
PHYSICAL REVIEW E 109, 054106 (2024)

Stochastic pairwise preference convergence in Bayesian agents
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Beliefs inform the behavior of forward-thinking agents in complex environments. Recently, sequential
Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical
conditions. However, we lack critical theory to explain how preferences evolve in cases of simple agent
interactions. In this paper, we derive a Gaussian, pairwise agent interaction model to study how preferences
converge when driven by observation of each other’s behaviors. We show that the dynamics of convergence
resemble an Ornstein-Uhlenbeck process, a common model in nonequilibrium stochastic dynamics. Using
standard analytical and computational techniques, we find that the hyperprior magnitudes, representing the
learning time, determine the convergence value and the asymptotic entropy of the preferences across pairs of
agents. We also show that the dynamical variance in preferences is characterized by a relaxation time t � and
compute its asymptotic upper bound. This formulation enhances the existing toolkit for modeling stochastic,
interactive agents by formalizing leading theories in learning theory, and builds towards more comprehensive
models of open problems in principal-agent and market theory.
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I. INTRODUCTION

Belief formation is essential for studying behavior in the
social and cognitive sciences. In noisy environments, empiri-
cal beliefs are formed through observation [1] and probabilis-
tically predict future states to optimize energy costs [2]. Belief
dynamics are critical for modeling how agents interact strate-
gically in varying socioeconomic contexts (through games),
navigate uncertainty, and make decisions under imperfect in-
formation. However, there remain questions about how beliefs
evolve in complex social environments such as networks [3]
and markets [4], where the fluctuating beliefs (or perception
of others’) of asset values subject markets to intense volatility
[5] and divergent valuations [6].

Several learning models have emerged to explain the for-
mation of beliefs in stochastic multiagent games [7], including
frequentist and regression approaches [8,9]. Reinforcement
learning (RL) models are widely used and have intuitive
descriptions [10,11], but they do not produce closed-form
solutions to dynamics of agent preferences [12], hampering
the search for generalizable results. These models are gener-
ally outperformed by learning frameworks based on Bayesian
inference (BI) [13–15], where agents process information to
inform history-dependent, optimally predictive, and (in some
cases) analytically tractable models of their environment. BI
has thus become foundational in human cognition [16–19],
and in studying adaptive agent behavior in models of wealth
and inequality [20,21], social dynamics [22], and coordinated

*These authors contributed equally to this work.

action [23,24]. Additionally, Bayesian reversal learning has
emerged as a more efficient alternative to RL in more realis-
tic, nonstationary environments [25] where discerning signal
dynamics from noise is difficult [26,27].

Solutions to closed-form belief dynamics in station-
ary environments have contributed to a growing literature
[13,20,28]. However, they are not suitable for studying con-
vergence in interacting models where signals are dynamic
[29,30]. Studying pairwise dynamics in Gaussian models, for
which analytical descriptions of distribution parameters ex-
ist [31], closes this theoretical gap while opening the door
towards characterizing emergent population preference dy-
namics [6,32]. We can accomplish this using established
methods in nonequilibrium statistical physics, where the rela-
tionship between BI and Ornstein-Uhlenbeck (OU) processes
as noisy, mean-reverting processes with memory is well ex-
plored [33–35]. In the case of sequential Bayesian estimation,
this analysis can be used to study how convergence time
relates to behavioral properties.

In this paper, we propose a model for the statistical dy-
namics of two agents’ preferences under Bayesian adaptation
to another’s behavior. By treating behaviors as a Gaussian-
distributed quantity, we can study the dynamics of preferences
through the coupled Markov dynamics of its first-order mo-
ments. We first show that in the absence of noise, the
asymptotic preferences of the agents converge to one another
both to a relative value and on a timescale set by the rel-
ative strength of their priors. Later, we introduce noise and
show how the dynamics resemble an OU process with time-
rescaling noise. Using the Fokker-Planck equation (FPE),
we then show that the preferences converge to a stationary
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distribution with a width set by the uncertainty in their behav-
ior and with dynamics governed by a relaxation time, t�. We
conclude by discussing how convergence can be broken by
introducing unpredictable behavioral shocks and the model’s
implication for studying belief formation in a host of game-
theoretical and principal-agent problems.

II. BAYESIAN PREFERENCE DYNAMICS

Consider agents A and B, who at time-step i exhibit a statis-
tically distributed, real-valued behavior xi ∈ X and yi ∈ Y . We
denote the normalized distribution of their decisions Pi(X |θA)
and Pi(Y |θB), parameterized by behavioral parameters θA, θB.
Consider that the agents can learn each other’s behavior and
are motivated to align their decisions (e.g., [xi − yi]2 is min-
imized) but cannot directly coordinate their actions before
observation. While coordination can be accomplished by con-
ditioning behavior on some shared signal [23], this would not
change the general dynamics and is excluded for brevity.

Each agent infers the other agent’s preferences by ob-
serving their cumulative noisy behavior and adjusting their
preferences to match. By preferences, we mean the first mo-
ment of the distribution of behaviors that spans the agent’s
set of choices. This particular setup is motivated by open
questions in principal-agent problems, where agents must co-
ordinate their behavior through adaptation [36].

History-dependent learning is accomplished optimally
through BI [20]. As such, the distribution of agent A’s be-
haviors at i = 0 forms a prior for their guess of B′s, P(X =
x) ≡ P0(Ỹ = x), for approximated behavior Ỹ (and X̃ for B).
The distribution of decisions at later interactions is given by a
posterior Pi(Ỹ |{yi}), where the decision is conditioned on the
history of B’s behavior [37]. After n steps, agent A’s posterior
is given by (and B by analogy)

Pn(ỹ|{yi}, θA) =
[

n∏
i=1

P(yi|ỹi )

P(yi )

]
P(x|θA). (1)

In sequential BI, an agent’s behavior at step n follows a
Markov process and is sampled from Pn−1. This process is
illustrated in Fig. 1, where L denotes the likelihood given the
evidence.

