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Benjamin Ertel and Udo Seifert
II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

(Received 13 December 2023; accepted 25 March 2024; published 6 May 2024)

A central task in stochastic thermodynamics is the estimation of entropy production for partially accessible
Markov networks. We establish an effective transition-based description for such networks with transitions that
are not distinguishable and therefore blurred for an external observer. We demonstrate that, in contrast to a
description based on fully resolved transitions, this effective description is typically non-Markovian at any point
in time. Starting from an information-theoretic bound, we derive an operationally accessible entropy estimator
for this observation scenario. We illustrate the operational relevance and the quality of this entropy estimator
with a numerical analysis of various representative examples.
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I. INTRODUCTION

One major result of stochastic thermodynamics is the iden-
tification of entropy production for physical systems within
a Markovian description [1–3]. Based on this identification,
the dissipation in chemical and biophysical systems, for in-
stance chemical reaction networks [4–6], can be quantified
theoretically. In practice, however, many systems are only
partially accessible, i.e., the full Markovian description is not
observed, implying that the entropy production is not directly
operationally accessible.

For inferring the entropy production of these partially ac-
cessible systems, various strategies with different level of
sophistication have been proposed. The apparent entropy pro-
duction [7–10] and state-lumping entropy estimators [11–15]
bound the full entropy production with the coarse-grained
entropy production of effective Markov models. Time-series
estimators [16,17] and fluctuation theorem estimators [18–20]
provide entropy bounds based on the irreversibilty of time-
antisymmetric observables. The thermodynamic uncertainty
relation can be interpreted as a bound for the entropy pro-
duction in terms of current fluctuations [21–25]. As shown
in Ref. [26], the statistics of general counting observables
bound the entropy production as well. Assuming a specific
underlying Markov network, optimization procedures yield
tight network specific entropy bounds [27–30].

Including waiting times in the effective description, for
example, via the milestoning coarse-graining scheme [31,32],
leads to more refined entropy estimators with a broader range
of applicability [33–38]. In particular, the effective description
based on the waiting times between two observable transi-
tions is central for thermodynamic inference as it provides a
tight entropy bound [39,40] and additionally contains topo-
logical information about the underlying system [39,41–44].
This inference strategy is based on interpreting the observed
transitions as renewal events of an effective semi-Markov
description [45–47] and identifying these renewal events as
Markovian events [48,49].

In realistic scenarios, e.g., the scenarios discussed in
Ref. [50], imperfect measurements can limit the resolution of
observations resulting in non-Markovian events. For an exam-
ple, consider the observation of a chemical reaction network.
Instead of observing the precise number of each chemical
species, an external observer can potentially only register the
type of an observed reaction. Consequently, the individual
transitions in the state space are not distinguishable. Stated
differently, for this observer, the transitions of the corre-
sponding effective Markov network are blurred. This blurred
observation of a chemical reaction network is illustrated in
Fig. 1 for the Schlögl model, a paradigmatic example of a
chemical reaction network [51–54].

A biophysical example with blurred transitions is an obser-
vation of the KaiC-cycle [55–58] in which the observer only
registers activation and deactivation of KaiC molecules but
cannot distinguish between the different molecular states. An
example from active matter is an observation of the motion
of a run-and-tumble particle subject to thermal noise [59–61]
in which the orientations of the director are not accessible
and therefore blurred. Another example is an observation of
a quantum-dot system [7,62–65] with multiple indistinguish-
able reservoirs as introduced in Ref. [66]. Since the observer
cannot distinguish which reservoir populates or depletes the
system, the corresponding transitions are blurred. Note that
from a conceptual point of view, the multifilar events intro-
duced in Ref. [66] correspond to blurred transitions.

This work aims at extending the transition-based descrip-
tion of partially accessible Markov networks to this class of
observations. Based on an information-theoretic bound, we
derive an operationally accessible entropy estimator which
uses blurred transition statistics and the distributions of
waiting times between two consecutive blurred transitions.
Crucially, the derived estimator is not the generalization of
the entropy estimator for fully resolved transitions since the
Markovian event property breaks down for blurred transitions.

