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Entropic stochastic resonance of finite-size particles in confined Brownian transport
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We demonstrate the existence of entropic stochastic resonance (ESR) of passive Brownian particles with finite
size in a double- or triple-circular confined cavity, and compare the similarities and differences of ESR in the
double-circular cavity and triple-circular cavity. When the diffusion of Brownian particles is constrained to the
double- or triple-circular cavity, the presence of irregular boundaries leads to entropic barriers. The interplay
between the entropic barriers, a periodic input signal, the gravity of particles, and intrinsic thermal noise may
give rise to a peak in the spectral amplification factor and therefore to the appearance of the ESR phenomenon. It
is shown that ESR can occur in both a double-circular cavity and a triple-circular cavity, and by adjusting some
parameters of the system, the response of the system can be optimized. The differences are that the spectral
amplification factor in a triple-circular cavity is significantly larger than that in a double-circular cavity, and
compared with the ESR in a double-circular cavity, the ESR effect in a triple-circular cavity occurs within a
wider range of external force parameters. In addition, the strength of ESR also depends on the particle radius,
and smaller particles can induce more obvious ESR, indicating that the size effect cannot be safely neglected. The
ESR phenomenon usually occurs in small-scale systems where confinement and noise play an important role.
Therefore, the mechanism that is found could be used to manipulate and control nanodevices and biomolecules.
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I. INTRODUCTION

In the 1980s, stochastic resonance (SR) was first proposed
to explain the periodiclike alternation between the glacial
and warm periods of the glacial climate [1,2], describing a
counterintuitive phenomenon, in which, in some nonlinear
systems, noise is not always harmful for detecting or transduc-
ing an incoming weak signal, and that an appropriate dose of
noise can amplify the weak signals. Since then, SR has been
observed in various systems in different disciplines such as
physics, engineering, and biomedicine [3–12]. It is worth not-
ing that these are SR phenomena that occur in pure energetic
potentials. However, in practical systems, the diffusion of par-
ticles often occurs in confined regions, which can be modeled
by cavities of various shapes. The irregular boundary of the
confined region gives rise to an entropic contribution to the
potential, which has an important influence on the diffusion of
particles [13–16]. Previous studies have shown that entropic
rectification and current reversal occur when particles diffuse
in a confined channel [17–21]. Similarly, the existence and
shape of the boundary of the restricted region would also play
an important role in the SR dynamics of the particles [22–27].

Burada et al. first studied the SR dynamics of Brownian
particles in a dumbbell-shaped channel [22], demonstrat-
ing that the irregularities in the form of restricted, curved
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boundaries in the system under consideration can lead to
an entropy barrier and can induce noise-assisted resonance
behavior. They defined the SR of Brownian particles in a
confined space as entropic stochastic resonance (ESR). Since
then, the study of ESR in confined space has attracted ex-
tensive interest and attention. These studies mainly focus on
analyzing the effects of boundary unevenness [23] and differ-
ent types of noise on ESR [24–27], ESR induced by applying
different forces in the longitudinal and transversal directions
[28–31], the double entropic stochastic resonance caused by
adding a longitudinal constant static force to the system [32],
and ESR in time-varying channels [33,34].

However, most of the studies focus on the ESR of point-
like Brownian particles without considering the size of the
particles. In fact, the size of the particles has an important
influence on the diffusion of the particles in the confined
structure [35–38]. In addition, most of the confined structures
are double cavities, and there are few studies on the confined
mediums of more than two units, except for the study of ESR
in a confined channel with four units [23], trapping particles
by ESR under periodic confinement [39], and characterizing
stochastic resonance in a triple cavity [40]. These results have
confirmed that the nondouble cavities can affect particle cap-
ture, transit time, and ESR. Therefore, motivated by this and
the extension from pointlike Brownian particles to finite-size
Brownian particles, this work investigates the ESR in double-
and triple-circular cavities. The noise inside the cavities is
Gaussian white noise. Based on the assumption of diffu-
sion equilibrium and dimensionality reduction method, an
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effective potential function that describes the influence of cav-
ity boundaries is first proposed. Second, a Brownian dynamics
simulation is adopted to calculate the motion trajectories of
Brownian particles in these two cavities to obtain the mean
sample. Next, an ESR indicator, the spectral amplification,
can be obtained by performing Fourier expansion on the av-
erage trajectory of particles. Then, the influences of external
force parameters on ESR in the double-circular cavity are
addressed, including amplitude and frequency of the external
force; meanwhile, the ESR phenomena in the these two types
of cavities are compared. Finally, the dependence of entropic
stochastic resonance on the radius of Brownian particles in a
triple-circular cavity is discussed.

The structure of this paper is as follows. The model
description and physical theory, including the spectral ampli-
fication and method to calculate an ESR indicator, are given
in Sec. II. In Sec. III, major results and associated analysis
are presented. In Sec. IV, a conclusion of the results ends
the paper.

