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Active particle in one dimension subjected to resetting with memory
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The study of diffusion with preferential returns to places visited in the past has attracted increased attention in
recent years. In these highly non-Markov processes, a standard diffusive particle intermittently resets at a given
rate to previously visited positions. At each reset, a position to be revisited is randomly chosen with a probability
proportional to the accumulated amount of time spent by the particle at that position. These preferential revisits
typically generate a very slow diffusion, logarithmic in time, but still with a Gaussian position distribution at
late times. Here we consider an active version of this model, where between resets the particle is self-propelled
with constant speed and switches direction in one dimension according to a telegraphic noise. Hence there are
two sources of non-Markovianity in the problem. We exactly derive the position distribution in Fourier space, as
well as the variance of the position at all times. The crossover from the short-time ballistic regime, dominated
by activity, to the long-time anomalous logarithmic growth induced by memory is studied. We also analytically
derive a large deviation principle for the position, which exhibits a logarithmic time scaling instead of the usual
algebraic form. Interestingly, at large distances, the large deviations become independent of time and match the
nonequilibrium steady state of a particle under resetting to its starting position only.

DOI: 10.1103/PhysRevE.109.054105

I. INTRODUCTION

Consider a single particle diffusing on a line with diffusion
constant D. In Ref. [1] this diffusive dynamics was studied
in the presence of an additional resetting move that is history
dependent. In this model, in addition to diffusion, the particle
also undergoes resetting with rate r to a previously visited po-
sition according to the following stochastic rule. At any given
time t , the particle chooses at random, i.e., with probability
density 1/t , a preceding time t ′ ∈ [0, t ) and resets to the posi-
tion at which it was located at t ′. Thus the resetting move tends
to dynamically localize the particle near the positions that are
most often visited, as the probability to choose a particular site
for revisit is proportional to the accumulated occupation time
at that site. The position distribution of the particle was found
to approach a Gaussian form at late times t , with the variance
growing in a slow anomalous way as (2D/r)ln(rt ) asymptot-
ically [1]. This very slow dynamics emerges from resetting
induced memory effects: The particle becomes sluggish and
“reluctant” to move away from its familiar territory that it has
already visited. Moreover, the position distribution is always
time dependent and does not approach a stationary state at late
times, in contrast to diffusion with stochastic resetting to a sin-
gle site [2,3]. This simple model was able to fit quantitatively
several statistical properties of the movements of capuchin
monkeys in the wild [1], providing further evidence that many
animal species use sophisticated cognitive skills to explore
their environment and that memory should be incorporated in
biological random-walk models [4–10].

Various other generalizations of this simple exactly solv-
able model have been studied in recent years [11–15].
Moreover, central and local limit theorems have been rigor-
ously established for an extended class of memory walks of

this type (including cases with fading memory), the proofs
being based on a mapping onto weighted random recursive
trees [16]. The large deviations of these walks were the focus
of Ref. [17]. A quenched large-deviation principle was proven
when the sequence of resetting times was given and acting as
a disordered environment [17].

In this paper we consider an active version of this model
where the resetting dynamics is similar to the above, except
that between resets the particle undergoes a self-propelled
active dynamics in one spatial dimension with velocities ±v0,
instead of ordinary diffusion. Correlated random walks have
been widely used to model the directional persistence which
characterizes the movements of many animals and cells (see,
e.g., [18] for a review). The state of the particle at time t is
now specified by two degrees of freedom: the position and the
velocity. More precisely, in a small time dt , with probability
1 − rdt , the position x(t ) of the particle gets incremented
by v0σ (t )dt , where σ (t ) = ±1 is a telegraphic noise that
switches between +1 and −1 with a constant rate γ . The
driving noise has a two-time correlation function that decays
exponentially with the time difference,

〈v0σ (t )v0σ (t ′)〉 = v2
0e−2γ |t−t ′ |. (1)

With the complementary probability rdt , the particle un-
dergoes resetting. If this happens, the particle chooses a
previous time interval [t ′, t ′ + dt ′] with uniform probability
dt ′/t , where 0 � t ′ � t . It then changes the current position
x to the position x′ it occupied at time t ′ and also takes
the velocity it had at t ′. Thus the transition from the state
(x, σ, t ) to (x′, σ ′, t ′) occurs with probability rdtdt ′/t under
this resetting protocol. Figure 1 illustrates these dynamical
rules.
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FIG. 1. An active particle (dark blue arrow) moves at constant
speed v0 on the line and stochastically switches direction at rate γ .
In addition, the particle can relocate instantaneously to a previously
visited location with rate r. In this case, a time t ′ ∈ [0, t ) is chosen at
random uniformly in the past and the particle adopts the position and
velocity it had at that time (light blue arrow).