We start with a recapitulation of the basic concepts
of transition-based thermodynamic inference for resolved
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FIG. 1. Blurred observation of the Schlögl model. (a) Reac-
tion scheme: X molecules can undergo chemical reactions with A
molecules and B molecules provided by two different chemical reser-
voirs. (b) If an observer resolves the number of X molecules nX , each
change in nX can be represented as transition in an effective Markov
network with two different channels. (c) If the observer only registers
forward and backward reactions along the A-reaction channel (dark
color) or the B-reaction channel (bright color) but cannot resolve
the changes in the number of X molecules nX , the corresponding
transitions of the effective network are blurred for this observer.

transitions in Sec. II. These concepts are extended to blurred
transitions in Sec. III. In Sec. IV, we derive the transition-
based entropy estimator starting from the corresponding
information-theoretic bound. Various examples illustrating
the quality of this estimator are presented in Sec. V. The final
Sec. VI contains a concluding perspective.

II. SETUP

A. Underlying Markovian description

Our starting point is a Markov network with N states for
which transitions between state i and state j happen with
a time-independent transition rate ki j along a corresponding
edge or, equivalently, link of the network. To ensure thermo-
dynamic consistency, we assume that ki j > 0 implies k ji > 0.
Since all transition rates are time-independent, the system
reaches a stationary state with stationary probabilities ps

i in
the long-time limit t → ∞. If the detailed balance relation
ps

i ki j = ps
jk ji is broken for at least one edge, this steady state

is a nonequilibrium stationary state (NESS) with stationary
entropy production rate

〈σ 〉 =
∑

i j

ps
i ki j ln

ps
i ki j

ps
jk ji

� 0, (1)

where the summation includes all possible transitions [3].
From a topological perspective, 〈σ 〉 is caused by currents jC
along closed directed loops without self-crossing, i.e., along
the cycles C of the network. Operationally, jC corresponds
to the mean net number of cycle completions divided by the
observation time [67,68]. The contribution of each cycle C
to the entropy production of the network is quantified by the
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FIG. 2. Observation of a partially accessible five-state Markov
network with four resolved transitions. The resolved observer regis-
ters the transitions (12), (21), (45), and (54) and the corresponding
in-between waiting times.

cycle affinity

AC ≡ ln
∏
i j∈C

ki j

k ji
, (2)

where the product includes all forward transition rates of the
cycle in the numerator and the corresponding backward tran-
sition rates in the denominator. Combining the contributions
of all cycles of the network, 〈σ 〉 can be calculated via

〈σ 〉 =
∑
C

jCAC, (3)

which is equivalent to Eq. (1). In unicyclic networks, Eq. (3)
reduces to

〈σ 〉 = jCAC . (4)

For this topology, the cycle current is identical to the current
through each link and therefore given by

jC = ps
i ki j − ps

jk ji, (5)

where i and j can be any pair of adjacent states.

B. Resolved observation

We assume that an observer, whom we call “resolved ob-
server” for later reference, aims at inferring 〈σ 〉 of the general
N-state Markov network based on the observation of 2M
transitions along M different edges. In the course of time,
for example during the observation of the five-state Markov
network with four resolved transitions shown in Fig. 2, the
observer registers different transitions and the waiting times
between these transitions. This observation results in an effec-
tive dynamics for the underlying network that is characterized
by waiting time distributions of the form

ψ(i j)→(kl )(t ) ≡ p[(kl ); T(kl ) − T(i j) = t |(i j)], (6)

where T(i j) is the time at which transition (i j) is registered.
ψ(i j)→(kl )(t ) is the probability density for observing (kl ) at
time T(kl ) = T(i j) + t , i.e., after a waiting time t , given (i j)
was observed at time T(i j). Integrating out the waiting times
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in Eq. (6) leads to

p(i j)→(kl ) =
∫ ∞

0
dtψ(i j)→(kl )(t ), (7)

which is the probability for observing the resolved transition
(kl ) after the resolved transition (i j) irrespective of the wait-
ing time in between with normalization

∑
(kl ) p(i j)→(kl ) = 1.

In general, the emerging effective description of the
network is non-Markovian because the described partial ob-
servation is not sufficient for determining the state of the
underlying network. As a consequence, the corresponding
waiting time distributions are typically nonexponential. How-
ever, directly after a registered transition, the state of the
system is uniquely determined by this transition. For example,
in Fig. 2, observing (12) implies that the state of the system
directly after the transition is two. Therefore, the effective
description remains Markovian at the corresponding time in-
stances. From a conceptual point of view, these events can be
interpreted as the renewal events of a semi-Markov process
which describes the effective dynamics in the space of ob-
servable transitions [39]. Each observed transition updates the
semi-Markov state of the system by renewing the memory of
the non-Markovian process with a Markovian event. Thus, in
the space of observable transitions, the process is a first-order
semi-Markov process.