In this paper, we assume the behaviors are instantaneously
described by Gaussian distributions with gamma-distributed
priors, x ∼ N (μx, σx|θx ) and y ∼ N (μy, σy|θy), where θ is
the gamma prior vector. The means μx, μy, describe the
agents’ preferences, whereas the fluctuation in true behavior
is given by the Gaussian standard deviations σx, σy.

BI on this choice of distribution results in preference dy-
namics that are linear [31]. Therefore, we first study the
dynamics of the preference averages, then later consider
how noisy behavior couples into the preference variances.
The following analysis gives a first-order approximation of
the complete behavior (vis a vis the preferences) under
BI, whereas dynamics of higher order naturally come from
higher-order moments and their couplings. In this paper, we
will assume σx = σy and leave the dynamics of the standard
deviations under BI for future work.

FIG. 1. Diagram of the interaction model. Agents A and B sam-
ple behaviors x ∈ X and y ∈ Y from respective distributions. Agent
A updates their prior θA with the evidence L(y|θa ) from B’s behavior,
and vice versa.

A. Deterministic dynamics

First, we will study the dynamics of the preference param-
eter in the absence of noise. The rule for updating the mean
parameter of a Gaussian-gamma model under BI is described
recursively after n steps as (Appendix A) [31]

μn
x = μn−1

x

(
n−1
ω

+ α
) + μn−1

y
n
ω

+ α
, μ1

x = αx0 + y0

1 + α
,

where ω = n/t is the interaction rate. In the continuous limit
ω → ∞, μx and μy become coupled by the linear differential
equations

∂μx

∂t
= μy(t ) − μx(t )

t + α
,

∂μy

∂t
= μx(t ) − μy(t )

t + β
, (2)

where x0, y0 are the initial preferences and α, β are the hy-
perprior magnitudes with units t . Denoted the learning times,
these parameters measure how resilient the preferences are to
new evidence. These equations say that the dynamics of the
preference parameters μx, μy decrease as the quantities con-
verge in time. We demonstrate this by constructing the ODE
for the difference measure 	(t ) = μx(t ) − μy(t ) [correspond-
ingly 
(t ) = μx(t ) + μy(t )], with solution (Appendix A 1)

	(t ) = 	0αβ

R(t )
, (3)

where 	0 = x0 − y0, and R(t ) = (α + t )(β + t ) is the time
rescaling coefficient. This shows intuitively that the agents’
preferences converge with power law −2 in time that in-
creases symmetrically as α, β → ∞, and agent learning times
increase.

With intuition for the coupled system established, we
can now study the dynamics of the full system. There ex-
ist two solutions to Eq. (2) given by the equality of the
learning times. First, when α = β, the dynamics have the
asymptotically symmetric solution f (x0, y0, t ) = μx(t ) and
f (y0, x0, t ) = μy(t ), where f is defined as

f (x0, y0, t ) = 2α2x0 + (2αt + t2)(x0 + y0)

2(α + t )2
. (4)
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FIG. 2. Behavior of the noiseless model in Eq. (2) with x0 =
1, y0 = 5. Top: Convergence values computed from Eq. (5) for
variable β (left) and variable α (right) for constant reference agent
(α, β = 5), represented by dashed lines. Bottom: Asymptotic frac-
tional drift computed from (6) on a logarithmic parameter scale.

It follows that lim
t→∞ f = (x0 + y0)/2, and both agents’ pref-

erences converge to the average of their initial preferences
asymptotically at times t � 2α.

In the case α 	= β, the solution for μx is given by

μx(t ) = αx0

α + t
+ αβ(x0 − y0)

(α − β )2
K (t ) + t (αx0 − βy0)

(α − β )(α + t )
, (5)

where K (t ) = ln [ αβ+βt
αβ+αt ] is a dynamical value with

lim
t→∞ K (t ) = ln[β/a]. As we would expect, μx(0) = x0

and at long times, μx(t ) → s, where s is the weighted average
between the initial values:

s ≡ x0[α/β + ln[β/α] − 1] + y0[β/α − ln[β/α] − 1]

(α − β )2/αβ
.

The solution for μy(t ) is given in the Appendixes, with
μy(t ) → s asymptotically. These results are demonstrated at
the top of Fig. 2 for various learning times, with y0 = 5
and x0 = 1. In matrix form, these dynamics are given by
M[x0, y0] ≡ [x(t ), y(t )], where the drift matrix is

M = αβ

α − β

(
M2(t ) − M1(0) M2(0) − M2(t )
M1(t ) − M1(0) M2(0) − M1(t )

)
,

M1(t ) = K (t ) − 1
(t+α) , M2(t ) = K (t ) − 1

(t+β ) .

This invertible matrix has a nonzero determinant det[M(t )] =
αβ/R(t ). As we will see, this gives the constant of motion for
constructing exact solutions for the dynamics of the system
with noise [38].

1. Asymptotic preference behavior

Conveniently, the asymptotic preference value can be ex-
pressed independently of the initial condition, allowing us
to compute the relative shift in preferences as a function of
learning times. Consider the initial parameter difference 	0,
and the difference in asymptotic value from the initial param-
eter δx = x0 − s. The fractional similarity of X is given by
fx = 1 − δx/	0. This expresses how close X has remained to
x0 relative to y0, and is useful for measuring the change in
preferences of an agent represented by X (and Y by analogy).
It is given by

fx = 1 − αβ
β/α − ln(β/α) − 1

(α − β )2
, fy = 1 − fx. (6)

These fractional limits are demonstrated in the bottom of
Fig. 2 over various learning times.