In this model, there are clearly two sources of non-
Markovianity. One is the driving noise which has a memory
encoded in the autocorrelation function above (which for finite
γ is not δ correlated as in the white-noise case). Whereas
the complete state of the particle (x(t ), σ (t )) has a Marko-
vian evolution when the motion is driven by the telegraphic
noise, the marginal process x(t ) is non-Markovian. The sec-
ond source of non-Markovianity is the resetting moves which
depend on the past history of the trajectory. In this case, even
the process (x(t ), σ (t )) is non-Markovian. Thus the model is
characterized by two timescales: (i) t∗

1 ∼ 1/γ , which denotes
the typical time between two consecutive switches of the
driving noise, and (ii) t∗

2 ∼ 1/r, which denotes the typical
time between two consecutive resetting events. The interplay
between these two timescales leads to a position distribution
pr (x, t ) that is rather rich and nontrivial, as we will illustrate
below. We note that a model with the same active dynam-
ics on a line, but subjected to a resetting only to the fixed
initial position (with velocity randomized after each reset),
was solved exactly in Ref. [19]. The resetting protocol in
our model here is thus quite different from that of Ref. [19].
Here, under resetting, both the position and velocity of the
particle get reset to the values they had at a previous time,
chosen uniformly at random. Consequently, the positions that
have been often visited are more likely to be chosen as a
resetting point in the future. Actually, under these rules, the
probability that the particle chooses a given visited location x′
is proportional to the total time it spent at that location.

The rest of the paper is organized as follows. In Sec. II we
recall known results on the position distribution of a particle
driven by a telegraphic noise only (r = 0) and then sum-
marize our main results in the presence of memory (r > 0).
In Sec. III we present the derivation of the exact Fourier
transform qr (k, t ) of the position distribution in the presence
of resetting, given by Eq. (9) below. In Sec. IV we derive
the exact formula for the variance given by Eq. (13). In
Sec. V we derive the large-deviation form, which is summa-
rized in Eq. (15). We summarize and discuss our conclusions
in Sec. VI. Appendix A provides a brief summary of the
quenched large-deviation principle derived in Ref. [17] by a
very different probabilistic approach, along with a compari-
son with our large-deviation results, which correspond to an
annealed case. In Appendix B we give technical details on the
small-k expansion of the position distribution up to order 2,
from which the variance is obtained.

II. SUMMARY OF KNOWN AND OUR PRESENT RESULTS

In the absence of resetting r = 0, the position distribution
of a single particle driven by a telegraphic noise has been
studied extensively in the past, going back more than 100
years [20,21]. It has repeatedly resurfaced in many differ-
ent contexts, such as the relativistic chessboard model of
Feynman [22], the persistent random-walk model of Kac
[23–25], in quantum optics and chemical physics [26], in
semiflexible polymer chains in one dimension [27,28], and
more recently in the context of active matter [29–37]. As-
suming that the particle starts at the origin x = 0 with equally
likely velocity ±v0, let p0(x, t ) denote the position distribu-
tion at time t , where the subscript 0 refers to zero resetting
or r = 0. Its Fourier transform has an exact expression at
all t [25,33],

q0(k, t ) =
∫ ∞

−∞
p0(x, t )eikxdx = e−γ t

[
cosh

(√
γ 2 − v2

0k2t

)

+ γ

γ 2 − v2
0k2

sinh

(√
γ 2 − v2

0k2t

)]
. (2)

By taking derivatives with respect to k at k = 0, we can
calculate all the moments at all t . For example, the mean is
zero by symmetry and the variance V0(t ) = −∂2

k q0(k, t )|k=0 is
given by

V0(t ) = v2
0

γ 2

(
γ t − 1

2
(1 − e−2γ t )

)
. (3)

Since r = 0, we have only one timescale t∗
1 ∼ 1/γ in the

problem. Indeed, the variance grows differently as a function
of t as this timescale is crossed,

V0(t ) 	
{
v2

0t2 for t 
 1/γ

2Defft for t � 1/γ ,
(4)

where Deff = v2
0/2γ is the effective diffusion constant. This

indicates that for t 
 1/γ , where the noise σ is yet to flip,
the particle moves ballistically, while for t � 1/γ , the par-
ticle undergoes diffusion with an effective diffusion constant
Deff . Interestingly, in this r = 0 case, the Fourier transform in
Eq. (2) can be exactly inverted to give [25,27,33]

p0(x, t ) = 1

2
e−γ t

[
δ(x − v0t ) + δ(x + v0t )

+ γ

2v0

(
I0(ρ) + γ t

ρ
I1(ρ)

)
θ (v0t − |x|)

