constant in the entire
analyzed H2 range, with a maximum deviation of 0.008 for β

and 0.02 for γ . In Fig. 5(b), we represent the critical period
Pc as a function of H2. Here, we observe that Pc exhibits a
quadratic behavior as a function of H2, as already mentioned
in conjunction with Fig. 2(d) [26]. This trend originates from
the fact that a linear combination of first- and second-order
Fourier components increases the effective field amplitude,
which leads to a reduction of Pc [13]. Interestingly, the addi-
tion of H2 in the field sequence only affects the actual position
of Pc and only in a very modest way, while the rest of the fit
parameters remain all essentially constant.

In order to further demonstrate the validity of our results,
we repeated our entire analysis for H0 = 0.3, and the corre-
sponding results are shown in red in Fig. 5. In Fig. 5(a), we
observe that both β and γ are fundamentally identical to the
values obtained for the case with H0 = 0.2. In Fig. 5(b), Pc still
exhibits the expected quadratic behavior. However, now, lower
Pc values are obtained for the larger H0 value, because larger

field amplitudes expand the stability range of the dynamic PM
phase and shift the critical point accordingly [13].

In all the cases of our study here, R2 is found to be larger
than 0.9983, which is an excellent indication that the scaling
behavior is fully preserved in the entire analyzed parameter
space and for all the different field sequences. Furthermore,
the critical exponents correspond to those of the mean-field
Ising model, verifying the fact that universality is preserved
as well, once one considers the proper H∗ as conjugate field.
Given these findings, all our results validate our approach
to determine the generalized conjugate field H∗ as the true
conjugate field of the order parameter Q when arbitrary
H(t) field sequences are considered. The here-obtained re-
sults also valildate the dynamic Arrott-Noakes equation of
state in the vicinity of the critical point, which was only
recently postulated for the purpose of analyzing experimental
data [27].

V. CONCLUSIONS AND OUTLOOK

In this work, we verify that the scaling behavior of the
dynamic order parameter Q in the vicinity of the DPT is
preserved as a function of a generalized conjugate field H∗
and the field period P for magnetic-field sequences that drive
the dynamic state of the system even if they do not exhibit
half-wave antisymmetry. This aspect validates our specific
definition and computation scheme for H∗ as generating the
true conjugate field of the dynamic order parameter Q. Fur-
thermore, our mean-field analysis of Q in the vicinity of the
DPT results in dynamic critical exponents that are identical
in all cases and are also in full agreement with the symmetry
class of the mean-field model, and more generally verify the
concept of universality. This is true even if the system is sub-
ject to magnetic-field sequences that are strongly asymmetric
with large amplitudes of a second-order Fourier component.

More generally, our study here shows that for a wide range
of field-sequence modifications one can recover the critical
behavior and corresponding scaling relations of the dynamic
order parameter in a system with seemingly broken sym-
metries upon defining a suitable renormalized phase-space
coordinate system. However, we need to realize that this does
not necessarily have to be the case in all possible scenarios.
For instance, if the field-sequence modifications that generate
the broken symmetries also change the phase transition from
continuous to discontinuous, a renormalized recovery of crit-
ical behavior should not be possible anymore. This scenario
might actually occur within the mean-field model of the DPT
at sufficiently low temperatures [12,23], but is a subject that
goes beyond the scope of the present work.

Finally, our work shows that the recently postulated dy-
namic Arrott-Noakes equation of state describes the critical
behavior of the dynamic order parameter Q most accu-
rately, even in strongly asymmetric magnetic-field sequences.
Therefore, this work constitutes a theoretical utilization and
verification of this equation-of-state approach and analysis.

In the future, it would be relevant to investigate the validity
of both the dynamic Arrott-Noakes equation of state and the
generalized conjugate field as the true conjugate field of Q in
the context of more precise theoretical schemes, which could
be achieved, for example, by means of Monte Carlo simula-
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tions. Hereby, such computational schemes should allow for a
dimensionality analysis by taking the actual dimensionality
of the order parameter, as well as the lattice, into consid-
eration, which is not accessible in our mean-field approach
here. Also, it would be interesting to explore the validity of
our definition of H∗ in the context of more complex and/or
arbitrary magnetic-field sequences either experimentally or
theoretically, which could be composed of higher-order even
and odd Fourier components.
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