So far, we have explored the dynamics of this model with-
out noise, and have shown that both preference parameters
converge to a value set by the relative magnitude of the learn-
ing times. We have shown that the deterministic dynamics
are isomorphic and that we glean useful information about
the relative change in preference between the agents without
knowledge of the initial conditions. These results establish
intuition for how, on average, agent characteristics determine
the convergence process. In the following section, we will
introduce noise to the inference process and demonstrate a
procedure for constructing exact solutions using the linear and
isomorphic properties of the dynamics. While this procedure
results in lengthy analytical solutions that are not explored, we
will demonstrate some key insights from the coupled dynam-
ics, 	(t ), 
(t ).

B. Full dynamics under noisy sampling

We introduce noise by rewriting Eq. (2) as the stochastic
differential equations on quantities Xt ,Yt ,

dXt = σy

t + α
dW2,t − 	t

t + α
dt, dYt = σx

t + β
dW1,t + 	t

t + β
dt,

with boundary conditions X0 = x0,Y0 = y0. We have intro-
duced white Gaussian noise (WGN) processes, dW1,t , dW2,t

with magnitudes σx, σy that describe i.i.d fluctuations in agent
behavior. Recalling previously that the asymptotic preferences
depend on the initial conditions, we note that while the dy-
namics of the SDEs are Markovian, they cannot be ergodic.
The dynamics of both preferences behave like OU processes,
as the magnitude of the attractive drifts increases with the
magnitude of the difference. However, this OU process is
time inhomogeneous, as the magnitude of all dynamics decay
with a power law in time. We interpret these dynamics in
terms of the underlying BI process. The rate of parameter
convergence slows as the agents converge in parameter value,
and the effect of each interaction decreases in time as the
agent weighs cumulatively larger sums of evidence. At long
times, when preferences have nearly converged and have ac-
cumulated lengthy histories, small fluctuations dominate the
dynamics.

To explore the statistics of the two-dimensional process, we
define the bivariate transition probability distribution (TPD) as
P(x, y, t |x0, y0). The evolution for this distribution is given by
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the FPE, ∂t P(x, y, t |x0, y0) = F[P], where F[·] is defined:

F[·] = ∂x

(
y − x

t + α
[·]

)
+ ∂y

(
x − y

t + β
[·]

)

+ σ 2
y

2(t + α)2
∂xx[·] + σ 2

x

2(t + β )2
∂yy[·]. (7)

One can marginalize the distribution for x, PM (x, t |x0) =∫
R P(x, y, t |x0, y0)dy, and by analogy, y. To solve these equa-

tions exactly, we transform the set of equations into the frame
of constant motion, defined by M(t ), in which the process is
purely diffusive and described by a Gaussian. In this frame,
solutions for the dynamics of PM (x, t ) and PM (y, t ) are ex-
actly solvable [38]. However, this procedure does not lead to
concise results and is detailed only in the Appendixes.

As in the deterministic case, we glean tractable insights
into the dynamics by solving the FPE for the coupled system,
Xt → 	t = Xt − Yt , Yt → 
t = Xt + Yt . In the following sec-
tion, we will use an exact solution of the FPE to show how
the mean and variance of the TPD of 	t converges to zero,
encoding the system’s entropy into 
t . We will conclude this
work by approximating an upper bound for the asymptotically
stationary variance of 
(t ).

C. Solutions of the FPE for coupled dynamics

In terms of the original model parameters, the new SDEs
are

d	t =
√

σ 2
y (t + β ) + σ 2

x (t + α)

R(t )
dW ′

1,t − 2t + α + β

R(t )
	t dt,

d
t =
√

σ 2
y (t + β ) + σ 2

x (t + α)

R(t )
dW ′

2,t + α − β

R(t )
	t dt, (8)

where the dW ′ terms are now correlated WGN processes.
Again, we see that the difference equation behaves like an OU
process, where drift is set by the difference in preferences,
with time-rescaling noise. In this sense, 
t does not couple
into the dynamics of 	t , permitting us to solve for the statis-
tics of 	t first, then 
t .

1. The difference equation

In these coordinates, the statistics of 	t are fully de-
scribed by the TPD P	(z, t |z0, 0) = Prob{z � 	t � (z +
dz)|z0}, which solves the FPE

∂t P	 = ∂z

[
2t + α + β

R(t )
zP	

]
+ D(t )∂zzP	, (9)

where the diffusivity D(t ) = σ 2
y (t+β )2+σ 2

x (t+α)
2[R(t )]2 . To solve this

partial differential equation, we seek the reference frame
where the process becomes purely diffusive. Consider
the change of variables z 
→ z′ ≡ z R(t )

αβ
and t 
→ τ ≡ t .

The differential operators transform as ∂z 
→ R(t )
αβ

∂z′ , ∂t 
→
2t+α+β

R(t ) z′∂z′ + ∂t , where we used the equivalence t = τ →
∂t = ∂τ , yielding ∂t P	 = 2t+α+β

R(t ) P	 + D(t ) R(t )2

α2β2 ∂z′z′P	

[Eq. (C5) in Appendix C]. Introducing the rescaling
P	 ≡ R(t )Q	, diffusion absorbs the drift term and

reduces the dynamics to time inhomogeneous diffusion

∂t Q	 = D′(t )∂z′z′Q	, where D′(t ) = σ 2
x (t+α)2+σ 2

y (t+β )2

2α2β2 .
To solve this equation, we introduce the time rescaling,
t → s(t ) = ∫ t

0 D(ξ )dξ , giving

s(t ) = σ 2
x (t + α)3 + σ 2

y (t + β )3

3α2β2
− s0,

where s0 = σ 2
x α

β2 + σ 2
y β

α2 . Equation (9) has a Gaussian solution

Q	 ∼ N (z′
0,

√
s(t )). This Gaussian transforms back to the

moving frame, z′ → z = z′αβ/R(t ), to get the full solution
for P	,

P	(z, t |z0, 0) = R(t )√
2πσ 2

	(t )
exp

[
−

(
z − z0

αβ

R(t )

)2

2σ 2
	(t )

]
,

where we have introduced the difference variance as

σ 2
	(t ) ≡ σ 2

x (t + α)3 + σ 2
y (t + β )3

3R2(t )
. (10)

This probability density has a few key features. First,
lim

t→∞〈	t 〉 = 0 and lim
t→∞ σ 2

	(t ) = 0, so the distribution asymp-

totically converges to a delta function at 	 = 0. By construc-
tion, σ	(0) = 0 and σ 2

	(t ) � 0, meaning the variance evolves
nonmonotonously, and maximizes at a relaxation time t�.