The updating of the semi-Markov state slices an observed
trajectory into snippets starting and ending with an observed
transition, i.e., a Markovian event. From an operational point
of view, e.g., for the resolved observer, this slicing implies that
waiting time distributions for transition sequences with more
than two transitions factorize. For example, for the sequence
(i j) → (kl ) → (mn) with in-between waiting times t1 and t2,
we have

ψ(i j)→(kl )→(mn)(t1, t2) = ψ(i j)→(kl )(t1)ψ(kl )→(mn)(t2). (8)

Since the memory is renewed at the start and at the end of each
snippet, the path weight of the trajectory splits into the path
weights of the corresponding subsequent trajectory snippets
[39,48]. On the level of these trajectory snippets, a fluctuation
theorem holds true for their path weights which relates a
single snippet to the completion of paths, especially of cy-
cles [39,48]. Based on this fluctuation theorem, the entropy
estimator

〈σ̂ 〉 ≡
∑

(i j),(kl )

∫ ∞

0
dtπi jψ(i j)→(kl )(t ) ln

ψ(i j)→(kl )(t )

ψ(k̃l )→(ĩ j)(t )
(9)

for the full entropy production 〈σ 〉 of a partially accessible
Markov network can be derived [39,40]. In Eq. (9), the sum-
mation includes all observed transitions, (ĩ j) = ( ji) is the
time-reversed transition of (i j) and πi j = ps

i ki j is the rate
for observing transition (i j). This entropy estimator always
provides a lower bound on the full entropy production, i.e.,
〈σ̂ 〉 � 〈σ 〉. Especially for unicyclic networks, the observation
of transitions (i j) and ( ji) along a single link recovers the full
entropy production, i.e., 〈σ̂ 〉 = 〈σ 〉 = jCAC , because∫ ∞

0
dt (πi jψ(i j)→(i j)(t ) − π jiψ( ji)→( ji)(t )) = jC (10)

and

ln
ψ(i j)→(i j)(t )

ψ( ji)→( ji)(t )
= AC (11)

hold true [39,40].

III. FROM RESOLVED TO BLURRED OBSERVATIONS

We now assume that a second observer with finite reso-
lution, whom we call “blurred observer” for later reference,
also observes the 2M transitions of the underlying network.
However, due to the finite resolution of his observation,
this observer cannot distinguish between the 2M resolved
transitions and instead observers C blurred transitions with
2 � C � M. Stated differently, for the blurred observer, the
resolved transitions are grouped into C different effective
transition classes G, H, I, ... with each transition belonging to
one transition class. A concrete example in which the four
observable transitions of the network in Fig. 2 are blurred
into two transition classes is shown in Fig. 3(a). For these
transitions, the blurred observer registers only the correspond-
ing transition class but cannot distinguish between individual
transitions within each class. The conditioned probability for
observing a specific transition (i j) of transition class I is
given by

p(i j|I ) = ps
i ki j∑

(kl )∈I ps
kkkl

= πi j

πI
, (12)

where πI is the rate for observing that a transition within
I happens and the summation includes all transitions within
transition class I . Waiting time distributions for blurred tran-
sitions can be interpreted as an average over all waiting
time distributions for resolved transitions belonging to the
corresponding transition classes. Thus, these waiting time dis-
tribution can be calculated via

�I→J (t ) =
∑
(i j)∈I
(kl )∈J

p(i j|I )ψ(i j)→(kl )(t ), (13)

using the corresponding weight from Eq. (12). The inter-
pretation of �I→J (t ) is similar to the interpretation of the
waiting time distributions for resolved transitions defined in
Eq. (8). Note that for the blurred observer, p(i j|I ) is not
accessible because the individual transitions in a class are
not distinguishable. Instead of using Eq. (13), this observer
determines �I→J (t ) directly from recorded histogram data for
the corresponding transitions and waiting times.