II. MODEL DESCRIPTION AND PHYSICAL THEORY

A. Model of particle diffusion

The dynamics of a Brownian particle in a confined channel
subjected to a constant gravity G acting along the transverse
direction and a sinusoidal oscillating force F (t ) along the axis
of the channel can be described by means of the Langevin
equation written [41], in the overdamped limit [42], as

γr
d�r(t )

dt
= F (t )�ex − G�ey +

√
γrkBT �ξ (t ), (1)

where �r(t ) = [x(t ), y(t )] is the position of the particle at
time t , �ex and �ey represent the unit vectors along the x and
y directions, kB is the Boltzmann constant, and T refers to
the absolute temperature. γr denotes the friction coefficient
and satisfies the Stokes’s law γr = 6πυrp, which depends
on the shear viscosity υ of the fluid and the particle ra-
dius rp. �ξ (t ) = [ξx(t ), ξy(t )] is the white Gaussian noise with
zero mean which satisfies the fluctuation-dissipation relation
〈ξi(t )ξ j (s)〉 = 2δi jδ(t − s) for i, j = x, y. The explicit form of
the driving force along the x axis is given by F (t ) = A sin(σ t ),
where A is the amplitude and σ is the driving frequency.

B. Brownian transport system with a double-
or triple-circular cavity

In the presence of constrained boundary, the Langevin
equations (1) should be solved by imposing reflecting (no-
flow) boundary conditions at the walls of the channel. For the
two-dimensional structure sketched in Fig. 1, the wall of the
double-circular cavity is defined by the half width yu1(x),

yu1(x) =
{√

R1
2 − (x + l1)2 , −X max

u1 � x � 0√
R1

2 − (x − l1)2 , 0 < x � X max
u1 ,

(2)

where R1 represents the radius of a single-circular cavity, a1 is
the half width of the bottleneck, and l1 denotes the horizontal
distance from the bottleneck to the center of the circle; its
length is l1 =

√
R1

2 − a1
2. In addition, X max

u1 refers to the
maximum position that the pointlike particles can reach along

FIG. 1. Sketch of a double-circular cavity, where the forces F (t )
and G are applied on the overdamped particles (the orange and green
balls in the cavity). The orange dotted line represents the effective
boundary that can be reached by the particle center with limited size.
The radius of the circular cavity is R1, and the width of the hole
between the two circular cavities is 2a1.

the x direction in the cavity shown in Fig. 1 and its length is
X max

u1 = R1 + l1. According to the symmetry of the double-
circular cavity, it is clear that the lower boundary function
is yl1(x) = −yu1(x). For an incompressible particle of radius
rp inside the cavity, the available space for its center can be
described by the effective half width we1+(x),

we1+(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(R1 − rp)2 − (x + l1)2 ,−X max

e1 � x < −Lp1

a1 − √
rp

2 − x2 , − Lp1 � x � Lp1√
(R1 − rp)2 − (x − l1)2 , Lp1 < x � X max

e1 ,

(3)

where Lp1 = l1rp/R1 and X max
e1 = R1 + l1 − rp. In the double-

circular cavity depicted in Fig. 1, X max
e1 denotes the maximum

value that the center of a particle with radius rp can
reach in the x direction. The lower effective boundary is
just we1−(x) = −we1+(x), and 2w1(x) = we1+(x) − we1−(x)
gives the local width of the channel accessible for the center of
a hard particle with radius rp. The choice of this structure is in-
tended to resemble the classical setup for stochastic resonance
(SR) in the context of energetic barriers. When the gravity G is
sufficiently large, the diffusion region of all particles will be
very close to the lower boundary of the channel, recovering
the effect of an energetic bistable potential.

FIG. 2. Sketch of a triple-circular cavity, where the forces F (t )
and G are applied on the overdamped particles (the orange and green
balls in the cavity). The orange dotted line represents the effective
boundary that can be reached by the particle center with limited size.
The radius of the circular cavity is R2, and the width of the hole
between two adjacent circular cavities is 2a2.
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For the two-dimensional structure sketched in Fig. 2, the
wall of the triple-circular cavity is defined by the half width
yu2(x),

yu2(x) =

⎧⎪⎪⎨
⎪⎪⎩

√
R2

2 − (x + 2l2)2 ,−X max
u2 � x � −l2√

R2
2 − x2 ,−l2 < x � l2√

R2
2 − (x − 2l2)2 , l2 < x � X max

u2 ,

(4)

where R2, a2, l2, and X max
u2 have the same meanings as

those in the double-circular cavity. In the triple-circular cavity

depicted in Fig. 2, R2 represents the radius of a single-circular
cavity, a2 is the half width of the bottleneck, and l2 de-
notes the horizontal distance from the bottleneck to the center
of the circle; its length is l2 =

√
R2

2 − a2
2. X max

u2 also repre-
sents the maximum value that the pointlike particles can reach
in the x direction, and there is X max

u2 = R2 + 2l2. In addition,
the lower boundary function of the triple-circular cavity is
yl2(x) = −yu2(x). For an incompressible particle of radius rp

inside the cavity, the available space for its center can be
described by the effective half width we2+(x),

we2+(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(R2 − rp)2 − (x + 2l2)2, − X max

e2 � x < −(Lp2 + l2)

a2 −
√

rp
2 − (x + l2)2,−(Lp2 + l2) � x � −(l2 − Lp2)√

(R − rp)2 − x2,−(l2 − Lp2) < x � l2 − Lp2

a2 −
√

rp
2 − (x − l2)2, l2 − Lp2 � x � l2 + Lp2√

(R2 − rp)2 − (x − 2l2)2, l2 + Lp2 < x � X max
e2 ,

(5)

where Lp2 = l2rp/R2 and X max
e2 = R2 + 2l2 − rp. Similar to

the double-circular cavity, the lower effective boundary of the
triple-circular cavity drawn in Fig. 2 is we2−(x) = −we2+(x).