]
, (5)

where ρ = γ

v0

√
v2

0t2 − x2 and I0(z) and I1(z) are modified
Bessel functions of the first kind of orders 0 and 1, respec-
tively. Thus, for finite t , the distribution p0(x, t ) is supported
over a finite interval x ∈ [−v0t, v0t], with two symmetrical δ

peaks located at the two edges and a central part that has a
Gaussian shape near x = 0. As t → ∞, the amplitude of the
δ peaks at the two edges vanishes exponentially fast, and for
t � 1/γ , the typical fluctuations of O(

√
t ) are distributed via

the Gaussian form

p0(x, t ) 	 1√
4πDefft

e−x2/4Deff t , (6)
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FIG. 2. Variance Vr (t ) of the position x(t ) as a function of t for
v0 = 1, γ = 1, and r = 0.1. The blue dashed line corresponds to
the exact result in Eq. (13) and the black solid line to the long-time
behavior in Eq. (14). The dots are results of Monte Carlo simulations
employing the Gillespie algorithm [40].

where Deff = v2
0

2γ
. However, the large atypical fluctuations,

say, of O(t ), are not described by the central Gaussian form.

In fact, from the exact distribution in Eq. (5), we find that
both the typical and the atypical fluctuations, for large t , are
captured by a single large-deviation form [38]

p0(x, t ) ∼ e−γ t	0(x/v0t ), (7)

where the rate function 	0(z), supported over z ∈ [−1, 1], is
given explicitly by

	0(z) = 1 −
√

1 − z2, −1 � z � 1. (8)

In the limit z → 0, i.e., when |x| 
 v0t , the rate func-
tion becomes quadratic 	0(z) ≈ z2/2. Substituting this
quadratic form in Eq. (7), we recover the Gaussian shape in
Eq. (6).

In this paper we provide an exact solution of the position
distribution pr (x, t ) when the resetting with rate r � 0 is
switched on. Let us first summarize our main results. We as-
sume, as in the r = 0 case, that the particle starts at the origin
with equally likely velocities ±v0. We then compute exactly,
for all t , the Fourier transform of the position distribution
qr (k, t ) = ∫∞

−∞ pr (x, t )eikxdx and show that it is given by the
formula

qr (k, t ) = 1

2

⎡
⎢⎣
⎛
⎜⎝1 − γ√

γ 2 − v2
0k2

⎞
⎟⎠ fλ1(k)(t ) +

⎛
⎜⎝1 + γ√

γ 2 − v2
0k2

⎞
⎟⎠ fλ2(k)(t )

⎤
⎥⎦, (9)

where

λ1(k) = γ +
√

γ 2 − v2
0k2, λ2(k) = γ −

√
γ 2 − v2

0k2. (10)

The function fλ(t ) is given explicitly by

fλ(t ) = M

(
λ

r + λ
, 1,−(r + λ) t

)
, (11)

where M(a, b, z) is the confluent hypergeometric function of the first kind (Kummer’s function) that has a simple power series
expansion around z = 0 [39]:

M(a, b, z) = 1 + a

b
z + a(a + 1)

b(b + 1)

z2

2!
+ a(a + 1)(a + 2)

b(b + 1)(b + 2)

z3

3!
+ · · · . (12)

For r = 0, using the identity M(1, 1, z) = ez, it is easy to see that Eq. (9) reduces to the expression in Eq. (2).
This exact Fourier transform in Eq. (9), valid for all t , gives access to the moments of x(t ). For example, while the mean is

zero at all times by symmetry, the variance Vr (t ) is given by the explicit expression, valid for all t ,

Vr (t ) = v2
0

2γ 2

[
M

(
2γ

r + 2γ
, 1,−(r + 2γ )t

)
− 1 + 2γ

r
[ln(rt ) + γE + �(0, rt )]

]
, (13)

where �(0, z) = ∫∞
z

e−x

x dx (for z > 0) and γE = 0.577 215 664 9 . . . is the Euler’s constant. A plot of Vr (t ) in Eq. (13) as a
function of t is provided in Fig. 2, for fixed v0, γ and r, showing very good agreement with numerical simulations. Again, for
r = 0, it is easy to check that we recover the result in Eq. (3). For a nonzero r, we have now two timescales t∗

1 ∼ 1/γ and
t∗
2 ∼ 1/r. Suppose we have a small resetting rate r so that t∗

2 � t∗
1 . The exact variance in Eq. (13) exhibits three different growth

regimes: (i) a short-time regime t 
 t∗
1 = 1/γ where the variance grows quadratically with t , (ii) an intermediate-time regime

1/γ 
 t 
 1/r where the variance grows diffusively, and finally (iii) a late-time regime t � 1/r where the variance grows
extremely slowly as approximately ln(rt ). The precise asymptotic behaviors of the variance are given by