Although the waiting time distributions for blurred tran-
sitions can be interpreted analogously to the waiting time
distributions for resolved transitions, their meaning on the
level of the underlying Markov network is significantly dif-
ferent. Directly after a transition from class I , the state of
the underlying system can be the final state of any transition
within I . For example, for the observation scenario shown
in Fig. 3(a), right after a registered transition from class I ,
the state of the system is either two or five. In general, af-
ter a blurred transition, the state of the system is not fully
determined, i.e., the state of the system is determined up to
p(i j|I ). Thus, the effective dynamics on the level of blurred
observations is non-Markovian at any point in time.
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FIG. 3. Observation of a partially accessible five-state Markov network with two blurred transitions. (a) The blurred observer registers
transitions from classes I and J and the corresponding in-between waiting times but cannot resolve the individual transitions within a class.
(b) Breakdown of the renewal property, i.e., Eq. (15), for three out of eight possible sequences with three transitions. The deviations between the
conditioned probabilities, e.g., p(I → J; t |I → I ), and the corresponding products, e.g., pI→I�I→J (t ), indicate that the observed transitions
are not Markovian. The probabilities and waiting time distributions are calculated with an absorbing master equation for transition rates
k12 = 0.4, k21 = 8.9, k23 = 4.2, k32 = 1.1, k34 = 1.8, k43 = 0.01, k45 = 9.4, k54 = 0.1, k51 = 8.8, and k15 = 0.6.

From the perspective of the blurred observer, this break-
down of the renewal property leads to nonfactorizing waiting
time distributions, e.g., for the sequence I → J → K with
waiting times t1 and t2,

�I→J→K (t1, t2) �= �I→J (t1)�J→K (t2). (14)

To illustrate Eq. (14) with the two-transition waiting time
distributions of the example in Fig. 3(a), we integrate both
sides over t1 leading to

p(J → K ; t |I → J ) �= pI→J�J→K (t2), (15)

where

pI→J =
∫ ∞

0
dt�I→J (t ) (16)

is the probability to observe a transition from class J after a
transition from class I irrespective of the in-between waiting
time. For the three different sequences with three transitions
shown in Fig. 3(b), the renewal property breaks down.

The mapping from resolved transitions to blurred tran-
sitions is a time-independent, unique and many-to-one
coarse-graining scheme for an already effective description
of a partially accessible Markov network by the resolved
observer. In the space of observable transitions, this coarse-
graining scheme corresponds to lumping effective transition
states into effective compound transition states. Crucially, al-
though this strategy is similar to conventional coarse-graining
by state lumping [7,10,11,15], the behavior of the resulting
coarse-grained states under time-reversal is different. If we
first apply the time-reversal operation for transitions and blur
them into classes afterwards [36,37,39], the blurred transitions
of a specific transition class can be even, odd or neither one
under time-reversal. We adopt this notion also for the cor-
responding transition classes, i.e., the lumped states in the
space of observable transitions. A transition class G is even
under time-reversal if the time-reversed transition of each
transition in G is also included in G. A transition class I
is odd under time-reversal if the time-reversed transition of
each transition in I is included in the time-reversed class
Ĩ . For all other scenarios, the corresponding transition class
is neither even nor odd. Note that this notion emphasizes

the difference between lumped transition states and con-
ventional lumped states. The latter are always even under
time-reversal.

As an example, consider again the system shown in
Fig. 3(a). The transition classes I = {(12), (45)} and J =
{(21), (54)} are odd transition classes, i.e., Ĩ = J and J̃ = I
because the time-reversed counterparts of the transitions in I
are blurred into J . In contrast, blurring the resolved transitions
into G = {(12), (21)} and H = {(45), (54)} would result in
even transition classes, i.e., G̃ = G and H̃ = H because the
time-reversed counterparts of the transitions in G and H would
also be blurred into G and H , respectively. If the transitions
were blurred into K = {(12), (21), (45)} and L = {(54)}, the
time-reversed transition classes K̃ = {(21), (12), (54)} and
L̃ = {(45)} would not be observable and these transition
classes would be neither even nor odd under time-reversal.
In the following, we assume that for each transition class
the corresponding time-reversed one is observable, i.e., we
consider only even or odd transition classes.

IV. ESTIMATION OF ENTROPY PRODUCTION

Extending the analogy between waiting time distributions
of resolved transitions and blurred transitions to the entropy
estimator 〈σ̂ 〉 leads to a generalization of Eq. (9) for blurred
transitions given by

〈σ̂BT〉 ≡
∑
I,J

∫ ∞

0
dtπI�I→J (t ) ln

�I→J (t )

�J̃→Ĩ (t )
, (17)

where the summation includes all transition classes. Crucially,
〈σ̂BT〉 is not a bound for 〈σ 〉, i.e., 〈σ̂BT〉 � 〈σ 〉 in general,
because the entropy estimator for trajectory snippets is not ap-
plicable if no renewal events are observed. More specifically,
the start and the end of the snippets are then not Marko-
vian events, which breaks the central condition for applying
the fluctuation theorem used for deriving 〈σ̂ 〉 for resolved
transitions [39,48]. To derive a waiting time based bound
for blurred transitions, we start from Eq. (17) and insert the
definition of the waiting time distributions from Eq. (13). By
rewriting the conditioned probabilities using the definition
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in Eq. (12), we can separate terms in Eq. (17) and apply
the log-sum inequality from information theory [69] which
leads to