For the sake of a dimensionless description, we
henceforth rescale all lengths in units of LR = R, i.e.,
x̂ = x/LR, ŷ = y/LR, implying â = a/LR, ŷu1 = yu1/LR =
−ŷl1, ŷu2 = yu2/LR = −ŷl2, ŵe1+ = ωe1+/LR = −ŵe1−, and
ŵe2+ = ωe2+/LR = −ŵe2−. We measure time in units of
τ = γmaxL2

R/kBTR, where TR, as a reference temperature, is
an arbitrary fixed temperature, i.e., t̂ = t/τ and σ̂ = στ .
There is γmax = 6πυa in the expression of τ , where a is
the maximum radius of particles that can pass through the
pores in the confined space. So the friction coefficient of the
Brownian particles with radius rp is given by γr = rγmax,
where r = rp/a is the ratio of the particle radius with radius
rp to the bottleneck half width a, and there is 0 < r � 1. We
scale forces by FR = γrLR/τ , i.e., the longitudinally acting,
sinusoidal force reads F̂ (t̂ ) = F (t )/FR and the orthogonal
force reads Ĝ = G/FR. In the following, we shall omit the
tilde symbols for better legibility. In dimensionless form, the
Langevin equation (1) reads

d�r(t )

dt
= F (t )�ex − G�ey +

√
D�ξ (t ), (6)

where we define D = T /TRr.
There are two assumptions, i.e., that the particle density

is dilute and the fluid viscosity is strong, which guarantee
that all relevant hydrodynamics caused by particle-particle
interactions and wall-particle interactions are small and can
be safely neglected.

C. Reduction of dimensionality

Since there are reflection boundary conditions at the
boundary of the diffusion channel, it is very difficult to de-
rive the x coordinate x(t ) and y coordinate y(t ) of Brownian
particles analytically. Therefore, assuming that the diffusion

of particles in the y direction reaches an equilibrium state, we
reduce the dimension of the diffusion problem based on this
assumption [43,44].

At first, we consider the case in the absence of the
periodic forcing, i.e., F (t ) = 0. Then, the two-dimensional
(2D) diffusion dynamics is described by the following 2D
Smoluchowski equation [45,46]:

∂

∂t
P(x, y, t ) = D

∂

∂x
e−U (x,y) / D ∂

∂x
eU (x,y) / DP(x, y, t )

+ D
∂

∂y
e−U (x,y) / D ∂

∂y
eU (x,y) / DP(x, y, t ), (7)

with reflecting boundary conditions at the channel walls
and where the potential function is given by U (x, y) = Gy.
Since we are mainly concerned with the dynamic behavior of
Brownian particles in the x direction in this diffusion sys-
tem, we introduce the marginal probability density function
P(x, t ), which is obtained by integration over the transverse
coordinate,

P(x, t ) =
∫ wei+(x)

−wei+(x)

P(x, y, t )dy, (8)

where wei+(x) (i = 1, 2) represents the effective upper bound-
ary of the double-circular cavity (i = 1) or triple-circular
cavity (i = 2).

On integrating Eq. (7) over the transverse direction, we get

∂

∂t
P(x, t )

= D
∂

∂x

∫ +wei+(x)

−wei+(x)

[
e−U (x,y) / D ∂

∂x
eU (x,y) / DP(x, y, t )

]
dy.

(9)

Assuming local equilibrium in the y direction, we define the x-
dependent effective energy function Ai(x) (i = 1, 2) (omitting
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irrelevant constants) reading

e−Ai (x) / D =
∫ +wei+(x)

−wei+(x)
e−U (x,y) / Ddy. (10)

Consequently, from Eq. (10), one can get the normalized
probability distribution, i.e., ρ(y|x), reading

ρ(y|x) = e−U (x,y) / DeAi (x) / D, (11)

where ρ(y|x) represents the conditional local equilibrium
probability density of y at a given x. Therefore, the
2D probability distribution P(x, y, t ) can be approximately
expressed as

P(x, y, t ) ∼= P(x, t )ρ(y|x). (12)

By substituting Eq. (12) into Eq. (9), the one-dimensional
Fokker-Planck equation describing the evolution of particle
probability density can be obtained, and the specific expres-
sion is

∂

∂t
P(x, t ) ∼= D

∂

∂x
e−Ai (x) / D ∂

∂x
eAi (x) / DP(x, t ). (13)

When F (t ) ≡ 0 and the particle is subjected to gravity in
the negative direction along the y axis, the potential function
U (x, y) = Gy. By substituting U (x, y) = Gy into Eq. (10),
we get

e−Ai (x) / D =
∫ +wei+(x)

−wei+(x)
e−Gy / Ddy

= 2D

G

eGwei+(x) / D − e−Gwei+(x) / D

2

= 2D

G
sinh

(
Gwei+(x)

D

)
. (14)

Taking logarithms on both sides of Eq. (14), we get the
expression of potential function Ai(x) as

