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Critical Casimir effect in a disordered O(2)-symmetric model
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The critical Casimir effect appears when critical fluctuations of an order parameter interact with classical
boundaries. We investigate this effect in the setting of a Landau-Ginzburg model with continuous symmetry in
the presence of quenched disorder. The quenched free energy is written as an asymptotic series of moments of
the model’s partition function. Our main result is that, in the presence of a strong disorder, Goldstone modes
of the system contribute either with either an attractive or a repulsive force. This result was obtained using
the distributional zeta-function method without relying on any particular ansatz in the functional space of the
moments of the partition function.
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I. INTRODUCTION

Quantum fields are mathematical objects that allow a
general description of the physical world. In the axiomatic
approach they are operator-valued generalized functions act-
ing over test function spaces [1,2]. Such a description leads
the local energy of quantum fields to attain negative values
[3]. In the presence of boundaries, negative local energies
generate attractive forces. This result, known in the literature
as the Casimir effect [4,5], manifests itself for all types of
fundamental fields, scalar, fermionic, and vector [6–9].

In an Euclidean functional integral description, due to the
randomness properties of quantum fields, they need to be
integrated over the functional space [10]. From such a func-
tional or classical probabilistic point of view, it is known
that if the mean of a nonzero random variable vanishes, their
variance differs from zero. This fact alone suffices to give rise
to Casimir forces. The physical reason behind the Casimir
effect can be traced to the presence of massless excitations
and the change of the thermodynamic equilibrium of the vac-
uum (state with zero number occupation) due to the presence
of boundaries that change the fluctuating spectrum of the
theory [11].

Holding the physical interpretation of the Casimir forces,
one can expect that a similar effect happens for critical
systems with infinite correlation lengths in the presence of
boundaries. Such a situation was discussed in fluids first by
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Fisher and de Gennes [12]. As a matter of fact, thermal fluc-
tuations can induce Casimir-like long-ranged forces in any
correlated medium, with a critical system being an example.
In such a situation the massless excitations are not associated
with photons but with some other quasiparticles, e.g., phonons
or Goldstone bosons. Such an effect is referred to as the crit-
ical or the thermodynamic Casimir effect. So far the critical
Casimir effect has enjoyed only a few reviews, e.g., those of
Refs. [13–17].

The quantum Nyquist theorem [18] allows one to identify
regimes where thermal fluctuations dominate over those of
quantum origin, with the possibility of systems becoming crit-
ical. Such situations are the subject of statistical field theory.
When a system reaches the critical regime, correlations be-
come long ranged and critical Casimir forces appear. Besides
thermal fluctuations, disorder fluctuations can also drive a sys-
tem to criticality [19]. A prototype model featuring disorder
fluctuations is a binary fluid in a porous medium [20], whose
critical behavior can be studied as a continuous field in the
presence of a random field. When the binary-fluid correlation
length is smaller than the porous radius, one has a system with
finite-size effects in the presence of a surface field. When the
binary-fluid correlation length is much larger than that of the
porous radius, the random porous can exert a random field
effect. In the latter case, introduction of boundaries gives rise
to the critical Casimir effect [15].

A similar scenario, but with a discrete symmetry, was
studied in Ref. [21]. The main result of that study was that a
change in the sign of the Casimir force can happen depending
on the ratio of the inverse of the correlation length and the
disorder strength. This result is analogous to the situation of
the electromagnetic Casimir effect which can change sign
depending on the ratio between the permeability and the
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dielectric constant [22]; disorder fluctuations lead to a Casimir
force that is attractive or repulsive. We would like to point
that there are some papers in the literature discussing the
critical Casimir effect with the disorder at the surface; see,
e.g., Refs. [23,24].

The purpose of this work is to revisit the Casimir effect
in disordered systems with a continuous symmetry. More
specifically, we consider continuous fields that model order
parameters possessing a continuous symmetry in scenarios
where the disorder fluctuations dominate over the thermal
fluctuations. Examples of systems realizing such a scenario
include a binary fluid in the presence of an external random
field in the critical regime, superfluids, and liquid crystals. In
such a situation, when the criticality is reached, one has to
take into account the soft modes (Goldstone bosons) due to the
symmetry breaking [25,26]. Another difference, and perhaps
a more technical one, is that in the approach that we adopt
here we do not choose any ansatz for the functional space in
the series of the quenched free energy. This procedure will
be clarified along the following sections. Our primary aim in
this work is to answer whether the soft modes associated with
the Goldstone boson favor or suppress the Casimir force and
whether they affect the sign of the force. The result that we
obtain for such a question is that the soft modes do not affect
the change of the sign of the force. However an interesting ef-
fect due to the disorder arises. In the regime of strong disorder,
where we only have the Casimir effect due the presence of the
soft mode, the Goldstone mode contribution may change from
attractive to repulsive. In other words, the presence of disorder
may change the sign of the “universal amplitude” due to the
Goldstone modes.

The paper is organized as follows. In the firsts two sec-
tions we introduce the two main mathematical tools utilized
in the paper. Section II presents the spectral zeta-function
regularization method and how one can use it to obtain the
Casimir energy of a system, while in Sec. III we introduce the
distributional zeta-function method to evaluate the quenched
free energy, revisiting the critical Casimir force due to the dis-
order. In Sec. IV we present our main results and calculations,
and Sec. V contains our main conclusions alongside future
perspectives.