〈σ̂BT〉 +
∑
I,J

πI pI→J log
πI

πJ̃

�
∑
I,J

∑
(i j)∈I
(kl )∈J

∫ ∞

0
dtπi jψ(i j)→(kl )(t ) ln

πi jψ(i j)→(kl )(t )

πk̃lψ(k̃l )→(ĩ j)(t )
.

(18)

For identifying πI pI→J in the separated term, we have have
first carried out the integration over all waiting times in
this term and have then used Eqs. (13) and (16). Note
that since we only consider transition classes which are ei-
ther even or odd under time-reversal, the summation on the
right-hand side of the inequality includes the time-reversed
partner of each resolved transition. Therefore, we can rewrite
Eq. (18) as

〈σ̂BT〉 +
∑
I,J

πI pI→J log
πI

πJ̃

�
∑
I,J

∑
(i j)∈I

�
(kl )∈J

∫ ∞

0
dt (πi jψ(i j)→(kl )(t ) − πk̃lψ(k̃l )→(ĩ j)(t )) ln

πi jψ(i j)→(kl )(t )

πk̃lψ(k̃l )→(ĩ j)(t )
(19)

�
∑

(i j)�(kl )

∫ ∞

0
dt (πi jψ(i j)→(kl )(t ) − πk̃lψ(k̃l )→(ĩ j)(t )) ln

πi jψ(i j)→(kl )(t )

πk̃lψ(k̃l )→(ĩ j)(t )
(20)

=
∑

(i j),(kl )

∫ ∞

0
dtπi jψ(i j)→(kl )(t ) ln

ψ(i j)→(kl )(t )

ψ(k̃l )→(ĩ j)(t )
+

∑
(i j),(kl )

πi j p(i j)→(kl ) ln
πi j

πk̃l

. (21)

In the first line, the summation index (i j) ∈ I � (kl ) ∈ J
means that each pair of resolved transitions is counted once
and that the pairs for which the same transition is observed
two times, i.e., (i j) → (i j), are included. For deducing the
inequality in the second line, we have to distinguish two cases.
First, the summation in the first line may already include all
pairs of resolved transitions in which case the second line is
an equality. Second, a pair of resolved transitions may not
be included in this summation if J̃ = I and Ĩ = J holds for
the transition classes of these transitions because the corre-
sponding term in Eq. (17) then vanishes. However, the term
for this pair of resolved transitions can still be added to the
right-hand side of the first line since this term is positive due
to (a − b) ln a/b � 0 for a, b � 0. In both cases, the sum-
mation in the second line then includes all pairs of resolved
transitions. For the third line, we have first rearranged the
summation and then separated the contributions of the waiting
time distributions from those of the probabilities. For the
latter, we have also carried out the integration over the waiting
times.

After identifying the waiting time contributions as 〈σ̂ 〉
based on the definition in Eq. (9) and introducing the
abbreviations

〈σ̂TC〉 =
∑
I,J

πI pI→J log
πI

πJ̃

(22)

and

〈σ̂RT〉 =
∑

(i j),(kl )

πi j p(i j)→(kl ) ln
πi j

πk̃l

, (23)

we obtain from Eq. (21) the inequality

〈σ̂BT〉 + 〈σ̂TC〉 � 〈σ̂ 〉 + 〈σ̂RT〉 . (24)

Note that from a conceptual point of view, the difference
〈σ̂RT〉 − 〈σ̂TC〉 is related to the entropy of the randomness
associated with the different resolved transitions contributing

to a blurred transition. As shown in Refs. [7,10,14], similar
terms also emerge for conventional state-lumping.