Ai(x) = −D ln

[
2D

G
sinh

(
Gwei+(x)

D

)]
. (15)

Then, Eq. (13) can be rewritten as

∂P(x, t )

∂t
= ∂

∂x

[
D

∂P(x, t )

∂x
+ A′

i(x)P(x, t )

]
, (16)

where Ai(x) is given by Eq. (15) and the prime refers to
the derivative with respect to x. In general, after the coarse
graining, the diffusion coefficient will depend on the coordi-
nate x, but since in our case 〈w′

ei+(x)2〉 	 1, the correction
can be safely neglected [47,48]. For a 2D structure shown in
Fig. 1, the free energy A1(x) is expressed as a double-well
potential; cf. Fig. 3. Similarly, for the triple-circular cavities
depicted in Fig. 2, A2(x) forms a triple-well potential; cf.
Fig. 4. Therefore, Eq. (16) describes the motion of a Brownian
particle in a bistable or tristable potential of entropic nature. It
is important to highlight that the potential function Ai(x) does
not only depend on the energetic contribution of the gravity G,
but also on the temperature D and the geometry of the double-
or triple-circular cavity in a nontrivial way. When the small
hole connecting two adjacent circular cavities disappears, i.e.,
ai = 0(i = 1, 2), the particles cannot diffuse into another cir-
cular cavity, and stochastic resonance will not occur. It should

FIG. 3. Schematic diagram of effective potential function A1(x)
and effective potential functions A11(x) and A12(x) under two limit
cases when three different noise intensities D are taken in the double-
circular cavity.

be emphasized that the bistable or tristable potential function
does not exist in the two-dimensional Langevin equations,
but arises due to the entropic restrictions associated to the
confinement of the channel boundary.

For potential function Ai(x), there are two limiting cases,
which can be obtained by changing the value of the ratio
between the energy associated to the transversal force G
and the thermal energy D. When Gwei+(x)/D 
 1, it can
be obtained from Eq. (15) that the potential function Ai(x)
turns into Ai(x) ≈ −Gwei+(x) = Ai1(x) (neglecting irrelevant
constants), which means that the boundary of the confined
space, wei+(x), acts as a double- or triple-well potential under
the action of gravity G; cf. Figs. 3 and 4. At the same time,
as shown in Figs. 3(a) and 4(a), when the thermal energy
D is very small (D = 0.005), Gwei+(x)/D 
 1 is satisfied
and the effective potential function Ai(x) (solid blue line) is
completely consistent with Ai1(x) (dotted orange line). In this
energy-dominated case, the 1D Fokker-Planck equation (16)
becomes

∂P(x, t )

∂t
= ∂

∂x

[
D

∂P(x, t )

∂x
− Gw′

ei+(x)P(x, t )

]
, (17)

FIG. 4. Schematic diagram of effective potential function A2(x)
and effective potential functions A21(x) and A22(x) under two limit
cases when three different noise intensities D are taken in the triple-
circular cavity.
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which describes the diffusion of Brownian particles in a
pure energy potential. When Gwei+(x)/D 	 1, the potential
function Ai(x) can be approximately rewritten as Ai(x) ≈
−D ln[2wei+(x)] = Ai2(x), which implies that the effective
potential function Ai(x) is dominated by the purely entropic
contribution. In Figs. 3(c) and 4(c), the thermal energy D is
set to D = 2. When Gwei+(x)/D 	 1 is established, it can
be seen that the potential functions Ai(x) (solid blue line)
and Ai2(x) (yellow dash-dotted line) are consistent. In this
entropy-dominated case, Eq. (16) turns into

∂P(x, t )

∂t
= ∂

∂x

[
D

∂P(x, t )

∂x
− D

w′
ei+(x)

wei+(x)
P(x, t )

]
, (18)

which is a Fick-Jacobs equation [43,49].

D. Spectral amplification

In the case of Brownian particles diffusing in a double-
circular cavity, it is instructive to analyze the occurrence of
stochastic resonance in the context of the two-state approxi-
mation. For a potential A(x) with barrier height �A, the escape
rate of an overdamped Brownian particle from one cavity to
the other in the presence of thermal noise, and in the absence
of a force, is given by the overdamped Kramers rate [50–52],
reading

rK (D) =
√

A′′(xmin)|A′′(xmax)|
2π

exp

(−�A

D

)
, (19)

where A′′(x) is the second derivative of the effective potential
function, and with xmax and xmin indicating the position of
the maximum and minimum of the potential, respectively.
The expression of barrier height is �A = A(xmax) − A(xmin).
For the potential given by Eq. (15) and the shape defined by
Eq. (3), the corresponding Kramers rate for transitions from
one basin to the other, in dimensionless units, reads

rK (D) =
G

√
sinh

[
2G(R1−rp)

D

]
sinh

( 2Ga1
D

)
4π

√
rp

(
R1 − rp

)3
sinh2

[
G(R1−rp)

D

] . (20)

The occurrence of stochastic resonance can be detected in the
spectral amplification η. It is defined by the ratio of the power
stored in the response of the system at frequency σ and the
power of the driving signal [3,53,54], and reads

η = 1

D2

4r2
K (D)

4r2
K (D) + σ 2

. (21)