II. CASIMIR ENERGY AND SPECTRAL
ZETA-FUNCTION REGULARIZATION

In quantum field theory, Casimir force can be computed by
analyzing either the local energy density [27–33] or the total
energy [34–36] of the quantized fields. In this section we study
the Casimir energy of a statistical field theory model describ-
ing a Gaussian scalar field φ(x1, . . . , xd ) in a slab geometry
with one compactified dimension, �L ≡ Rd−1 × [0, L]. For
simplicity, we assume Dirichlet boundary conditions:

φ(x1, . . . , xd−1, 0) = φ(x1, . . . , xd−1, L) = 0. (1)

We start discussing the scalar field satisfying Dirichlet bound-
ary conditions inside a box with sides L1, L2,...,Ld . The
partition function of the theory is

Z =
∫

�

[dφ] e− 1
2

∫
dd x φ(x)(−�+m2

0 )φ(x), (2)

where � in the integral specifies the space of fields satisfy-
ing the boundary conditions, [dφ] ≡ ∏

x∈� dφ(x) is a formal
measure over the space of functions �, −� is the Laplace
operator, and m2

0 the bare mass of the free field. Since the
action is quadratic in the fields, the functional integral can be
evaluated, yielding

Z = [
det
(− � + m2

0

)
�

]− 1
2 , (3)

where we omitted a normalization factor due to the total
volume of the functional space, and the symbol � indicates
the boundary condition under which the determinant must
be computed. Using the fact that a positive semidefinite self-
adjoint operator satisfies an eigenvalue equation, we can write
such a determinant as

det
(− � + m2

0

)
�

=
∞∏

i=1

λi, (4)

with the set of all λi being the spectrum defined by the
operator and its boundary condition. Equation (4) is for-
mally divergent and requires regularization. We use the
spectral zeta-function regularization method [37–41]. The
zeta-function regularization procedure is a special case of
analytic regularization. The use of the latter regularization
in Casimir effect was discussed in Refs. [42,43]. References
[44–47] compare results for the Casimir energy obtained with
an analytic regularization procedure and the traditional regu-
larization using cutoff.

To give a meaning to Eq. (4), one starts defining the spec-
tral zeta function, ζD(s), first for Re(s) > d/2 as

ζD(s) ≡
∞∑

i=1

1

λs
i

, (5)

where D specifies the differential operator under consider-
ation. Second, extend it analytically to a maximal domain.
Observe that zero belongs to its domain. Formally, from
Eq. (5),

d

ds
ζD(s)|s=0 = −

∞∑
i=1

ln λi. (6)

One can combine Eqs. (4) and (6) to write the partition func-
tion in Eq. (3) as

Z = exp

(
−1

2

∞∑
i=1

ln λi

)
= exp

(
1

2

d

ds
ζD(s)

∣∣∣∣
s=0

)
. (7)

To proceed with the calculations, we must construct the
appropriate ζD(s). It can be constructed by using the appropri-
ate spectral measure in the Riemann-Stieltjes integral. All the
information about the domain �L and the boundary conditions
are taken into account by the spectral measure. So in the
continuous limit, one obtains ζD(s) as

ζD(s) = Ad−1

(2π )d−1

∫
dd−1 p

∞∑
n=1

[
p2 + m2

0 +
(

πn

L

)2
]−s

,

(8)
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where p2 = p2
1 + · · · p2

d−1, and Ad−1 is the area of the hyper-
surface in d − 1 dimensions,

Ad−1 ≡
d−1∏
i=1

lim
Li→∞

Li, (9)

where such a limit must be understood as Li � L, ∀ i =
1, . . . , d − 1. From here on one could proceed with the exact
calculations of Ref. [38]; see also Ref. [48]. In the follow-
ing we introduce the calculation method we will use later
in Sec. IV. Such a method will reproduce the result in the
literature via direct calculations. To proceed, let us set

dd−1 p = 2π
d−1

2

�
(

d−1
2

) pd−2dp, (10)

and the Mellin representation of a−s,

a−s = 1

�(s)

∫ ∞

0
dt t s−1e−ta, (11)

to rewrite Eq. (8) as

ζD(s) = 2Ad−1π
d−1

2

(2π )d−1�
(

d−1
2

)
�(s)

(
L2

π

)s

×
∫ ∞

0
dt t s−1

∞∑
n=1

e−tn2π

×
∫ ∞

0
dp pd−2 exp

[−tL2

π

(
p2 + m2

0

)]
. (12)

The integration over the continuum modes can be readily
performed. Additionally, we set m2

0 = 0, because that is the
case where the Casimir force appears (infinite correlation
length), and rename ζD(s) → ζG(s), where G stands for Gold-
stone. Performing the integral, one obtains for ζG(s),

ζG(s) = Cd (L, s)
∫ ∞

0
dt t s− 1

2 (d+1)ψ (t ), (13)

where we have defined the following quantities:

Cd (L, s) ≡ Ad−1

(2L)d−1�(s)

(
L2

π

)s

, (14)