Vr (t ) 	
⎧⎨
⎩

v2
0

[
t2 − 12γ+7r

18 t3 + O(t4)
]

as t → 0
v2

0
rγ

[
ln(rt ) + (γE − r

2γ

)+ O(t−2γ /(r+2γ ) )
]

as t → ∞.
(14)

The latter expression is also represented in Fig. 2.
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Unfortunately, unlike in the r = 0 case, we are not able to
invert the Fourier transform qr (k, t ) in Eq. (9). Nevertheless,
the exact Fourier transform allows us to extract the large-
deviation form of pr (x, t ) for large t . We find that it satisfies
an anomalous large-deviation form

pr (x, t )∼ (rt )−�r ((
√

γ r/v0 )[x/ln(rt )]) = e− ln(rt )�r ((
√

γ r/v0 )[x/ln(rt )]),

(15)

where the rate function �r (z) is symmetric �r (z) = �r (−z)
and can be analytically computed. It has the asymptotic
behaviors

�r (z) 	
⎧⎨
⎩

z2

2 as z → 0√
2 + r

γ
|z| as z → ±∞.

(16)

Substituting the quadratic behavior for small z in Eq. (15), we
find that the typical fluctuations of O(

√
ln(rt )) are described

by a Gaussian form

pr (x, t ) ∼ exp

(
− γ rx2

2v2
0 ln(rt )

)
. (17)

This result is consistent with late-time behavior of the vari-
ance in the second line of Eq. (14). We note that anomalous
large-deviation behavior of the type in Eq. (15), where ln(rt )
plays the role of an effective time, has been found also in
quite a few unrelated systems such as in persistence problems
of Gaussian stationary processes [41,42], in the statistics of
the zeros of random Kac-type polynomials [43–45], in models
of rainfall records [46], and in certain predator-prey systems
[47]. We thus present here analytical expressions where such
an anomalous large-deviation form holds with a logarithmic
scaling instead of the standard t . Recently, an anomalous
large-deviation principle was also proven rigorously by very
different methods for a general class of memory models simi-
lar to the one considered here and where the time evolution
was governed by the law [ln(rt )]α with α > 0 [17]. The
large-deviation principle of [17] corresponds to the quenched
case, i.e., when the resetting times are fixed and not averaged
over like here. In Appendix A we show that our analytical
expression for �r (z) [see Eq. (75) below] can be rederived by
using the general relation of [17].

III. EXACT POSITION DISTRIBUTION

We consider an active self-propelled particle on the
line whose position, between resetting events, evolves via
dx/dt = v0σ (t ), where σ (t ) = ±1 is the telegraphic noise
that switches between the two states with rate γ . The state
of the particle at time t is specified by two degrees of freedom
(x, σ ), namely, the position and the velocity (in units of v0).
Let us recall the resetting dynamics. At time t , with proba-
bility rdt ′/t the particle chooses any previous time t ′ � t and
resets, i.e., the position and velocity get reset to the values
taken at t ′. Let pr (x, σ, t ) denote the probability density that
the particle is at position x with velocity σ at time t . To
take into account the memory effect, we also need to define
the two-point function pr (x, σ, t ; x′, σ ′, t ′), which denotes the
joint probability density for the particle to be at (x′, σ ′) at time
t ′ and at (x, σ ) at t , with t ′ � t . Clearly, if we integrate the

two-point functions over (x′, σ ′) [or alternately over (x, σ )],
we recover the marginal one-point probability density∑

σ ′=±1

∫ ∞

−∞
pr (x, σ, t ; x′, σ ′, t ′)dx′ = pr (x, σ, t ) (18a)

and similarly∑
σ=±1

∫ ∞

−∞
pr (x, σ, t ; x′, σ ′, t ′)dx = pr (x′, σ ′, t ′). (18b)

With these ingredients at hand, we can now write down a
Fokker-Planck equation for the evolution of the one-point po-
sition distributions pr (x, σ = 1, t ) ≡ p+

r (x, t ) and pr (x, σ =
−1, t ) ≡ p−

r (x, t ) as

∂t p+
r (x, t ) = −v0∂x p+

r (x, t ) − γ p+
r (x, t ) + γ p−

r (x, t )

− r p+
r (x, t ) + r

t

∫ t

0
dt ′ ∑

σ=±1

∫ ∞

−∞

× dx′ pr (x′, σ, t ; x,+1, t ′), (19)

∂t p−
r (x, t ) = v0∂x p−

r (x, t ) − γ p−
r (x, t ) + γ p+

r (x, t )

− r p−
r (x, t ) + r

t

∫ t

0
dt ′ ∑

σ=±1

∫ ∞

−∞

× dx′ pr (x′, σ, t ; x,−1, t ′). (20)