Since we aim at deriving a bound for the full entropy
production 〈σ 〉 based on Eq. (24), we have to bound 〈σ̂RT〉
because 〈σ̂ 〉 is always smaller then 〈σ 〉. If the underlying
Markov network is unicyclic, we plug in Eq. (10) and note
that

〈σ̂RT〉 = jC
∑

(i j),(kl )

ln
πi j

πk̃l

� jCAC = 〈σ 〉 (25)

holds true because we can always complete this summation
to Eq. (2) by adding (πi j − π ji ) ln πi j/π ji = jC ln πi j/π ji � 0
and canceling the steady state probabilities [47]. If the un-
derlying network is multicyclic, we reorder the summation in
〈σ̂RT〉, which leads to

〈σ̂RT〉 =
∑

(i j),(kl )

(πi j p(i j)→(kl ) − πk̃l p(k̃l )→(ĩ j) ) ln πi j . (26)

Using the normalization of p(i j)→(kl ) and exploiting the sta-
tionarity of the NESS, we can rewrite Eq. (26) as

〈σ̂RT〉 =
∑
(i j)

(πi j − πĩ j ) ln πi j � 〈σ 〉 , (27)

where we have bounded 〈σ̂RT〉 by comparing this expression to
the definition of 〈σ 〉 in Eq. (1) and noting that we can always
complete the summation by adding (πi j −π ji ) ln πi j/π ji � 0.
Equation (27) is saturated if all transitions are observed or
if (πi j − π ji ) ln πi j/π ji = 0 holds true for all unobserved
transitions.

With 〈σ̂RT〉 � 〈σ 〉 for unicyclic and multicyclic networks,
Eq. (24) reduces to our main result

〈σ̂BT〉 + 〈σ̂TC〉 � 2 〈σ 〉 , (28)

which is a bound for the full entropy production of par-
tially accessible Markov networks based on the observation of
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FIG. 4. Quality of the entropy bound in Eq. (28) for a unicyclic five-state Markov network as a function of the cycle affinity for three
different observation scenarios. (a) Observation of the odd transition classes I = {(12), (45)} and J = {(21), (54)}. The mean quality factor is
given by Q 	 0.66. (b) Observation of the even transition class G = {(12), (21), (34), (43)} and of the odd transition classes H = {(23), (45)}
and I = {(32), (54)}. The mean quality factor is given by Q 	 0.77. (c) Observation of the odd transition classes I and J including all forward
and backward transitions, respectively. The mean quality factor is given by Q 	 0.8. Each scenario includes more than 4 000 000 network
realizations with transition rates that are randomly drawn from uniform distributions between 0.1 and 6. All waiting time distributions are
calculated with an absorbing master equation and Eq. (13).

blurred transitions. This bound can be used as operationally
accessible entropy estimator because all quantities entering
〈σ̂BT〉 and 〈σ̂TC〉 are accessible in a blurred observation. Note
that if each transition class includes only one transition, i.e.,
no transitions are blurred, both sides of Eq. (24) are equal,
i.e., if 〈σ̂BT〉 = 〈σ̂ 〉 and 〈σ̂TC〉 = 〈σ̂RT〉. If the observation ad-
ditionally contains all transitions of the network, the bound in
Eq. (28) is saturated because then 〈σ̂ 〉 = 〈σ 〉 and 〈σ̂RT〉 = 〈σ 〉
hold true.

V. ILLUSTRATIONS

We illustrate our results with concrete observation sce-
narios for four different networks and with the observation
scenario for the Schlögl model illustrated in Fig. 1. To quan-
tify the quality of the bound in Eq. (28), we introduce the
quality factor

Q ≡ 〈σ̂BT〉 + 〈σ̂TC〉
2 〈σ 〉 � 1. (29)

We additionally introduce the abbreviation

�BT ≡ 〈σ̂BT〉 + 〈σ̂TC〉
2

� 〈σ 〉 (30)

for the entropy estimator derived in Eq. (28).

A. Unicyclic networks

We consider three different scenarios for the observation of
the unicyclic five-state network from Fig. 3 shown in Fig. 4.
For the observation scenario shown in Fig. 4(a), transitions of
two different links are blurred into the odd transition classes
I and J . For randomly drawn transition rates, the scatter
plot shows that Q < 1 for any drawn affinity AC . In this
simulation, the bound is never saturated because only four
of ten transitions of the underlying network are observed.
Even if Eq. (24) is saturated, the inequality in Eq. (25) is
only saturated for a small set of rates with high symmetry,
e.g., for k23 = k32, k34 = k43, k51 = k15, which are unlikely
to be drawn randomly. In the modified scenario shown in
Fig. 4(b), transitions of three different links are blurred into
the even transition class G and into the odd transition classes
H and I . The scatter plot shows that Q � 1. Compared to
the scenario in Fig. 4(a), the quality of the bound increases

because only the transitions (51) and (15) are not observed
implying that Eq. (25) can be saturated for a larger set of
rates, e.g., for k51 = k15, which are more likely to be drawn
randomly. In the observation scenario shown in Fig. 4(c), all
forward transitions are blurred into the odd transition class I
and all backward transitions are blurred into the odd transition
class J . Since this observation includes all transitions of the
network on the resolved level, i.e., 〈σ̂RT〉 = 〈σ 〉, the bound can
be saturated for all rates that saturate Eq. (24).