ψ (t ) ≡
∞∑

n=1

e−tn2π . (15)

As one can see, the contribution of ψ (t ) is rapidly decreasing
as t → ∞. However, depending on the values of s and d , there
are singularities at t → 0 that need to be taken care of. As
discussed in Ref. [38], the singularity can be removed assum-
ing the system is confined to a large, but finite, box, which
entails an infrared cutoff in the p integrals above. Instead of
introducing an explicit infrared cutoff, we extract the finite
part of the integral by using the following relations of ψ (t )
and the weight 1/2 modular form 
(t ) [49]:

ψ (t ) = 1
2 [
(t ) − 1], (16)

where


(t ) ≡
∑
n∈Z

e−tn2π and 
(1/t ) = √
t 
(t ). (17)

Combining the relation between ψ (t ) and 
(t ) together with
the modular property of 
(t ) we can write

ψ (1/t ) = t1/2ψ (t ) + 1
2 t1/2 − 1

2 . (18)

Now we can carry out the analytic continuation of Eq. (13)
with the change of variables t → 1/t and using Eq. (18),
which leads to

ζG(s) = Cd (L, s)

2

[
2IG

1,d (s) + IG
2,d (s) − IG

3,d (s)
]
, (19)

with IG
1,d , . . . being the integrals,

IG
1,d (s) =

∫ ∞

0
dt t

d
2 −s−1ψ (t ), (20)

IG
2,d (s) =

∫ ∞

0
dt t

d
2 −s−1, and, (21)

IG
3,d (s) =

∫ ∞

0
dt t

d
2 −s− 3

2 . (22)

The integral I1,d (s) is convergent for any values of s and d ,
whereas I2,d (s) diverges for Re(2s) < d and I (3)

d (s) diverges
for Re(2s) < d − 1. As can be checked in Eq. (14), we have
that Cd (L, s) → 0 as s → 0, which implies

dζG(s)

ds

∣∣∣∣
s=0

= 1

2

dCd (L, s)

ds

∣∣∣∣
s=0

× [
2IG

1,d (0) + IG
2,d (0) − IG

3,d (0)
]
. (23)

The integral IG
1,d (0) is finite, positive definite, and does not

depend on the distance of the plates L; it depends only on
the dimension d and can be performed analytically. On the
other hand, the divergent integrals IG

2,d (0) and IG
3,d (0) do not

depend on the distance between the plates and can be dropped,
considering that we have a large box, which implies a large,
but finite, wavelength, as argued in Ref. [38] and mentioned
above. Divergences would not appear if m0 	= 0. After some
simplifications one can obtain that

dζG(s)

ds

∣∣∣∣
s=0

= Ad−1

(2L)d−1
IG
1,d (0) = Ad−1

(2L)d−1

1

2π

∞∑
n=1

1

nd

= Ad−1

(2L)d−1

ζ (d )

2π
. (24)

Using that F = E − T S and the fact that T = 0 in our case,
one concludes that

Z = e−F = e−E ⇒ E = −1

2

dζG(s)

ds

∣∣∣∣
s=0

. (25)

Now we can define the energy density and find that

E

Ad−1
≡ εd (L) = − 1

2(2L)d−1

ζ (d )

2π
, (26)

which has, evidently, the correct sign and power law with L.
For d = 3, Eq. (26) results in

ε3(L) = − ζ (3)

16πL2
, (27)

which is the “universal” amplitude of the Goldstone modes
[25]. The reason for the quotation marks will become clear
at the end of this work. The Casimir force per unit of area
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(Casimir pressure) can be calculated as the negative of the
derivative with respect to L of Eq. (26).

In the next section we briefly review the technique that will
be used to take into account the disorder, the distributional
zeta-function method.

III. DISTRIBUTIONAL ZETA-FUNCTION METHOD

This section aims to review the distributional zeta-function
method [50,51], the method we used to obtain the disorder-
averaged free energy for a system described by statistical field
theory or Euclidean quantum field theory. To exemplify the
method, we use it to derive the Casimir force for a general
configuration of the field multiplets, without using a saddle
point approximation.

The partition function of the model for one disorder real-
ization in the presence of an external source j(x) is given by

Z ( j, h)=
∫

[dφ] exp

[
−S(φ, h)+

∫
dd x j(x)φ(x)

]
, (28)

where the action functional in the presence of additive (lin-
early coupled) disorder is

S(φ, h) = S(φ) +
∫

dd x h(x)φ(x). (29)

Here, S(φ) is the pure system action, and h(x) is a quenched
random field.

In a general situation, one can model a disordered medium
by a real random field h(x) in Rd with E[h(x)] = 0 and co-
variance E[h(x)h(y)], where E[· · · ] specifies the mean over
the ensemble of realizations of the disorder. Some works have
studied the case of a disorder modeled by a complex random
field; see Refs. [52,53] and Sec. IV. As in the pure system
case, one can define the system’s free energy for one disorder
realization W ( j, h) = ln Z ( j, h), the generating functional of
connected correlation functions for one disorder realization.
From W ( j, h) one can obtain the quenched free energy by
performing the average over the ensemble of all disorder
realizations:

E
[
W ( j, h)

] =
∫

[dh]P(h) ln Z ( j, h), (30)

where [dh] = ∏
x∈Rd dh(x) is a formal functional measure,

and [dh]P(h) is the probability distribution of the disorder
field.