The first three terms on the right-hand side (rhs) of this pair
of equations describe the standard evolution under the self-
propelled dynamics. The third term in the first (second) line
describes the loss of probability density from position (x,+1)
[(x,−1)] at time t due to resetting to other coordinates. The
last term on the first (second) line describes the gain in the
probability density at (x,+1) [(x,−1)] due to resetting from
other positions occupied at time t just before resetting and la-
beled by (x′, σ ). If the particle has to reset to (x,+1) [(x,−1)]
from (x′, σ ) at time t , it must have been at (x,+1) [(x,−1)] at
a previous time t ′ � t and the probability density of this event
is simply the two-point function pr (x′, σ, t ; x,+1, t ′). Finally,
we need to integrate over all (x′, σ ) from which the particle
may arrive at (x,+1) [(x,−1)] by resetting. The reason for
the solvability for the one-point position distribution in this
model can then traced back to Eq. (18b), which allows us
to write a closed pair of equations for the one-point function
only, without involving higher-point functions,

∂t p+
r (x, t ) = −v0∂x p+

r (x, t ) − γ p+
r (x, t ) + γ p−

r (x, t )

− r p+
r (x, t ) + r

t

∫ t

0
dt ′ p+

r (x, t ′), (21)

∂t p−
r (x, t ) = v0∂x p−

r (x, t ) − γ p−
r (x, t ) + γ p+

r (x, t )

− r p−
r (x, t ) + r

t

∫ t

0
dt ′ p−

r (x, t ′). (22)

These two equations start from the initial conditions

p+
r (x, 0) = p−

r (x, 0) = 1
2δ(x), (23)

which corresponds to a particle starting at the origin with
equally likely velocities ±v0. The boundary conditions are
p±

r (x → ±∞, t ) = 0. The full position distribution at time t
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is then obtained by summing the two solutions

pr (x, t ) = p+
r (x, t ) + p−

r (x, t ). (24)

By integrating Eqs. (21) and (22) over x and adding, we
can easily check that the total probability

∫∞
−∞ pr (x, t )dx = 1

is conserved at all times. Evidently, for r = 0, these equa-
tions reduce to the standard pair of Fokker-Planck equations
studied extensively in the literature [25,33].
To solve the pair of coupled partial differential equations (21)
and (22), it turns out to be convenient to work in the Fourier
space. We define the pair of Fourier transforms

q±
r (k, t ) =

∫ ∞

−∞
p±

r (x, t )eikxdx. (25)

Taking Fourier transforms of Eqs. (21) and (22), we obtain

∂t q
+
r (k, t ) = (iv0k − γ − r)q+

r (k, t ) + γ q−
r (k, t )

+ r

t

∫ t

0
q+

r (k, t ′)dt ′, (26)

∂t q
−
r (k, t ) = −(iv0k + γ + r)q−

r (k, t ) + γ q+
r (k, t )

+ r

t

∫ t

0
q−

r (k, t ′)dt ′. (27)

The initial conditions (23) translate, in the Fourier space, to

q+
r (k, 0) = q−

r (k, 0) = 1
2 . (28)

Equations (26) and (27) are still coupled and time dependent.
To make further progress we make the ansatz

q±
r (k, t ) = f (t, k)u±(k). (29)

Note that this ansatz is not really a separation of variables
since f (t, k) may depend on both t and k. It just assumes
that both q+

r (k, t ) and q+
r (k, t ) have the same time dependence

through the common shared factor f (t, k). The goal would
be to find these functions f (t, k) and u±(k). Substituting (29)
into the pair of Eqs. (26) and (27) and dividing both sides by
f (t, k)u±(k) gives

1

f (t, k)
∂t f (t, k) − r

t f (t, k)

∫ t

0
f (t ′, k)dt ′

= (iv0k − γ − r) + γ
u−(k)

u+(k)
, (30)

1

f (t, k)
∂t f (t, k) − r

t f (t, k)

∫ t

0
f (t ′, k)dt ′

= −(iv0k + γ + r) + γ
u+(k)

u−(k)
. (31)

It thus follows that the right-hand sides of these two equa-
tions cannot be a function of t and they depend only on k. It
then follows immediately that the function f (t, k) must satisfy
an eigenvaluelike equation

1

f (t, k)
∂t f (t, k) − r

t f (t, k)

∫ t

0
f (t ′, k)dt ′ = −r − λ(k),

(32)

where we defined the eigenvalue λ(k) with a shift by r for
convenience. From Eqs. (30) and (31) it then follows that the
eigenvalue λ(k) must satisfy the pair of equations

(iv0k − γ ) + γ
u−(k)

u+(k)
= −λ(k), (33)

−(iv0k + γ ) + γ
u+(k)

u−(k)
= −λ(k). (34)

To satisfy both (33) and (34), the eigenvalue λ(k) must satisfy

[λ(k) + iv0k − γ ][λ(k) − iv0k − γ ] − γ 2 = 0, (35)

which has two roots

λ1(k) = γ +
√

γ 2 − v2
0k2, λ2(k) = γ −

√
γ 2 − v2

0k2.