While cumbersome, these results are intuitive in terms
of the underlying inference process. Agents’ preferences
converge to one another almost certainly in a time that in-
creases with the magnitude of fluctuations but decreases in
the strength of the agents’ learning times. Therefore, the
strength of attraction is asymptotically stronger than noise
fluctuations. These convergence dynamics are demonstrated
by Monte Carlo (MC) simulations in Fig. 3 with N = 1000,
α = β = 15, where we see that 	 → 0 on a logarithmic
scale, in agreement with theory. We can define the observables
m(t ) = 
(t )/2, 	m(t ) = m(t ) − m(0), where 	m measures
how the mean of the dynamics change over time, and 	y,m =
m(t ) − y(t ) demonstrates how y differs from the mean. We
see that 	y,m (	x,m) converges to zero with asymptotically
vanishing noise, indicating that the preferences are converging
to the mean almost certainly, while the entropy is increasingly
expressed through the convergence value.

However, convergence in realistic agents are subject to
social, environmental, and biological constraints to their inter-
action time (such as life expectancies). So, while convergence
is asymptotically guaranteed, it is not guaranteed for par-
ticularly noisy or stubborn agents that have interaction time
horizons shorter than the convergence timescale.

In the following section, we will use these insights to solve
for the TPD of the 
t process.

2. The sum equation

The cumbersome dynamics of 	t lead to an even more
complex analytical description for 
t . However, we know
that lim

t→∞〈	〉(t ) = 0 and lim
t→∞ σ	(t ) = 0. It follows that the

initially bivariate diffusion process asymptotically collapses
into a univariate pure diffusion centered at μ
, f . Hence, for
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FIG. 3. Coupled dynamics of stochastic agent preferences with
x0 = 0, y0 = 2, α = β = 25 and 95% CI shaded regions. Top: MC
dynamics of 	t match theory. Inset: The variance initially in-
creases, reaches a maximum at t �, and then decreases. Bottom: The
mean-adjusted dynamics (	m = 
/2) is constant for this choice of
parameters, with asymptotically constant noise. The difference in
agent parameters from the mean, 	m − y, 	m − x, converge to 0
with time vanishing noise. Inset: Selected trajectories demonstrating
different asymptotic values.

t → ∞, we shall approximately have (see Appendix C 2)

d (
t − μ
, f ) = d
t ≈
√

σ 2
y (t + β ) + σ 2

x (t + α)

(t + β )(t + α)
dW ′

2,t ,

where the constant μ
, f is given in Eq. (A12). The
corresponding TPD P
 (z, t |μ
, f )dz = Prob{z � 
t � (z +
dz)|σ0} solves the FPE:

∂t P
 = σ 2
x (t + β )2 + σ 2

y (t + α)2

2R(t )
∂zzP
.

By inspection, P
 is a Gaussian law with mean μ
, f and,
by an ad hoc time re-scaling (see Appendix C 2), we obtain
the time-dependent variance as

〈

2

t

〉 = σ 2
x

[
1

α
− 1

α + t

]
+ σ 2

y

[
1

β
− 1

β + t

]
. (11)

We now see that the second moment (and hence the vari-
ance) converges in the limit t → ∞ to a stationary value

〈
2
t 〉 = σ 2

x
α

+ σ 2
y

β
. Similarly to the case of σ 2

	, the variance of
this distribution increases with the fluctuations in behavior and

FIG. 4. Asymptotic variance upper bound 〈
2
t 〉 under various

parameters. Top: 〈
2
t 〉 increases with agent noise with agreement

between MC simulations and theory. Bottom: Variance decreases
with agent learning time. Left: Variance upper bound 〈
2

t 〉, diverges
from empirical results as β and α diverge. Right: Deviation between
the upper bound and MC experiments as a fraction of theoretical
prediction.

decreases with hyperprior strength. We note, though, that this
is an upper-bound estimation for variance, as

σ 2

 (t ) = 〈(
t − μ
, f )2〉 = 〈


2
t

〉 − μ2

, f �

〈

2

t

〉
.

Furthermore, from the convergence of 	t → 0, we know
preferences converge to Xt = Yt and the variances converge

to 〈X 2
t 〉 = 〈Y 2

t 〉 = 〈
2
t 〉

2 as t → ∞.
The asymptotic preference variance demonstrated in

Eq. (11) shows that more noisy agents who learn quickly
will converge to more entropic states. This is because the
fluctuations of one agent are recorded and immediately re-
ciprocated by the partner agent (on average), biasing future
preferences towards early fluctuations. When noise is strong
or learning fast, agents weigh fluctuations more heavily than
weak noise or slow learning. In both cases, these character-
istics more strongly ossify early, noisy shifts in preferences
before mean behavior is fully resolved, coupling more noise
into the asymptotic behavior of the system. MC simulations
demonstrate the relationships between these quantities and the
variance in Fig. 4. We also see through simulations that the
percent error in the upper bound estimate and the true variance
are closest when β = α and increases as the learning times
diverge. However, this difference decreases as both learning
times approach large values.