For a general disorder probability distribution, the distribu-
tional zeta function, �(s), is defined as

�(s) =
∫

[dh]P(h)
1

Z ( j, h)s
. (31)

For s ∈ C, this function is defined in the region where
the above integral converges. One defines the complex ex-
ponential n−s = exp(−s log n) for log n ∈ R. As proved in
Refs. [50,51], �(s) is defined for Re(s) � 0. Therefore the
integral is defined in the half-complex plane, and an analytic
continuation is unnecessary. We have that

E[W ( j, h)] = − d�(s)

ds

∣∣∣∣
s=0+

, Re(s) � 0. (32)

Using the Euler’s integral representation for the γ function,
we get

�(s) = 1

�(s)

∫
[dh]P(h)

∫ ∞

0
dt t s−1e−Z ( j,h)t . (33)

The next step consists in expanding the exponential in the
integral in a power series. The series expansion has a uniform
convergence for each h in the domain t ∈ [0, a], where a is
a dimensionless arbitrary constant. We then split the integral
into two pieces, one that is uniformly convergent in the in-
terval t ∈ [0, a] for finite a, and one that becomes small for
a → ∞. The contribution from the first piece then becomes
a sum over all integer moments of the partition function,
E[Zk ( j, h)] = E [(Z ( j, h)) k], while the second vanishes ex-
ponentially for large a. Explicitly, the average free energy can
be represented by the following series of the moments of the
partition function:

E[W ( j, h)] =
∞∑

k=1

(−1)k+1ak

kk!
E [Zk ( j, h)]

− ln(a) − γ + R(a, j), (34)

where γ is the Euler-Mascheroni constant, and R(a, j) is
given by

R(a, j) = −
∫

[dh]P(h)
∫ ∞

a

dt

t
e−Z ( j,h)t . (35)

For large a, |R(a, j)| is small; therefore the dominant contri-
bution to the average free energy is given by the moments of
the partition function of the model.

For concreteness, we assume a Gaussian form for the prob-
ability distribution of the disorder field [dh] P(h):

P(h) = p0 exp

[
− 1

2ρ2

∫
dd x h2(x)

]
, (36)

where ρ is a positive parameter and p0 is a normalization
constant. In this case we have a δ-correlated disorder:

E[h(x)h(y)] = ρ2 δd (x − y). (37)

After integrating the disorder, one obtains that each moment
of the partition function E [Z k ( j, h)] can be written as

E [Z k ( j, h)] =
∫ k∏

i=1

[dφk
i ] e−Seff (φk

i , jk
i ), (38)

where Seff(φk
i , jk

i ) is obtained integrating over the disorder
field, a standard procedure in the literature [54,55]. In the
above equation the superscript k in φk

i identifies the term of
the series expansion given by Eq. (34), the subscript i is the
component of the kth multiplet, and

∏k
i=1[dφk

i ] represents a
product of formal functional measures. Also, from now on we
set jk

i (x) = 0 ∀ i and suppress its appearance as an argument
of the quantities of interest.

To proceed, we use a Ginzburg-Landau model with λφ4 in-
teraction. After performing the disorder average, one obtains

054108-4



CRITICAL CASIMIR EFFECT IN A DISORDERED … PHYSICAL REVIEW E 109, 054108 (2024)

the effective action:

Seff
(
φk

i

) =
∫

dd x
k∑

i=1

[
1

2
φk

i (x)
(−� + m2

0

)
φk

i (x)

− ρ2

2

k∑
i, j=1

φk
i (x)φk

j (x) + λ

4

k∑
i=1

(
φk

i (x)
)4

]
. (39)

The φ4 term is necessary to stabilize a ground state of the
system, since the disorder average introduces a negative con-
tribution, quadratic in the fields. For simplicity, we assume in
this section the ansatz φk

i (x) = φk
j (x) for the function space,

in which case the effective action becomes

Seff
(
φk

i

) =
∫

dd x
k∑

i=1

[
1

2
φk

i (x)
(−� + m2

0 − kρ2
)
φk

i (x)

+ λ

4

k∑
i=1

(
φk

i (x)
)4

]
. (40)

Such a simplified ansatz has been studied in several works
using this method [21,56–61] and leads to consistent results.
Very recently [62], we have shown that one can avoid such a
simplification and work with the full set of arbitrary field con-
figurations {φk

i (x)}. For now, to explain the zeta-distributional
method to compute the Casimir energy, we proceed with the
simplified ansatz.