(36)

In addition, for each of these eigenvalues, it follows from
Eqs. (33) and (34) that u±(k) must also satisfy the relation

u+(k)

u−(k)
= −λ(k) − iv0k − γ

γ
= − γ

λ(k) + iv0k − γ
. (37)

Given the eigenvalue λ(k), we now need to determine the
function f (t, k) from Eq. (32). To solve this equation, we first
define

F (t, k) =
∫ t

0
f (t ′, k)dt ′, (38)

which then satisfies, using (32), the second-order ordinary
differential equation (for fixed k)

t
d2F (t, k)

dt2
+ [r + λ(k)]t

dF (t, k)

dt
− rF (t, k) = 0, (39)

subject to the condition

F (0, k) = 0, (40)

which follows from the definition (38). We now make the
substitution

F (t, k) = tW (−[r + λ(k)]t ) (41)

in Eq. (39). Then it is straightforward to show that W (z)
satisfies the ordinary differential equation

zW ′′(z) + (2 − z)W ′(z) − λ(k)

r + λ(k)
W (z) = 0. (42)

This is the standard confluent hypergeometric differential
equation [39] whose general solution can be written as the
linear combination of two independent solutions

W (z) = c1M

(
λ(k)

r + λ(k)
, 2,−z

)
+ c2U

(
λ(k)

r + λ(k)
, 2,−z

)
,

(43)

where c1 and c2 are arbitrary constants. Thus, using Eq. (41),
the general solution of F (t, k) can be expressed as

F (t, k) = c1tM

(
λ(k)

r + λ(k)
, 2,−[r + λ(k)]t

)

+ c2tU

(
λ(k)

r + λ(k)
, 2,−[r + λ(k)]t

)
. (44)
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However, this solution must satisfy the constraint F (0, k) = 0
in (40). Now, using the small argument asymptotics of the two
solutions [39]

M(a, b, z) → 1 as z → 0, (45)

U (a, b, z) → 1

�(a)z
as z → 0, (46)

we find that

F (0, k) → − c2

[r + λ(k)]�
(

λ(k)
r+λ(k)

) . (47)

Since F (0, k) = 0, we must have c2 = 0. Hence our solution
simply reads

F (t, k) = c1tM

(
λ(k)

r + λ(k)
, 2,−[r + λ(k)]t

)
. (48)

Taking the derivative with respect to t and using the definition
of M(a, b, z) as a power series of z we get

fλ(k)(t, k) = dF (t, k)

dt
= c1M

(
λ(k)

r + λ(k)
, 1,−[r + λ(k)]t

)
,

(49)

where we have used the subscript λ(k) in f (t, k) to display
explicitly its dependence on the eigenvalue λ(k).
Thus, given the two eigenvalues λ1(k) and λ2(k) in Eq. (36)
and the associated time-dependent parts fλ1(k)(t, k) and
fλ2(k)(t, k), we can then write the complete solution [returning
to the ansatz (29) and using the relation (37)] as the linear
combinations

q+
r (k, t ) = u+

1 (k) fλ1(k)(t, k) + u+
2 (k) fλ2(k)(t, k), (50)

q−
r (k, t ) = −λ1(k) + iv0k − γ

γ
u+

1 (k) fλ1(k)(t, k)

− λ2(k) + iv0k − γ

γ
u+

2 (k) fλ2(k)(t, k). (51)

Note that we can absorb the constant c1 that appears in
fλ(k)(t, k) in Eq. (49) in the functions u+

1 (k) and u+
2 (k). In

other words, we can set c1 = 1 in the expression for fλ(k)(t, k)
in Eq. (49) without any loss of generality. With this convention
and using M(a, b, 0) = 1, we then obtain from Eq. (49) that
fλ(k)(t = 0, k) = 1. The only unknown functions u+

1 (k) and
u+

2 (k) in Eqs. (50) and (51) are to be determined from the pair
of initial conditions in Eq. (28). Setting t = 0 in Eqs. (50) and
(51) and using fλ(k)(t = 0, k) = 1, the initial condition (28)
gives the two equations

u+
1 (k) + u+

2 (k) = 1
2 , (52)

−λ1(k) + iv0k − γ

γ
u+

1 (k) − λ2(k) + iv0k − γ

γ
u+

2 (k) = 1

2
.