B. Multicyclic networks

We consider the observation of three different multicyclic
networks shown in Figs. 5(a)– 5(c). The networks in Figs. 5(a)
and 5(b) have multiple channels for the transitions (12) and
(21). For each network, all transitions are observed on the re-
solved level and the forward and backward transitions of each
link or each channel are blurred into a single even transition
class. The corresponding scatter plots show that Q as a func-
tion of the average cycle affinity AC = ∑

Ci
ACi/(# cycles),

i.e., the sum of all cycle affinities divided by the number of
cycles, is always smaller than one or equal to one.

The mean quality factors for the observation in Fig. 5(a),
Q 	 0.06, in Fig. 5(b), Q 	 0.67, and in Fig. 5(c), Q 	 1.0,
are significantly different indicating distinct quality regimes
of the bound. Since, as previously mentioned, the bound is
saturated if no transitions are blurred, i.e., if each registered
transition determines the state of the underlying system
completely, one possible explanation for this result is the
different degree of non-Markovianity of the considered
scenarios. In the scenario shown in Fig. 5(a), each registered
blurred transition is non-Markovian because each pair of
subsequent transition classes has two possible realizations
on the level of resolved transitions. In contrast, in the
scenario shown in Fig. 5(b), registering the blurred transitions
I → J or J → I corresponds to a Markovian event because,
due to the topology of the network, the only possible
resolved transition sequences for I → J and J → I are
(13) → (32) and (23) → (31), respectively. Generalizing
this argumentation to the scenario in Fig. 5(c), the bound in
Eq. (28) is then saturated because for this network topology,
each observed blurred transition corresponds to one unique
transition registered by the resolved observer. Thus, each

054109-6



ESTIMATOR OF ENTROPY PRODUCTION FOR PARTIALLY … PHYSICAL REVIEW E 109, 054109 (2024)

1 2

G

G

H

H

I

I

(a)

1 2

3

G

G

H

H

I
I

J
J

(b)

1 3

4

2

G

G

K

K

H

H

I

I

J

J

(c)

FIG. 5. Quality of the entropy bound in Eq. (28) for the observation of three multicyclic Markov network as a function of the average cycle
affinity AC . For each link, the forward and backward transitions are blurred into the same transition class. (a) Observation of a three channel
network with even transition classes I, J and K . The mean quality factor is given by Q 	 0.06. (b) Observation of a three state network with
two channels and even transition classes H, I, J , and K . The mean quality factor is given by Q 	 0.67. (c) Observation of a four state network
with even transition classes G, H, I, J , and K . The mean quality factor is given by Q 	 1.0. Each observation includes more than 1 300 000
network realizations with transition rates that are randomly drawn from uniform distributions between 0.1 and 6. All waiting time distributions
are calculated with an absorbing master equation and Eq. (13).

observed blurred transition is a Markovian event and the full
〈σ 〉 is recovered in such a scenario where transitions of all
links are observed without resolving their directionality.

C. Schlögl model

We consider the blurred observation of the Schlögl model
as introduced in Fig. 1. Following the reaction scheme
[51–53]

A + 2X
kA

+�
kA

−
3X, (31)

B
kB

+�
kB

−
X, (32)

where kA
± and kB

± are the forward and backward transition rates
of the A-reaction channel and the B-reaction channel, respec-
tively, X molecules contained in an open system with size
� can undergo chemical reactions with A and B molecules
provided by two external reservoirs at fixed concentrations
cA and cB. By the laws of mass-action kinetics, the transi-
tion rates of these reactions are determined by molecular rate
constants via

kA
+(nX ) = κA

+cA
nX (nX − 1)

�
, (33)

kA
−(nX ) = κA

−
nX (nX − 1)(nX − 2)

�2
, (34)

kB
+(nX ) = κB

+cB�, (35)

kB
−(nX ) = κB

−nX , (36)

where nX is the number of X molecules.
We assume that the system is out of equilibrium due to a

difference in chemical potential 	μ = μB − μA between the
two chemical reservoirs. For thermodynamic consistency, we
require that the local detailed balance condition

	μ = ln
cAκA

+κB
−

cBκA−κB+
(37)

holds true. By transforming one A molecule into one B
molecule via the creation and depletion of one X molecule,
the system completes a cycle with affinity 	μ. These cycle

completions lead to a nonvanishing mean entropy production
rate

〈σ 〉 = jX 	μ, (38)

where jX is the mean current of molecules entering and leav-
ing the two reservoirs.