One sees in Eq. (40) that there exists a combination of
m2

0, k, and ρ for which m2
0 − kρ2 < 0, signaling the spon-

taneous breaking of the discrete symmetry φk
i → −φk

j . As
usual, one can move from the “false” vacuum to the “true”
vacuum by an appropriate shift of the fields and identify the
mass in the Gaussian contribution to the action:

m2
ρ ≡ 2

(
kρ2 − m2

0

)
> 0. (41)

To discuss the Casimir energy, it is enough to consider the
Gaussian contribution. This is so because, as shown by sev-
eral studies within quantum-field-theory scenarios [63–66],
radiative corrections are always subleading compared to the
free-field contribution. Since the critical Casimir effect stud-
ied here is formally identical to the quantum scalar case, the
scenario is the same. Therefore, we drop the non-Gaussian
terms in the action. Now, compacting one dimension and
assuming Dirichlet boundary conditions, one can recast the
mean over the kth moment, Eq. (38), as

E [Z k (h)] =
[
det
(− � + m2

ρ

)
�L

]− k
2
. (42)

From now on, we consider the situation m2
ρ > 0. Using the

spectral zeta-function regularization, Sec. II, we can write the
functional determinant as

E [Z k (h)] = exp

[
k

2

d

ds
ζρ (s)|s=0

]
. (43)

The ζρ (s) can be constructed as

ζρ (s) = Ad−1

(2π )d−1

∫
dd−1 p

∞∑
n=1

[
p2 + m2

ρ +
(πn

L

)2
]−s

.

(44)

Following the same steps as those between Eqs. (8) and (23),
but for a nonzero mass, we obtain

dζρ (s)

ds

∣∣∣∣
s=0

= 1

2

dCd (L, s)

ds

∣∣∣∣
s=0

× [
2Iρ

1,d (0) + Iρ

2,d (0) − Iρ

3,d (0)
]
, (45)

with

Iρ

1,d (s) =
∫ ∞

0
dt t

d
2 −s−1e

−L2m2
ρ

πt ψ (t ), (46)

Iρ

2,d (s) =
∫ ∞

0
dt t

d
2 −s−1e

−L2m2
ρ

πt , (47)

Iρ

3,d (s) =
∫ ∞

0
dt t

d
2 −s− 3

2 e
−tL2m2

ρ

π . (48)

Since now we have a nonzero mass, all integrals are con-
vergent. Some care must be taken to define the energy of the
system. First of all, we recall that at zero temperature the
quenched free energy can be written as

Fq(L) = Eq(L) = −E[W ( j, h)]

=
∞∑

k=1

(−1)kak

kk!
E [(Z ( j, h)) k]. (49)

Using the previous results and exponentiating the ak , we
obtain the Casimir energy in the presence of quenched disor-
der. From now on we call such a quantity quenched Casimir
energy,

Eq(L) =
∞∑

k=kc

(−1)k

kk!
exp

[
k ln a + k

2

d

ds
ζρ (s)

∣∣∣∣
s=0

]
, (50)

with kc defined as

kc ≡
⌊

m2
0

ρ2

⌋
, (51)

where �x� is the greatest integer less than or equal to x.
Analyzing the behavior of the integrals, Eqs. (46)–(48),

it is immediate to see that for each k > kc the exponential
damping makes their contributions subleading. So the main
contribution in the expression for the Casimir energy will be

Eq(L) = (−1)kc

kckc!
exp

[
kc ln a + kc

2

d

ds
ζρ (s)

∣∣∣∣
s=0

]
. (52)

Clearly, from the last equation we can see the connection
between a and the thermodynamic limit: since ζρ (s) is an
extensive quantity, a must be chosen to maximize the expo-
nential. Therefore the Casimir force is given by

fd (L) ≡ −∂Eq(L)

∂L
= (−1)kc+1

2kc!

∂

∂L

d

ds
ζρ (s)|s=0. (53)

With the results obtained up to now, we have that

fd (L) = Ad−1

2d+1

(−1)kc+1

kc!

×
{
− 1

Ld

[
2Iρ

1,d (0) + Iρ

2,d (0) − Iρ

3,d (0)
]

+ L1−d

d − 1

∂

∂L

[
2Iρ

1,d (0) + Iρ

2,d (0) − Iρ

3,d (0)
]}

. (54)
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The derivative of Iρ

i,d deserves a closer look. All of those in-
tegrals have an exponential which depends on L2, and thanks
to the exponential and the ψ (t ) term, their derivatives with
respect to L/2 do not change their convergence properties.
In a power series expansion in L/2, the contribution of the
second term of Eq. (54) has a global contribution proportional
to −L2−d , which ensures that such a contribution is the leading
one in powers of L/2. Now, defining the quenched Casimir
pressure as the quenched Casimir force per unit area (d − 1
volume), we can write

pd (L) = (−1)kc

2d+1kc!Ld

[
L2

d − 1
Bd (0) + Dd (0)

]
, (55)

where Bd (0) and Dd (0) are defined by

Bd (0) ≡ − 1

L

∂

∂L

[
2Iρ

1,d (0) + Iρ

2,d (0) − Iρ

3,d (0)
]
, (56)

Dd (0) ≡ 2Iρ

1,d (0) + Iρ

2,d (0) − Iρ

3,d (0), (57)

which are positive constants. Clearly, for m2
ρ = 0 the Bd (0)

vanishes and the well-known behavior is recovered. The most
interesting feature of Eqs. (53) and (55) is the fact that the
factor of (−1)kc can change the force or pressure from repul-
sive to attractive depending on the values of m2

0 and ρ2. In
the next section we further explore such a feature. Alongside
considering the breaking of a continuous symmetry breaking,
which creates soft modes in the system, we also do not make
any ansatz over the function space.