In the presence of an oscillating force F (t ) in the x direction,
there is an additional contribution to the effective potential
function in Eq. (15). We define the new effective potential
function as V (x) and its expression is

V (x) = A(x) − F (t )x

= −D ln

[
2D

G
sinh

(
Gwei+(x)

D

)]
− F (t )x. (22)

Thus, the 1D kinetic equation turns into

∂P(x, t )

∂t
= ∂

∂x

{
D

∂P(x, t )

∂x
+ [

A′(x) − F (t )
]
P(x, t )

}
. (23)

In order to study the appearance of stochastic resonance,
one can analyze the response of the system to the applied
sinusoidal signal F (t ) in terms of the spectral amplification
η. By spatial discretization, using a Chebyshev collocation
method, and employing the method of lines, the 1D kinetic
equation (23) can be reduced to a system of ordinary dif-
ferential equations. Then, Eq. (23) can be solved using a
backward differentiation formula method. With this approach,
the probability density distribution varying with time P(x, t )
can be obtained. Next, the time-dependent average position of
particles 〈x(t )〉 can be solved, and its expression is defined as

〈x(t )〉 =
∫

xP(x, t ) dx. (24)

In the long-time limit, this mean position of particles 〈x(t )〉
approaches the periodicity of the external driving force [53]
with angular frequency σ . After a Fourier expansion of 〈x(t )〉,
one can get the amplitude Mσ of the first harmonic of the
output signal. Hence, the spectral amplification η [54] for the
fundamental oscillation reads

η =
[

Mσ

A

]2

. (25)

It can be seen from Eq. (25) that the key to solving the
spectral amplification η by the numerical simulation method
is to obtain the output signal 〈x(t )〉, i.e., the time-dependent
average position of particles. Since the diffusion of Brown-
ian particles in the confined cavity is described by Eq. (1),
and there are reflection boundary conditions at the wall, the
Brownian dynamics simulation method can be used to simu-
late the diffusion process of Brownian particles. By simulating
a large number of sample paths for a long time, many time-
dependent positions of particles x(t ) can be obtained. After
averaging them, one can get the mean value 〈x(t )〉, and then
the spectral amplification η can be calculated according to the
above method.

III. RESULTS AND ANALYSIS

At first, we fix the basic parameters of the restricted chan-
nels. The radius of the double- and triple-circular cavity is
Ri = 1 (i = 1, 2), the half width of the hole connecting ad-
jacent units is ai = 0.3Ri, and the radius of particles in the
channel is taken as rp = 0.3ai.

A. ESR in double-circular cavity

Figure 5 depicts the change of the spectral amplification η

with the noise intensity D when the driving signal frequen-
cies are σ = 0.01, 0.001, and 0.0001. The results shown by
the three solid lines in Fig. 5 are obtained from Eq. (21),
which is the analytical expression for calculating the spectral
amplification η derived by the two-state approximation. The
results indicated by three different types of symbols in Fig. 5
are obtained by numerically integrating the one-dimensional
probability density equation (23) to obtain the output signal
〈x(t )〉, which is then calculated by Eq. (25) after Fourier trans-
formation. The amplitude of the periodic signal set here is A =
10−3. It can be seen from Fig. 5 that the spectral amplification
η presents a nonmonotonic change trend with the increase of
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FIG. 5. Schematic diagram of the change of spectral amplifica-
tion η with noise intensity D when taking different periodic driving
signal frequencies σ (σ = 0.01, 0.001, 0.0001), for the input signal
amplitude A = 10−4, the transversal force G = 1, and for the radius
of double-circular cavity R1 = 1. For small driving frequencies and
amplitudes, the spectral amplification η is calculated by the two-state
approximation and Brownian dynamics simulation. The correspond-
ing results of the solid lines with different colors are obtained by the
two-state approximation, i.e., Eqs. (19)–(21), while the correspond-
ing results of the symbols with different shapes are calculated by
Brownian dynamics simulation.

noise intensity D. There is an optimal noise intensity D to
maximize the spectral amplification η, indicating that entropic
stochastic resonance occurs in the system at this time. When
the frequency of the periodic signal is σ = 0.0001, the results
obtained by the two methods are in good agreement. When
the frequency of the periodic signal is large, that is, σ = 0.001
and σ = 0.01, the results obtained by the two methods have
the same trend, but the specific results are in poor agreement,
which indicates that the two-state approximation has a good
description for the diffusion system with small amplitude and
frequency of the driving signal.

When there is a large amplitude and frequency of the driv-
ing signal in the diffusion system, the output signal 〈x(t )〉 can
be solved by numerical integration of Eq. (23) and Brownian
dynamics simulation, respectively, and the spectral amplifica-
tion η can be calculated according to Eq. (25) after Fourier
transformation of 〈x(t )〉.