III. DISCUSSION

In this paper, we studied a simple model for pairwise belief
formation in Bayesian agents who adapt to each other’s behav-
iors. We showed that preferences converge on a timescale and
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to a value given by the agents’ relative learning times. Using
the FPE, we then explored the convergence characteristics
of the Gaussian PDF for preferences in the combined frame.
We showed that while agents’ preferences invariably converge
to one another, the relative value is noisy, is characterized
by a relaxation time t�, and is bounded above by a sum of
the standard deviations of agent behaviors weighted by the
learning times.

There remain several challenges concerning the full char-
acterization of this system. First, deriving the full dynamics
of 
t would be useful for attaining better bounds on the
asymptotic coupled behavior. Second, solving the nonlinear
dynamics for the covariance matrix of the inference process
gives the full dynamics of the interaction, although this would
likely require numerical treatment. Once we understand the
full dynamics of this interaction, we can scale this model to
include agents with multidimensional, covarying preferences.
This builds towards a Bayesian analog of a self-other model
[11], wherein agents coordinate decisions by approximating
the other agent’s behavior and serve as a microfoundation for
more robust statistical mechanical models of network belief
formation [3,32]. However, doing so also requires mecha-
nisms for polarization, such as biased assimilation [39] where
agents become resistant to preferences that diverge strongly
from their own. While this behavior has been explored in De-
Groot models of opinion formation [40], we must still explore
how these interactions compete with convergence dynamics in
a Bayesian context.

Furthermore, we can extend this analysis by studying pref-
erence dynamics in agents that must balance learning each
other’s signals with some additional, external signals. When
only one agent observes an additional, stationary signal, it
is natural that the agents’ preferences would converge to a
value biased by the external signal. However, when one agent
observes an additional, nonstationary signal, as a form of

unpredictable shock, or both agents observe separate, station-
ary signals as a form of reality check, their preferences are
not guaranteed to converge [6]. The existence of a phase tran-
sition would depend on whether the external signal alters their
preferences on a timescale comparable to the relaxation time
t�, and can be applied at scale to study many-body preference
dynamics.

Although this work can already be applied to game
theoretic models of dynamical persuasion [41], dynamical
prisoner’s dilemma [42], and other games of trust and coordi-
nation [43–45], where the transmission of preferences through
behavior determines asymptotic Nash equilibria. This formal-
ism can also be adapted to study how preferences evolve in
principal-agent models. In cases where the agent serves as
an information channel for the principal, there remain ques-
tions of how the value and variance of asymptotic preferences
behave as agents adapt to post-contract disagreements [36].
Models of information-driven resources dynamics [20] can
be used to study how the convergence rate affects agent re-
sources and how the entropy of convergence values affects the
quality of information transmitted to the principal. Generally,
these results constitute a step towards more robust quantitative
models of interagent and market interactions that incorporate
findings from the cognition community.
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APPENDIX A: DEFINING THE DETERMINISTIC ODE

The equation for the mean of the Gaussian Gamma for variable x is given by

μn
x =

∑n
i=0 yi + μ0α

n + 1 + α
= yn−1 + ∑n−1

i=0 yi + μ0α

n + 1 + α
.

The sample yn corresponds to the mean of P(y), μy, plus some noise ξn. In the deterministic case, ξn = 0, and the remaining
two terms constitute μn−1

x (n + α). We can therefore redefine this quantity as Eqs. (2) from the main text,

μn
x = μn−1

x [(n − 1)/ω + α] + μn−1
y

n
ω

+ α
, (A1)

where we have written n → n
ω

to enable a conversion to continuous time variables later on. In the deterministic case, we define
the difference operator

	μx = μn
x − μn−1

x = μn−1
x [(n − 1)/ω + α] + μn−1

y
n
ω

+ α
− μn−1

x

(
n
ω

+ α
)

n
ω

+ α
= μn

y − μn
x

n
ω

+ α
, (A2)

which as ω → ∞ converges to the continuous time ODE used in the main text. Finally, Gaussian noise will be linearly added to
the deterministic dynamics.
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1. Deterministic evolution of preferences

We start by solving the deterministic motion, namely, the set of ODEs:

dμx(t )

dt
= μy(t ) − μx(t )

t + α
, μx(0) = x0

dμy(t )

dt
= μx(t ) − μy(t )

t + β
, μy(0) = y0. (A3)

To process further, we introduce the new variables:

μ	(t ) = [μx(t ) − μy(t )] and μ
 (t ) = [μx(t ) + μy(t )]. (A4)

In terms of the new variables, Eq. (A3) reads

[(t + α)(t + β )]
dμ	(t )

dt
= −[2t + α + β]μ	(t )

[(t + α)(t + β )]
dμ
 (t )

dt
= [α − β]μ	(t ). (A5)

From Eq. (A5), we immediately have

d ln(μ	(t ))

dt
= − [2t + α + β]

[(t + α)(t + β )]
= −d ln [(t + α)(t + β )]

dt
⇒ μ	(t ) = 	0αβ

[(t + α)(t + β )]
:= 	0αβ

R(t )

[(t + α)(t + β )]
dμ
 (t )

dt
= [α − β]μ	(t ) ⇒ dμ
 (t )

dt
= (α − β )αβ	0

[(t + α)(t + β )]2 = 	0
αβ(α − β )

R2(t )
, (A6)

with

R(t ) := [(t + α)(t + β )]. (A7)

By direct calculation, one may verify the identities,∫
1

R(t )
dt = 1

α − β
ln

[
t + β

t + α

]
,

∫
1

R2(t )
dt = − 1

(α − β )2

{
d ln[R(t )]

dt
+ 2

∫
1

R(t )
dt

}
= − 1

(α − β )2

{
d ln[R(t )]

dt
+ 2

α − β
ln

[
t + β

t + α

]}

= − 1

(α − β )2

{
2t + α + β

t2 + (α + β )t + αβ
+ 2

α − β
ln

[
t + β

t + α

]}
. (A8)