(53)

Solving this pair of equations gives

u+
1 (k) = −

γ −
√

γ 2 − v2
0k2 + iv0k

4
√

γ 2 − v2
0k2

, (54)

u+
2 (k) =

γ +
√

γ 2 − v2
0k2 + iv0k

4
√

γ 2 − v2
0k2

. (55)

Substituting the expressions for u+
1 (k), u+

2 (k), and fλ(k)(t, k)
in Eqs. (50) and (51) then gives us the pair of Fourier trans-
forms q±

r (k, t ) explicitly. By gathering the two terms, the
Fourier transform of the full position distribution qr (k, t ) is
obtained as

qr (k, t ) =
∫ ∞

−∞
pr (x, t )eikxdx = q+

r (k, t ) + q−
r (k, t ) (56)

= 1

2

⎡
⎢⎣
⎛
⎜⎝1 − γ√

γ 2 − v2
0k2

⎞
⎟⎠ fλ1(k)(t )

+

⎛
⎜⎝1 + γ√

γ 2 − v2
0k2

⎞
⎟⎠ fλ2(k)(t )

⎤
⎥⎦, (57)

where λ1(k) = γ +
√

γ 2 − v2
0k2, λ2(k) = γ −

√
γ 2 − v2

0k2,
and the function fλ(k)(t, k) is given in Eq. (49) (with
c1 = 1). This result in Eq. (57) was announced in Eq. (9) in the
Introduction.
For later usage, it is also useful to consider the time-integrated
position distribution

Pr (x, t ) =
∫ t

0
pr (x, t ′)dt ′. (58)

The Fourier transform of Pr (x, t ) is given by

Qr (k, t ) =
∫ ∞

−∞
Pr (x, t )eikxdx =

∫ t

0
qr (k, t ′)dt ′. (59)

Using Eq. (57), we find

Qr (k, t ) = 1

2

⎡
⎢⎣
⎛
⎜⎝1 − γ√

γ 2 − v2
0k2

⎞
⎟⎠Fλ1(k)(t, k)

+

⎛
⎜⎝1 + γ√

γ 2 − v2
0k2

⎞
⎟⎠Fλ2(k)(t, k)

⎤
⎥⎦, (60)

where again λ1(k) = γ +
√

γ 2 − v2
0k2, λ2(k) = γ −√

γ 2 − v2
0k2, and Fλ(k)(t, k) is given in Eq. (48) (with

c1 = 1), namely,

Fλ(k)(t, k) = tM

(
λ(k)

r + λ(k)
, 2,−[r + λ(k)]t

)
, (61)

with M(a, b, z) given in Eq. (12).
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IV. EXACT COMPUTATION OF THE VARIANCE

From the exact Fourier transform of the position distri-
bution in Eq. (57), we can, in principle, compute all the
moments by making a small-k expansion. By symmetry, the
mean position is identically zero 〈x〉(t ) = 0 at all times. Thus
the variance is given by

Vr (t ) = 〈x2〉(t ) − [〈x〉(t )]2 = −d2qr (k, t )

dk2

∣∣∣∣
k=0

. (62)

To perform the small-k expansion of qr (k, t ), it turns out to be
convenient to work with the time-integrated Fourier transform
in Eq. (60). For small k, keeping terms up to O(k2), we get

1 − γ√
γ 2 − v2

0k2
	 −v2

0k2

2γ 2
, 1+ γ√

γ 2 − v2
0k2

	 2 + v2
0k2

2γ 2
.

(63)

Expanding the eigenvalues in Eq. (36) up to O(k2), we get

λ1(k) 	 2γ − v2
0k2

2γ
, λ2(k) 	 v2

0k2

2γ
. (64)

Using these expansions in Eq. (60), we get, after several steps
(see Appendix B for details),

Qr (k, t ) = t

{
1 − v2

0k2

4γ 2

[
−1 + M

(
2γ

r + 2γ
, 2,−(r + 2γ )t

)

− γ t 2F2({1, 1}, {2, 3},−rt )

]}
+ O(k4). (65)

Furthermore, it turns out that the function
2F2({1, 1}, {2, 3},−rt ) can be expressed in terms of
elementary functions as

2F2({1, 1}, {2, 3}, z) = − 2

z2
[ez − 1 − z + γE z + z�(0,−z)

+ z ln(−z)], (66)

where �(0, z) = ∫∞
z e−xdx/x for z > 0 and γE is Euler’s

constant.
Deriving Eq. (65) twice with respect to k and setting k = 0

gives the time-integrated variance∫ t

0
Vr (t ′)dt ′ = v2

0

2γ 2

[
−t + tM

(
2γ

r + 2γ
, 2,−(r + 2γ )t

)

+ 2γ

r2
g(rt )

]
, (67)

where

g(y) = 1 − e−y + y ln(y) + y
∫ ∞

y

e−x

x
dx − (1 − γE )y. (68)

Finally, taking a derivative with respect to t gives our final
exact expression for the variance, valid for all t and given by
Eq. (13) in the Introduction. In the limit r → 0, it is easy to
show, using M(1, 2, z) = (ez − 1)/z, that Eq. (13) reduces to
the known result in Eq. (3). One can also derive the asymptotic
behaviors of Vr (t ) for small and large t , as shown in Eq. (14).