Following the observation scenario in Fig. 1, we assume
that an external observer with no access to nX aims at inferring
〈σ 〉 based on the observation of the different reaction types
(A →), (A ←), (B →), and (B ←). As shown in Fig. 6, the
bound in Eq. (28) saturates within numerical errors for all con-
sidered concentrations cA and system sizes � which implies
that the estimator �BT recovers the full entropy production of
the system for these parameters.

1.62 1.67 1.72 1.77 1.82

cA

0.25

1.05

1.85

2.65
〈σ〉 : Ω = 102

〈σ〉 : Ω = 103

〈σ〉 : Ω = 104

ΣBT : Ω = 102

ΣBT : Ω = 103

ΣBT : Ω = 104

FIG. 6. Entropy production rate 〈σ 〉 and entropy estimator �BT

for the blurred observation of the Schlögl model as a function
of cA at different system sizes � with 	μ = ln 9 and κ

A/B
± = 1.

The stationary distribution of nX needed for calculating the wait-
ing time distributions via Eq. (13) is estimated numerically based
on Gillespie simulation data. The slight deviations between 〈σ 〉
and �BT emerge as a consequence of the numerical error of the
estimation method for the stationary distribution and as a conse-
quence of the finite sample size. The increase in 〈σ 〉 at cA 	 1.73
is caused by the phase transition of the Schlögl model at the critical
point [52,53].
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This numerical result can be rationalized by comparing
the amount of information accessible for the blurred observer
to the amount of information contained in 〈σ 〉 in Eq. (38).
Although the effective Markov network for the resolved ob-
servation of the Schlögl model illustrated in Fig. 1(b) is
multicyclic, Eq. (38) does not resolve each cycle of the net-
work individually because, due to symmetry, all cycles of
the network have the same affinity 	μ. Furthermore, jX is
independent of resolving individual cycles because this cur-
rent recovers the average number of created and consumed
A and B molecules of the whole network. Conceptually, the
same amount of information is included in �BT. Each blurred
transition corresponds to the creation or the consumption of
one A or one B molecule recovering the information contained
in jX . Additionally, as shown in general and illustrated for the
Brusselator model in Ref. [66], the probabilities for specific
blurred transition sequences, for example (A →) → (B ←)
or (A ←) → (B →), recover the cycle affinity 	μ. Thus, the
blurred observation captures the information contained in 〈σ 〉
implying the saturation of the corresponding entropy bound.

VI. CONCLUSION

In this paper, we have extended the transition-based de-
scription of partially accessible Markov networks to those
with blurred transitions by introducing the concept of tran-
sition classes. To establish an effective description from the
perspective of such a blurred observer, we have introduced
waiting time distributions for transitions between transition
classes. Based on these waiting time distributions, we have
demonstrated that this effective description is in general
non-Markovian, i.e., does not include any renewal event. As a

consequence, the extant entropy estimator from Ref. [39] de-
fined for resolved observed transition is not applicable. As this
result implies that the formulation of any direct waiting time
based entropy estimator most likely will fail, we have proven a
complementary bound based on the log-sum inequality which
reduces to an operationally accessible entropy estimator. Fur-
thermore, we have illustrated the operational relevance of this
estimator with various examples.

Future work could address the following issues. So far,
the effective description is formulated for partially accessible
Markov networks, which implies that its range of applicability
is restricted to discrete systems. Generalizing the concept
of transition classes to continuous degrees of freedom is
therefore a possible next step. This generalization could ad-
ditionally lead to an entropy estimator for the continuous
analog of blurred transitions. Similarly, the description can
potentially be generalized to systems which are not in a NESS,
for example to systems with time-dependent driving. Our
coarse-graining procedure leads to another open question. As
state lumping is only one established coarse-graining scheme
out of many, the extension of other schemes to the space of
observable transitions might be possible as well. Assuming
that these extensions lead to analogous bounds with a different
range of validity, it might be possible to infer the realized
coarse-graining in an observed systems based on the satura-
tion or violation of the respective bounds.
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