Accordingly, from Eqs. (A6) and (A8), we obtain

μ
 (t ) =
∫

(α − β )αβ	0

R2(t )
dt = −αβ	0

{
2t + α + β

(α − β )R(t )
+ 2

(α − β )2
ln

[
t + β

t + α

]}
+ C, (A9)

where C is an integration constant to be determined by the initial condition. At time t = 0, we have

C = 
0 + 	0

{
α + β

(α − β )
+ 2αβ[ln β − ln α]

(α − β )2

}
. (A10)

Hence, we can write

μ
 (t ) = 
0 + 	0

(α − β )

[
α + β − (2t + α + β )αβ

(t + α)(t + β )
+ 2αβ

(α − β )
ln

(
βt + αβ

αt + αβ

)]
. (A11)

Note that we have

lim
t→0+

μ
 (t ) = 
0

lim
t→∞ μ
 (t ) := μ
, f = 
0 + 	0

[
α + β

α − β

]
= 2

[
αx0 − βy0

α − β

]
+ 2	0

αβ ln[β/α]

(α − β )2
, α 	= β

lim
t→∞ μ
 (t ) := 
0, α = β, (A12)
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In terms of μx(t ) and μy(t ), we have

μx(t ) = μ	(t ) + μ
 (t )

2
=

[
αx0 − βy0

α − β

]
+ (x0 − y0)

{
αβ

α − β
ln

[
αβ + βt

αβ + αt

]
− αβ

(α − β )(t + α)

}

μy(t ) = μ	(t ) − μ
 (t )

2
=

[
αx0 − βy0

α − β

]
+ (x0 − y0)

{
αβ

α − β
ln

[
αβ + βt

αβ + αt

]
− αβ

(α − β )(t + β )

}
, (A13)

which can be summarized as (
μx(t )

μy(t )

)
= M(t )

(
x0

y0

)
, (A14)

where the matrix M(t ) reads

M =
(

−M1(0) + M2(t ) M2(0) − M2(t )

−M1(0) + M1(t ) M2(0) − M1(t )

)
,

M1(t ) = αβ

α − β
ln

[
αβ + βt

αβ + αt

]
− αβ

(α − β )(t + α)
,

M2(t ) = αβ

α − β
ln

[
αβ + βt

αβ + αt

]
− αβ

(α − β )(t + β )
. (A15)

a. Stationary regime

From Eqs. (A14) and (A15), one immediately concludes that the final state (μx(∞), μx(∞)) is given by(
μx(∞)

μy(∞)

)
=

⎛
⎝ α

α−β

β

β−α

α
α−β

β

β−α

⎞
⎠(

x0

y0

)
:= M∞

(
x0

y0

)
. (A16)

We observe that (μx(∞), μy(∞)) depends on the initial condition (x0, x0). We note that α = β is a singular situation. In
addition, observe also that for α = 0, we obtain μx(∞) = μy(∞) = y0 and, conversely for β = 0, we have μx(∞) = μy(∞) =
x0, thus showing that in both of these limiting cases, the evolution affects a single variable.

APPENDIX B: SOLVING THE TPD USING LIOUVILLE COORDINATES

This Appendix shows that an ad hoc time-dependent change of coordinates (Xt ,Yt ) 
→ (Ut ,Vt ) transforms the nominal drifted
process into a pure bivariate diffusion for which the analytical probability density can be calculated. First, one observes

Det[M(t )] = αβ

R(t )
	= 0 for 0 < t < ∞, (B1)

with R(t ) as defined in Eq. (A7). Hence, the inverse matrix M(t ) exists and reads

M(t )M(t ) = M(t )M(t ) = Id

M(t ) = R(t )

αβ

(
M2(0) − M1(t ) −M2(0) + M2(t )
M1(0) − M1(t ) −M1(0) + M2(t )

)
:=

(
m11(t ) m12(t )
m21(t ) m22(t )

)
. (B2)

In particular, using Eq. (A14), we can write (
x0

y0

)
= M(t )

(
μx(t )

μy(t )

)
, (B3)

where the initial values (x0, y0) are constants of the motion. This suggests introducing the time-dependent change of coordinates
(i.e., Liouville coordinates) defined by

z :=
(

x
y

)

→ w :=

(
u
v

)
(

u
v

)
=M(t )

(
x
y

)
:=

(
m11(t ) m12(t )
m21(t ) m22(t )

)(
x
y

)
. (B4)
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In terms of the w coordinates, the motion is purely diffusive (i.e., the drift components in the FPE cancel out) and we have

∂t [·] 
→ ∂t [·] + ∂u

∂t
∂u[·] + ∂v

∂t
∂v[·]

(
∂x[·]
∂y[·]

)

→ M†(t )

(
∂u[·]
∂v[·]

)
1

2

[
∂xx + ∂yy

]
[·] 
→ �uv[·] := 1

2

(
∂u[·], ∂v[·])M(t )M†(t )

(
∂u[·]
∂v[·]

)

∂t P = �uv[P]

P = 1

2π
√

Det[�(t )]
e−w† �(t )

Det(�(t )) w. (B5)

Equation (B5) describes the TPD evolution of the pure diffusion process:(
dUt

dVt

)
= M(t )

(
dB1,t

dB2,t

)
, (B6)

where dB1,t and dB2,t are independent WGN processes. The FPE in Eq. (B5) describes the TPD of the bivariate (Ut ,Vt ) pure
Gaussian process and we have

�(t ) :=
(
E

{
V 2

t

}
E{VtUt }

E{UtVt } E
{
U 2

t

} )
:=

(
π11(t ) π12(t )
π21(t ) π22(t )