IV. INTERPLAY BETWEEN SOFT AND CRITICAL MODES

In order to verify and go beyond the results of Ref. [21], we
now consider a system with a continuous symmetry U (1) ∼=
O(2). Another difference will be in the function space that we
obtain after taking the average of the logarithm of the partition
function. To start, let us consider the action

S(φ, φ∗) = 1

2

∫
dd x
[
φ∗(x)

(−� + m2
0

)
φ(x) + λV (φ, φ∗)

+ h∗(x)φ(x) + h(x)φ∗(x)
]
; (58)

as before, m2
0 is the bare mass, λ is a strictly positive constant,

and V (φ, φ∗) is a polynomial in the field variables. Here
we would like to point out that in the case of interacting
field theories confined in compact domains, is necessary to
introduce surface counterterms [67–71]. The main difference
here is that h(x) is now a complex random field [52,53,72],
with a probability distribution P(h, h∗). Again, to simplify the
problem, we consider a Gaussian distribution

P(h, h∗) ≡ p0e
− 1

ρ2

∫
dd x|h(x)|2

. (59)

The kth moment in the series, Eq. (38), with j(x) = 0, gener-
alizes to

E[Zk (h)] =
∫ k∏

i, j=1

[
dφk

i

][
dφk∗

j

]
e−Seff (φk

i ,φk∗
j ), (60)

with

Seff
(
φk

i , φ
k∗
j

) =
∑
i, j

[
S0
(
φk

i , φ
k∗
j

)+ λSI
(
φk

i , φ
k∗
j

)]
. (61)

Here, S0(φk
i , φ

k∗
j ) is the quadratic action:

S0
(
φk

i , φ
k∗
j

) = 1

2

∫
dd x φk∗

i (x)
(
G0

i j − ρ2
)
φk

j (x), (62)

in which, for later convenience, we defined

G0
i j ≡ (−� + m2

0

)
δi j, (63)

and SI (φi, φ
∗
j ) is the interaction action corresponding to

V (φ, φ∗). The propagator corresponding to S0(φi, φ
∗
j ) is not

diagonal in the (i, j) space. Such a nagging feature has been
previously dealt with in different ways in the literature. For
example, one can work with a nondiagonal propagator, as in
some of the minimal supersymmetric standard model exten-
sions [73,74], or one can use a Hubbard-Stratonovich identity
as in the Bose-Hubbard model [75]. Still another way is to use
the ansatz φk

i = φk
j , as discussed in the last section. Although

such an ansatz leads to consistent results, it is an unnecessary
simplification, as one can use the spectral theorem of lin-
ear algebra to formally diagonalize the propagator [62]. This
diagonalization is a new development in the distributional
zeta-function method, introduced in Ref. [62] in a different
context.

The diagonalization proceeds as follows. We define the
matrix of the k × k propagator as

G ≡

⎡
⎢⎢⎢⎢⎣

G0
11 − ρ2 −ρ2 · · · −ρ2

−ρ2 G0
22 − ρ2 · · · −ρ2

... · · · . . .
...

−ρ2 −ρ2 · · · G0
kk − ρ2

⎤
⎥⎥⎥⎥⎦

k×k

, (64)

where G0
i j was defined in Eq. (63). Since G is a symmetric

matrix, it can be diagonalized by an orthogonal matrix S
whose columns are the eigenvectors of G:

D = 〈S, GS〉, (65)

where 〈, 〉 denotes the natural inner product in (i, j) space,
and D is the (diagonal) matrix of eigenvalues of G. Using the
vector �(x) as the vector which has components φi(x), we can
rewrite the sum of the quadratic actions as

k∑
i, j=1

S0(φi, φ
∗
j ) = 1

2

∫
dd x 〈�(x), G�∗(x)〉

= 1

2

∫
dd x 〈�̃(x), D�̃∗(x)〉, (66)

where �̃(x) = S�(x) and

D =

⎡
⎢⎢⎢⎢⎣

G0
11 − kρ2 0 · · · 0

0 G0
22 · · · 0

... · · · . . .
...

0 · · · G0
kk

⎤
⎥⎥⎥⎥⎦

k×k

. (67)

The matrix S can be calculated exactly; due to the degeneracy
of the spectrum, there are many matrices that diagonalize G.
The components of �̃(x) will be given by a linear combination
of the φi(x) determined by S. Let ϕi(x) denote the components
of �̃(x) by ϕi(x). Using the component notation, one can write
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the diagonal form of the quadratic action in Eq. (66) as

k∑
i, j=1

S0(φi, φ
∗
j ) = 1

2

∫
dd x ϕ∗(x)

(− � + m2
0 − kρ2

)
ϕ(x)

+ 1

2

k−1∑
a=1

∫
dd x ϕ∗

a (x)
(− � + m2

0

)
ϕa(x),

(68)

where, to simplify the notation henceforth, we defined
ϕ1(x) ≡ ϕ(x) and also changed the dummy index in the sec-
ond line. Since S is an orthogonal matrix, one has that

k∏
i, j=1

[dφi][dφ∗
j ] = [dϕ][dϕ∗]

k−1∏
a,b=1

[dϕa][dϕ∗
b ]. (69)