Figure 6(a) describes the curve of spectral amplification η

versus noise intensity D when different amplitudes A of the
periodic driving signal is taken under the condition of gravity
G = 5.5 and periodic driving signal frequency σ = 0.1. The
solid line in Fig. 6(a) corresponds to the results of numerical
integration through the one-dimensional probability density
equation (23), and different symbols correspond to the results
of numerical simulation using the Brownian dynamics simu-
lation method. The two results are in good agreement. It can
be seen from the change trend of the curve that the spectral
amplification η shows a nonmonotonic change behavior with
the noise intensity D. When three different amplitude parame-
ters A are taken, the spectral amplification η has a peak value,
indicating that the entropic stochastic resonance phenomenon
occurs at this time. The peak value of the spectral amplifica-
tion η and the corresponding noise intensity D decrease with
the increase of the amplitude A of the periodic driving signal,
indicating that the larger the amplitude A is, the smaller the
noise intensity required for entropic stochastic resonance to

FIG. 6. (a) The dependence of the spectral amplification η on
noise intensity D when different amplitudes A (A = 1.0, 2.0, 3.0)
are taken, for the transversal force G = 5.5 and the periodic driving
signal frequency σ = 0.1. (b) The dependence of spectral amplifica-
tion η on noise level D at three different input signal frequencies
σ (σ = 0.1, 0.3, 0.5), at a constant input amplitude A = 1.0 and
transversal force G = 5.5. Different from the driving frequencies
σ and amplitudes A in Fig. 5, for larger σ and A, the spectral
amplification η is calculated by the one-dimensional modeling and
Brownian dynamics simulation. The solid line corresponds to the re-
sult of numerical integration through the one-dimensional probability
density equation (23), and different types of symbols are marked as
the results obtained by the Brownian dynamics simulation method.

occur, and the less obvious the entropic stochastic resonance
phenomenon is. It can also be found from Fig. 6(a) that under
the condition of weak noise, the larger the amplitude A of the
periodic driving signal is, the larger the spectral amplification
η is. When the noise intensity increases to a critical value, this
magnitude relationship will reverse.

Figure 6(b) shows the change of spectral amplification η

with noise intensity D when taking different frequencies σ

of the periodic driving signal under the condition of gravity
G = 5.5 and amplitude A = 1.0 of the periodic driving sig-
nal. It can be seen from Fig. 6(b) that under the three sets
of signal frequency parameters that are taken, the spectral
amplification η shows a nonmonotonic change trend. When
the noise intensity D is appropriate, the spectral amplification
η reaches the peak, which indicates that entropic stochastic
resonance occurs in the diffusion system at this time. When
gravity G and external signal amplitude A are fixed, with the
increase of periodic driving signal frequency σ , the peak value
of spectral amplification η becomes smaller and smaller, and
the entropic stochastic resonance phenomenon becomes less
and less obvious, which indicates that small signal frequency
σ is more likely to induce entropic stochastic resonance in
the system.

B. ESR in triple-circular cavity, and comparison of ESR
in triple- and double-circular cavities

In this part, a triple-circular cavity with the same scale
as the double-circular cavity for a given set of Ri and ai is
constructed, as shown in Fig. 2. The spectral amplification η

in both cavities has been shown in Fig. 7, which is helpful to
compare the similarities and differences of their ESR.

Figure 7 depicts relations between the spectral amplifi-
cation η and noise intensity D for different values of A, σ ,
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FIG. 7. The dependence of spectral amplification η on noise level
D in the triple-circular cavity (TC) and the double-circular cavity
(DC) at different external force parameters (including transversal
force G, input signal amplitude A, and frequency σ ). For the double-
and triple-circular cavities, the radius of the cavity, Ri (i = 1, 2), and
the half width of the hole connecting adjacent circular cavities ai are
the same, which are Ri = 1 and ai = 0.3Ri, respectively. The radius
of the Brownian particles diffused in the two cavities is rp = 0.3ai.

and G in the triple- and double-circular cavities. First of all,
according to the value of the spectral amplification η in Fig. 7,
it can be seen that η for the triple-circular cavity is much larger
than that for the double-circular cavity. This phenomenon can
be explained by the jump of Brownian particles in the two
cavities. For the same moderate noise intensity D (such as
D = 0.8), Brownian particles keep a regular jump between
different units in both cavities. In the double-circular cavity,
however, one Brownian particle jumps to the widest position
(near ±1, as shown in Fig. 1) of a unit and diffuses in a
small range. After a period of time, it jumps back and moves
around. Finally, after ensemble averaging the trajectories of
these Brownian particles, it appears as a periodic function with
an amplitude around 1. Then, for the triple-circular cavity,
the Brownian particles also maintain a regular jump between
different units. Most Brownian particles cross the intermediate
unit and jump directly from one side unit to the other side
unit. After that, the particles move in a small range near the
widest position (near ±2, as shown in Fig. 2) of the unit they
located, and then jump back after a while. Therefore, after
ensemble averaging, the average trajectory of these Brownian
particles is a periodic function with an amplitude smaller than
2 but much larger than 1, which leads to a larger η in the
triple-circular cavity. Second, in Figs. 7(a) and 7(b), the η − D
curve for the two circular cavities has a peak, which indicates
the occurrence of ESR. It is obvious that the peak value of η in
the triple-circular cavity is larger, which indicates that a triple-
circular structure is more conducive to inducing stronger ESR
for circular cavities with the same radius Ri and half width of
the hole connecting adjacent units ai. Furthermore, the noise
intensity D corresponding to the occurrence of ESR in the
triple-circular cavity and double-circular cavity is different.
Based on Figs. 7(a) and 7(b), in the double-circular cavity,
ESR occurs when D is taken as 0.9 and 1.2, respectively. For
the triple-circular cavity, ESR occurs at a larger D (near 0.95
and 1.25, respectively). In Fig. 7(c), it can be seen that there is
a peak value for η in the triple-circular cavity, which means the
occurrence of ESR, but η in the double-circular cavity shows a