)
, (B7)

E{dUt ; dUτ } = E{[m11(t )dB1,t + m12(t )dB2,t ]; [m11(τ )dB1,τ + m12(τ )dB2,τ ]}
= [m11(t )m11(τ ) + m12(t )m12(τ )]δ(t − τ )

E{dUt ; dVτ } = [m11(t )m12(τ ) + m22(t )m21(τ )]δ(t − τ )

E{dVt ; dUτ } = [m11(t )m21(τ ) + m22(t )m12(τ )]δ(t − τ )

E{dVt ; dVτ } = [m22(t )m22(τ ) + m21(t )m21(τ )]δ(t − τ ). (B8)

Invoking Theorem 3.6 of Jazwinsky [46], Eq. (B8) leads to

E
{
U 2

t

} =
∫ t

0
ds

∫ s

0
dτ [m11(s)m11(τ ) + m12(s)m12(τ )]δ(s − τ )

=
∫ t

0
dt

[
m2

11(s) + m2
12(s)

]
ds

E{UtVt } =
∫ t

0
[m11(s)m12(s) + m22(s)m21(s)]ds

E
{
V 2

t

} =
∫ t

0

[
m2

22(s) + m2
21(s)

]
ds. (B9)

Going back to the nominal variables z† = (x, y), Eqs. (B4) and (B5) imply

P = 1

2π
√

Det(W )
e− z†W (t )z

2Det(W (t ))

W (t ) = M†(t )�(t )M(t ) =
(

A(t ) −H (t )
−H (t ) B(t )

)

E
{
X 2

t

}
:=

∫
R

∫
R

x2P dxdy = B(t )

E
{
Y 2

t

}
:=

∫
R

∫
R

y2P dxdy = A(t ), (B10)

with

B(t ) = [
m2

12�11 + m12�12m22 + m22�21m12 + m2
22�22

]
(t )

A(t ) = [
m2

11�11 + m11�12m21 + m21�21m11 + m2
21�22

]
(t ), (B11)

where the matrix elements mi j (t ) and πi j (t ) are explicitly given in Eqs. (B2) and (B7). While the present procedure is exact, it
leads to cumbersome algebra.
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Remark. Note that a simpler case of the above general scheme was explored by Chandrasekhar [38] (see Lemma II), for the
simpler case:

M =
(

m11(t ) m11(t )
m22(t ) m22(t )

)

	uv = m2
11(t )∂uu + 2m11(t )m22(t )∂uv + m2

22(t )∂vv

�(t ) =
(

2
∫ t

0 m2
22(s)ds − ∫ t

0 m11(s)m22(s)ds
− ∫ t

0 m11(s)m22(s)ds 2
∫ t

0 m2
11(s)ds

)
.

APPENDIX C: THE (Xt,Yt ) STOCHASTIC PROCESS USING COUPLED DYNAMICS

Consider the stochastic process (Xt ,Yt ) ∈ R2 :

dXt = −	t dt + σydW1,t

t + α
= (y − x)dt + σydW1,t

t + α
, X0 = x0

dYt = +	t dt + σxdW2,t

t + β
= (x − y)dt + σxdW2,t

t + β
, Y0 = y0, (C1)

where dW1,t and dW2,t are independent WGN processes. To study the (Xt ,Yt ) bivariate Gaussian [47] and Markovian diffusion
process, it is advantageous to proceed with the change of variables:(

Xt

Yt

)

→

(
	t := Xt − Yt


t := Xt + Yt

)

d	t = − [2t + α + β]

[(t + α)(t + β )]
	t dt +

√[
σ 2

x (t + β )2 + σ 2
y (t + α)2

]
dB1,t

[(t + α)(t + β )]

d
t = + (α − β )

[(t + α)(t + β )]
	t dt +

√[
σ 2

x (t + β )2 + σ 2
y (t + α)2

]
dB2,t

[(t + α)(t + β )]
, (C2)

where we have used the property

σy

(t + α)
dW1,t − σx

(t + α)
dW2,t =

√[
σ 2

x (t + β )2 + σ 2
y (t + α)2

]
dB1,t

[(t + α)(t + β )]

σy

(t + α)
dW1,t + σx

(t + α)
dW2,t =

√[
σ 2

x (t + β )2 + σ 2
y (t + α)2

]
dB2,t

[(t + α)(t + β )]
, (C3)

with dB1,t and dB2,t being now correlated WGNs. Since the 	t process is actually decoupled from the 
t , we shall proceed in
two steps.

a. The �t process

The probabilistic properties of the 	t stochastic process in Eq. (C2) are fully described by the TPD P	(x, t |x0, 0)dx :=
Prob{x � 	t � (x + dx)|x0} which solves the FPE:

∂t P	 = ∂x

{[
[2t + α + β]

[(t + α)(t + β )]

]
x

}
+ D(t )∂xxP	

D(t ) := σ 2
y (t + β )2 + σ 2

x (t + α)2

2(t + α)2(t + β )2
. (C4)

To solve Eq. (C4), similarly to Appendix B, we express the evolution in terms of the constant of the motion 	o. Accordingly,
we introduce the change of variables:

t 
→ τ = t ⇒ ∂t 
→ ∂x′

∂t
∂x′ + ∂τ

∂t
∂τ =

[
2t + α + β

αβ

]
x∂x′ + ∂τ =

[
2t + α + β

(t + α)(t + β )

]
x′∂x′ + ∂t

x 
→ x′ := x
(t + α)(t + β )

αβ
⇒ ∂x 
→ ∂x′

∂x
∂x′ + ∂τ

∂x
∂τ = (t + α)(t + β )

αβ
∂x′ . (C5)
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In terms of the (t, x′), Eq. (C4) is transformed into a pure diffusion process. This can be seen as follows (omitting the
arguments of P):