Therefore, inserting Eqs. (68) and (69) into Eq. (60), we
obtain

E[Zk (h)] =
∫

[dϕ][dϕ∗]
k−1∏

a,b=1

[dϕa][dϕ∗
b ]

× e−Sρ (ϕ,ϕ∗ )−∑a SO (ϕa,ϕ
∗
a )−λSI (ϕa,ϕ

∗
a ), (70)

where Sρ (ϕ, ϕ∗) is the action carrying the information on the
strength ρ of the disorder,

Sρ (ϕ, ϕ∗) = 1

2

∫
dd x ϕ∗(x)

(−� + m2
0 − kρ2

)
ϕ(x), (71)

and SO(ϕa, ϕ
∗
a ) is a O(k − 1)-symmetric action, independent

of the disorder, given by

SO(ϕa, ϕ
∗
a ) = 1

2

∫
dd x ϕ∗

a (x)
(− � + m2

0

)
ϕa(x). (72)

The action SI (ϕa, ϕ
∗
a ) will not be needed in our study of the

Casimir effect, but its presence with a λ > 0 is required to
guarantee the action boundness. Its explicit expression is read-
ily obtained by replacing � in the original action by �̃ = S�.

We proceed recalling that each moment of the parti-
tion function contributes to the total quenched free energy,
Eq. (34). To obtain the Casimir energy, we make one of the
dimensions compact, Rd → Rd−1 × [0, L], and impose some
boundary conditions. As can be seen in Eq. (71), there is
a combination of k, m2

0, and ρ for which the effective mass
m2

0 − kρ2 becomes negative, indicating the symmetry break-
ing U (1) → Z2, giving rise to a Goldstone (soft) mode. Of
course, the Casimir force is present even for those terms in
the sum with a positive effective mass, as the condition for
its presence is that the correlation length becomes of the
order of the system’s compactified size L. That is, the total
energy receives contributions from symmetry-preserving and
symmetry-breaking terms. Our interest in this work is to study
the interplay between the contributions to the energy of the
symmetry-breaking soft mode and the critical mode, both
induced by the disorder. Therefore we neglect the symmetry-
preserving modes. We assess this interplay by first performing
a shift in the field ϕ(x) to expose the symmetry breaking and
then neglect all non-Gaussian terms, and finally, take the large
L limit.

We perform the symmetry-breaking field shift for the
situation with m2

0 − kρ2 < 0 in Eq. (71). In the Cartesian
representation of the fields ϕ(x) and ϕ∗(x) we have that

ϕ(x) = 1√
2

[ψ1(x) + iψ2(x)], (73)

ϕ∗(x) = 1√
2

[ψ1(x) − iψ2(x)]. (74)

The minima of the action lie on the circle

ψ2
1 + ψ2

2 = 2
(
kρ2 − m2

0

)
λ

≡ v2. (75)

Defining the shifted fields χ = ψ1 − v and ψ = ψ2, the Gaus-
sian part of the action becomes

Sρ (χ,ψ ) = 1

2

∫
dd x
[
χ (x)

(−� + m2
ρ

)
χ (x)

+ ψ (x)(−�)ψ (x)
]
, (76)

where we defined m2
ρ = 2(kρ2 − m2

0 ). In the new variables,
after dropping all non-Gaussian terms, Eq. (70) assumes the
following enlightening form:

E[Zk (h)] = ZρZG[ZO]k−1, (77)

where

Zρ =
∫

[dχ ] e− 1
2

∫
dd x χ (x)(−�+m2

ρ )χ (x), (78)

ZG =
∫

[dψ] e− 1
2

∫
dd x ψ (x)(−�)ψ (x), (79)

ZO =
∫

[dϕ][dϕ∗] e− 1
2

∫
dd x ϕ∗(x)(−�+m2

0 )ϕ(x), (80)

where the partition functions are respectively the contributions
of the disorder, the Goldstone mode, and an O(k − 1) sym-
metric model.

Now, we take a slab geometry with one compactified
dimension, �L = Rd−1 × [0, L], and impose Dirichlet bound-
ary conditions to all fields:

Aα (x1, . . . , xd−1, 0) = Aα (x1, . . . , xd−1, L) = 0, (81)

with α = {ρ, G, O} and {Aρ, AG, AO} = {χ,ψ, ϕ} respec-
tively. Using the result in Eq. (3) for each of the partition
functions in Eqs. (78), (79), and (80), we obtain for the kth
moment of the partition function, Eq. (77), the following
expression:

E[Zk (h)] = [
det
(− � + m2

ρ

)
�L

]− 1
2 [det(−�)�L ]−

1
2

× [
det
(− � + m2

0

)
�L

]− k−1
2 . (82)

The last term contributes neither to the critical nor to the soft
Goldstone modes. As such, it can be dropped by redefining
the energy.