monotonically increasing trend and there is no peak, i.e., there
is no ESR. Figure 7(c) describes a phenomenon that for some
of the same A, σ , and G, ESR does not occur simultaneously
in both triple- and double-circular cavities. Figure 7(c) also
illustrates that the range of system parameters that can induce
ESR in the triple-circular cavity considered here is wider than
that in the double-circular cavity. According to Fig. 7(d), it can
be seen that there is no peak for η in both triple- and double-
circular cavities, indicating that for some certain parameter
conditions, ESR cannot occur in both circular cavities.

Although the intensity of ESR in the triple- and double-
circular cavities is different, there are still some common rules
regarding ESR in these two types of cavities. In Figs. 7(a) and
7(b), when σ changes from 0.1 to 0.3, both η and its peak in
the two circular cavities decrease, indicating that an increase
in σ will lead to a decrease in η and a weaker ESR. Similarly,
in Figs. 7(b) and 7(c), when G changes from 5.5 to 7.0, η and
its maximum in these two circular cavities decrease, i.e., an
increase of G leads to a smaller η and weaker ESR. The differ-
ence is that even though the increase in G leads to a weakening
of ESR in the triple-circular cavity, ESR still exists, while ESR
disappears in the double-circular cavity, indicating that ESR
in the triple-circular cavity can appear within a wider range of
parameters related to G. In Figs. 7(b) and 7(d), the influence
of A on ESR in these two circular cavities is presented. The
simulation results show that an increase of A can cause a
decrease of η and the disappearance of ESR in these two types
of cavities.

Overall, for the triple- and double-circular cavities given
in Figs. 2 and 1, the results indicate that only increasing the
number of circular cavity units can enable the ESR effect to
occur within a wider range of external force parameters. In
addition, an increase in the number of cavity units can also
lead to the increase of the spectral amplification η and its peak,
i.e., the more pronounced ESR effect can be induced.

C. ESR of Brownian particles with different radii
in triple-circular cavity

The Brownian particles that diffuse in a confined space are
of finite size, and the factor of particle size cannot be ignored
in many cases. Particles with different sizes are subject to dif-
ferent constraints from the channel boundary, and the entropic
barrier is also different; therefore, particles of different sizes
may have different diffusion velocities, diffusion coefficients,
etc., which directly or indirectly affects the entropic stochastic
resonance of particles. In this part, we focus on particle size by
fixing other parameters and study the entropic stochastic reso-
nance phenomenon of Brownian particles with different sizes
in a three-circular cavity, as shown in Fig. 2. The diffusion of
particles in the cavity is governed by Eq. (6). The values of
transverse force G, input signal amplitude A, and frequency σ

of the input signal are consistent with those in Fig. 7(a), which
are G = 5.5, A = 1.0, and σ = 0.1.

Figure 8 describes in detail the variation of the spectral
amplification factor η with the noise intensity D for four
different sizes of Brownian particles. It can be understood
from Fig. 8 that the spectral amplification factor η shows a
nonmonotonic trend with the noise intensity D, and there is a
peak demonstrating that ESR occurs in the system. We define
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FIG. 8. The dependence of spectral amplification η of Brownian
particles of different sizes on noise level D in the triple-circular
cavity (TC) with the same external force parameters (including
transversal force G, input signal amplitude A, and frequency σ ). In
the four subgraphs, the radii of the Brownian particles diffused in the
cavity are 0.1a3, 0.3a3, 0.7a3, 0.9a3, respectively.

the maximum value of the spectral amplification factor η as
ηmax, which can represent the strength of ESR in the system.
By comparing the ηmax values of four different particle sizes
in Fig. 8, it can be seen that the larger the radii of Brownian
particles, the smaller the value of ηmax, indicating that the ESR
is weaker.

Figure 9 shows the dependence of the maximum value
of spectral amplification ηmax on particle radius rp in the
triple-circular cavity (TC). It can be seen that ηmax decreases
monotonously with the increase of particle radius rp. The
smaller the particle radius is, the larger the value of ηmax is,
which indicates that the ESR is more pronounced. As the size
of the Brownian particle increases, the value of ηmax begins
to decrease and the ESR in the system becomes weaker and
weaker. In particular, when the particle radius is rp > a3, this
means that the radius of the particle, rp, exceeds the half width
of the channel pore a3, the particle will be limited to a certain
cavity, unable to diffuse from one cavity in the channel to
another cavity, and the ESR phenomenon will not occur.

In summary, the ESR of Brownian particles of different
sizes has been studied in a triple-circular cavity. It has been
shown that the smaller the radius of a particle, the more
noticeable ESR is. The strength of ESR in the system has a

FIG. 9. The dependence of the maximum value of spectral ampli-
fication ηmax on particle radius rp in the triple-circular cavity (TC).
The external force parameters (including transversal force G, input
signal amplitude A, and frequency σ ) are consistent with those in
Fig. 8.

strong dependence on the particle radius. Therefore, the size
effect is an important feature that cannot be neglected in the
study of such problems.