∂t P	 +
[

2t + α + β

(t + α)(t + β )

]
x′∂x′P	 = (α + t )(β + t )

αβ
∂x′

{
[2t + α + β]

[(t + α)(t + β )]

αβ

(t + α)(t + β )
x′P

}
+ D(t )

(α + t )2(β + t )2

α2β2
∂x′x′P	

= [2t + α + β]

[(t + α)(t + β )]
∂x′ (x′P	) + D(t )

(α + t )2(β + t )2

α2β2
∂x′x′P	,

yielding

∂t P	 = [2t + α + β]

[(t + α)(t + β )]
P	 + D(t )

(α + t )2(β + t )2

α2β2
∂x′x′P	. (C6)

Writing P	 := (t + α)(t + β )Q, Eq. (C6) reduces to the pure time inhomogeneous diffusion:

∂t Q	 =
[

D(t )
(α + t )(β + t )

α2β2

]
∂x′x′Q	 =

[
σ 2

x (t + α)2 + σ 2
y (t + β )2

2α2β2(α + t )(β + t )

]
∂x′x′Q	. (C7)

Finally, we introduce the time rescaling:

t 
→ s(t ) :=
∫ t

0

[
σ 2

x (α + ξ )2 + σ 2
y (β + ξ )2

α2β2(α + ξ )(β + ξ )

]
dξ =

(
σ 2

x + σ 2
y

)
t + (α − β )

(
σ 2

x ln β+t
β

− σ 2
y ln α+t

α

)
α2β2

. (C8)

This enables us to rewrite Eq. (C7) as

∂sQ	 = 1

2
∂yyQ	 ⇒ Q	 = 1√

2πs(τ )
exp

[
− (y − y0)2

2s(τ )

]
. (C9)

Proceeding backwards to the nominal (x, t ) variables, one ends with

lP	(x, t |x0, 0)dx = (t + α)(t + β )

αβ
√

2πs(t )
exp

[
−

(
x (t+α)(t+β )

αβ
− x0

)2

2s(τ )

]
dx

= 1√
2πσ 2

	(t )
exp

[
−

(
x − αβ x0

(t+α)(t+β )

)2

2σ 2
	(t )

]
, (C10)

where we used the notation

σ 2
	(t ) := α2β2s(t )

(t + α)2(t + β )2
=

(σ 2
x + σ 2

y )t + (α − β )
(
σ 2

x ln β+t
β

− σ 2
y ln α+t

α

)
(t + α)2(t + β )2

lim
t→∞ σ 2

	(t ) = 0. (C11)

1. Nonmonotonous relaxation of the variance σ2
�(t )

As X0 = x0 and Y0 = y0 are fixed and deterministic, we obviously have lim
t→∞ σ 2

	(t ) = 0, In parallel, from Eq. (C11)

we have lim
t→∞ 	t = 0. Since σ 2

	(t ) � 0, we conclude that σ 2
	(t ) follows a nonmonotonous evolution reaching a maximum at

a relaxation time t∗ such that d
dt σ

2
	(t ) |t=t∗= 0. On physical grounds, this nonmonotonous evolution describes the underlying

trade-off between two distinct mechanisms: a disorganizing mechanism generated by the noisy driving forces versus the
organising mechanism generated by the mutual interactions. During the early stage 0 < t < t∗, the fluctuations dominate while
later for t > tc the learning mechanism overcomes the underlying noise to ultimately drive σ	(t ) towards zero. Accordingly, it
is legitimate to interpret tc as a relaxation time.

2. The �t process: Approximation for the time asymptotic regime

Since the full transient evolution of variances as given in Appendix B leads to cumbersome expressions, let us focus on the
time asymptotic development. We already know exactly that lim

t→∞E{	t } = lim
t→∞ μ	(t ) = 0, and from the last section we have

lim
t→∞ σ	(t ) = 0. Accordingly, in the time asymptotic regime, the initially bivariate diffusion collapses to a scalar (i.e., univariate)

pure diffusion 
t process centered at the constant final value μ
, f given in Eq. (A12). Hence, for asymptotic times Eq. (C2), the
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t evolution can be approximately written as

d (
t − μ
, f ) = d
t ≈
√[

σ 2
x (t + β )2 + σ 2

y (t + α)2
]

[(t + α)(t + β )]
dB2,t . (C12)

The associated TPD P
 (x, t |
0, 0)dx = Prob{x � 
t � (x + dx)|
0}dx := P
dx obeys to the FPE:

∂t P
 =
[
σ 2

x (t + β )2 + σ 2
y (t + α)2

]
(t + α)2(t + β )2

1

2
∂xxP
. (C13)

To solve Eq. (C13), as usual we introduce the rescaling,

t 
→ s(t ) :=
∫ t

0

[
σ 2

x (ξ + β )2 + σ 2
y (ξ + α)2

]
(ξ + α)2(ξ + β )2

dξ = σ 2
x

[
1

α
− 1

α + t

]
+ σ 2

y

[
1

β
− 1

β + t

]
, (C14)

yielding

P
 (x, t |
0, 0) = 1√
2πs(t )

e− [x−μ
, f ]2

2s(t )

lim
t→∞ P
 (x, t |μ
, f , 0) = 1√

2πs∞
e− [x−μ
, f ]2

2s∞ , s∞ =
[

σ 2
x

α
+ σ 2

y

β

]

lim
t→∞ σ 2


 (t ) = E{(
t − μ
, f )2} = s∞. (C15)

Finally, for asymptotic times, we have that lim
t→∞ Xt = lim

t→∞Yt , we can conclude that the asymptotic variances of Xt and Yt

converge to

lim
t→∞ σ 2

X (t ) = lim
t→∞ σ 2

Y (t ). (C16)
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