The relevant contributions to the Casimir energy can be
regularized using the spectral zeta regularization,

E[Zk (h)] = exp

{
1

2

d

ds
[ζρ (s) + ζG(s)]

∣∣∣∣
s=0

}
. (83)

By the same arguments used to obtain Eq. (52) in the previous
section, one concludes that the main contribution to the total
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FIG. 1. Plot of the quenched Casimir pressure, Eq. (91), for
dimensions 2,3, and 4, and kc = 2, and 3.

quenched Casimir energy is given by

ET
c = (−1)kc

kckc!
exp

{
kc ln a + 1

2

d

ds
[ζρ (s) + ζG(s)]

∣∣∣∣
s=0

}
. (84)

We define the following zeta function,

ζα (s) = Ad−1

(2π )d−1

∫
dd−1 p

∑
n=1

[
p2 + m2

α +
(πn

L

)2
]−s

,

(85)
with α = {ρ, G} and m2

G = 0. Using the same definitions and
arguments in Sec. II, one can rewrite ζα (s) as

ζα (s) = Cd (L, s)
∫ ∞

0
dt t s− 1

2 (d+1)e
−tL2

π
m2

αψ (t ). (86)

Following the same steps taken between Eqs. (13) and (19), it
is straightforward to obtain that

ζα (s) = Cd (L, s)
[
2Iα

1,d (s) + Iα
2,d (s) − Iα

3,d (s)
]
, (87)

where

Iα
1,d (s) =

∫ ∞

0
dt t

d
2 −s−1e

−L2

πt m2
αψ (t ), (88)

Iα
2,d (s) =

∫ ∞

0
dt t

d
2 −s−1e

−L2

πt m2
α , (89)

Iα
3,d (s) =

∫ ∞

0
dt t

d
2 −s− 3

2 e
−tL2

π
m2

α . (90)

One obtains the quenched Casimir force analogously to
Eq. (54). Such a force receives contributions from the spectral
zeta functions of soft and critical modes. In the case of α = G
we have the same situation of Sec. II for m0 = 0, i.e., the
contribution of the soft modes to the Casimir force is given by
Eq. (24). For α = ρ, we have the calculation of Sec. III, and
the corresponding contribution is given by Eq. (45). Putting
this all together, we obtain for the total quenched Casimir
pressure of the system the following expression:

pT
d (L) = (−1)kc

kckc!2d−1Ld

[
L2

d − 1
Bd (0) + Dd (0) + ζ (d )

2π

]
. (91)

Such a result can be plotted as function of L for different
dimensions and values of kc. Figures 1 and 2 a display pT

d (L)

FIG. 2. Plot of the quenched Casimir pressure, Eq. (91), for
dimensions 2,3, and 4, and kc = 4, and 5.

for dimensions 2, 3, and 4 for different values of kc. Note the
different scales in the axes of the two figures.

This result has some interesting features. First of all, if we
ignore the Goldstone mode contributions, the resulting equa-
tion differs from Eq. (55) by a multiplicative factor, 4/kc. This
factor comes from the exact diagonalization of the quadratic
actions; when one uses the ansatz φk

i (x) = φk
j (x) ∀ i, j, as

used in Sec. III, the multiplicative factor does not appear. Of
course, such a difference is irrelevant to gathering qualitative
understanding. However, the qualitative similarity between
the results holds only when one can neglect the contribution
from the partition function ZO, Eq. (80). This is the case
whenever the corresponding action does not reach criticality,
a situation that can occur due to nonzero temperature or finite-
size effects. Another feature of Eq. (91) is that the critical
and the soft mode effects are noncompetitive, they are of the
same sign. Still another interesting feature is that when kcρ �
m2

0, one can neglect the contribution of Zρ , Eq. (78), to the
Casimir energy; in practice, one can set Bd (0) = Dd (0) = 0
in Eq. (91). This is interesting because then only soft modes
contribute but with a factor proportional to (−1)kc , which
means that a change of sign may occur. In other words, there is
a universal constant due to the soft modes, given by ζ (3)/16π ,
with an overall sign that can be either negative (as usual) or
positive, depending on the value of kc.

V. CONCLUSIONS

In this work we analyzed the interplay in the Casimir
energy between the soft modes from the breaking of a con-
tinuous symmetry, and the critical modes, due to a disorder
linearly coupled to a complex scalar field. We found that both
modes always have a cooperative effect, making the quenched
Casimir pressure stronger. More interesting, we have seen
that in the scenario of a strong disordered system, the Gold-
stone mode contribution to the pressure can be either positive
or negative, depending on the ratio between the strength of
disorder and mass parameter. This fact can be relevant in
stability analyses of systems at nanoscale, where those effects
are expected to be larger than 1 atm [16].

From a technical point of view, in this work we made use
of a significant improvement on the application of the zeta
distributional method regarding the functional space of fields.
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The functional space is ansatz-free in the sense that we have
not made any special choices of the fields in the nondiag-
onal effective action resulting from the disorder averaging.
Moreover, we have made use of the spectral theorem of linear
algebra to formally diagonalize the effective action in the full
functional space. These features seem to be applicable to any
Gaussian theory, bosonic or fermionic.

Further topics in the critical Casimir effect in disordered
systems which deserve attention include analyses on how
boundary shape and temperature and/or finite-size effects
may affect the procedure that we described here. In ad-
dition, it would be interesting to extend the “ansatz-free”
approach to interacting field theories, both for additive and
multiplicative disorder. These subjects are under investigation
by the authors.
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