IV. CONCLUSION

We have studied the phenomenon of entropic stochastic
resonance in double- and triple-circular cavities. In a double-
circular cavity, the two-state approximation method has been
shown to be suitable for calculating the spectral amplifica-
tion for small input signal amplitudes and frequencies. By
calculating the spectral amplification η numerically, influ-
ences of the external force parameters on ESR are explored.
The spectral amplification shows a nonmonotonic trend with
the noise level. When the noise intensity is appropriate, the
spectral amplification reaches the peak, which means that
ESR occurs.

Meanwhile, the influence of a triple-circular cavity struc-
ture on ESR is studied, and phenomena that are different from
ESR in a double-circular cavity with same cavity radius and
the same pore width as the triple-circular cavity are presented.
Interestingly, the triple-circular structure of confinements can
induce a larger maximum in the η versus D curve, which
indicates that there is more obvious ESR in a triple-circular
cavity. In addition, ESR does not simultaneously occur in
a double-circular cavity and a triple-circular cavity. When
some external force parameters are taken, ESR only occurs
in a triple-circular cavity, but not in a double-circular cav-
ity. The triple-circular cavity can induce a wider parameter
region that can induce the maximum and ESR, but does
not affect the trend of the spectral amplification induced by
external forces.

Finally, by simulating the diffusion of four different sizes
of Brownian particles in the triple-circular cavity, the curves
of the spectral amplification factor with noise intensity are
obtained. It can be seen that the particle radius size is also an
important factor affecting the ESR phenomenon. We learn that
the smaller the particle size, the higher the peak value of the
spectral amplification factor, corresponding to a more remark-
able ESR phenomenon. Consequently, in many. micro- and
nanoscale systems, the size effect of particles is an important
attribute affecting the response of the system, which cannot be
safely omitted.

Our results show the dependence of ESR and the noise
intensity that induces ESR on the external force parameters
and the structure of confinements, which provides the possi-
bility for a design of stylized channels wherein response and
transport become efficiently optimized.
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FIG. 10. Realization of reflection boundary conditions. (a) Check whether the particles move outside the channel. (b) Calculate the collision
point, and the tangent vector and normal vector at the collision point when the particles diffuse outside the channel. (c) Calculate the new
position coordinates of the particles after collision with the wall according to the reflection boundary condition.

APPENDIX: BROWNIAN DYNAMICS SIMULATION

When the particle diffuses in a confined space, the space
where the particle is located has a boundary limit. When the
particle collides with the obstacle, the size and direction of
the particle diffusion velocity will change. The boundary in
Figs. 1 and 2 is the reflection boundary. The particle and
the obstacle completely elastically collide. After the rebound,
the particle is without energy loss, the diffusion velocity re-
mains unchanged, and the diffusion direction is similar to
the specular reflection, as shown in Fig. 10. Because the
particle is considered to diffuse in a low Reynolds number
fluid environment, the interaction between the particles is
ignored here.

Let �rk = (xk, yk ) denote the position of the particle at
time (k − 1)h, where h refers to the time step. The reflection
boundary condition, i.e., updating the particle position from
Fig. 10(a) to Fig. 10(b) at each time step, is implemented
according to the following algorithm:

(1) Set the initial position of the particle �r1 = (x1, y1).
(2) Update the position �rk+1 = (xk+1, yk+1) of the particle

at time kh according to Eq. (6) and determine whether the
position of the particle is in the confined media. If �rk+1 =
(xk+1, yk+1) is located in the restricted space, the position
�rk+2 = (xk+2, yk+2) of the particle is continuously updated
according to Eq. (6); otherwise, steps (3)–(6) are performed.

(3) Calculate the intersection point �P = (xp, yp) between
the boundary and the line from �rk to �rk+1, where �rk =

(xk, yk ) represents the position of the particle at time
(k − 1)h.

(4) Calculate the tangent line l at the intersection point �P =
(xp, yp), and calculate the tangent unit vector �t and the normal
unit vector �n (outgoing from the wall), as shown in Fig. 10(b).

(5) Calculate the position point �r′
k+1 = (x′

k+1, y′
k+1) after

the collision according to the reflection boundary con-
dition, where the calculation formula is �r′

k+1 = �rk+1 −
2[(�rk+1 − �P) · �n]�n .

(6) Assign the coordinates of the reflection point �r′
k+1 =

(x′
k+1, y′

k+1) to �rk+1 = (xk+1, yk+1), and determine the posi-
tional relationship between the new �rk+1 and the channel. If
the new �rk+1 is in the restricted space, return to step (2).
Otherwise, assign the coordinates of �P to �rk , repeat steps
(3)–(6) until the reflection point inside the confined space is
calculated, and then return to step (2) to continue to update
the position of the particle.

The Brownian dynamics simulation requires that the time
step h is small enough. If the time step h is too large, it
will lead to numerical instability of the particles at some
sharp boundaries in the process of numerical simulation, and
multiple reflections occur at the sharp boundaries. In addition,
the trajectory of the particles may break through the boundary
of confined space unnaturally. In order to make the simulation
results of Brownian dynamics more accurate, the selected time
step h is less than 10−4, and the number of simulated sample
orbits is greater than 103.
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