V. LARGE-DEVIATION FORM AT LATE TIMES

While we cannot invert the Fourier transform qr (k, t ) in
Eq. (57) to obtain the position distribution pr (x, t ) in real
space for all t , we show in this section that we can make
progress at large times. We show below that pr (x, t ) indeed
admits an anomalous large-deviation form as in Eq. (15).
For large t , the asymptotic behavior of the Fourier transform
qr (k, t ) in Eq. (57) can be derived by using the following
property of M(a, b, z) [39]:

M(a, b,−z) 	 �(b)

�(b − a)
z−a as z → ∞. (69)

Using this result in Eq. (57), we find that for t � 1/(r + 2γ )
(and fixed k) the leading term of the Fourier transform qr (k, t )
decays as (up to a prefactor independent of time)

qr (k, t ) ∼
[(

1 + λ2(k)

r

)
rt

]−λ2(k)/[r+λ2(k)]

∼ (rt )−λ2(k)/[r+λ2(k)]

= e−λ2(k)/[r+λ2(k)] ln(rt ). (70)

The contribution coming from λ1(k) is subleading since
λ1(k) > λ2(k) in Eq. (36). Inverting formally the Fourier
transform (70) and using λ2(k) = γ −

√
γ 2 − v2

0k2, we get,
to leading order for large t ,

pr (x, t ) =
∫ ∞

−∞

dk

2π
e−ikxqr (k, t ) ∼

∫ ∞

−∞

dk

2π

× exp

⎛
⎜⎝−ikx −

γ −
√

γ 2 − v2
0k2

r + γ −
√

γ 2 − v2
0k2

ln(rt )

⎞
⎟⎠.

(71)

It is now convenient to make a change of variable
ikv0/

√
γ r = q (Wick’s rotation) and rewrite the k integral as

a Bromwich integral in the complex q plane

pr (x, t ) ∼
√

γ r

v0

∫
�

dq

2π i

× exp

[
− ln(rt )

(
1+ qz − R

1 + R −
√

1 + Rq2

)]
,

(72)

with R = r
γ

. The contour � runs vertically in the complex q
plane without a real shift and we have defined

z =
√

γ rx

v0 ln(rt )
. (73)

Let us first remark that pr (x, t ) in Eq. (71) is clearly symmet-
ric in x, or equivalently in Eq. (72) as a function of the scaled
variable z. Hence, without any loss of generality, we will just
consider the case z � 0.

Now, for large t , we can evaluate the integral in Eq. (72)
by the saddle-point method. This gives the desired large-
deviation form

pr (x, t ) ∼ exp[− ln(rt )�r (z)], (74)

where z =
√

γ rx
v0 ln(rt ) and the rate function �r (z) is symmet-

ric around z = 0, i.e., �r (−z) = �r (z). For z � 0, the rate
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(a) (b)

FIG. 3. (a) Analytical rate function �r (z) in Eq. (75) plotted against z (solid line) for fixed r = 0.1 and γ = 1 (or R = r/γ = 0.1); the
quadratic behavior at small z in Eq. (82) is displayed with a dashed line. (b) Same rate function at large z (solid line), with the leading
asymptotic form in Eq. (82) shown as a black dashed line. The red dashed line represents the leading term plus the first subleading correction.

function �r (z) is obtained from the following maximization,
i.e., the saddle-point analysis of Eq. (72):

�r (z) = sup
0�q�qmax

(
1 + qz − R

1 + R −
√

1 + Rq2

)
. (75)

Note that in the maximization over q above, the range of q is
limited over q ∈ [0, qmax], where qmax is given by

1 + R −
√

1 + Rq2
max = 0 or qmax = √

R + 2. (76)

To compute the rate function �r (z), we proceed as follows.
Let us first define

S(q, z) = 1 + qz − R

1 + R −
√

1 + Rq2
. (77)

Deriving with respect to q and setting it to zero, i.e.,
∂qS(q, z) = 0, gives q = q∗(z), where

z = q∗R2√
1 + R(q∗)2[1 + R −

√
1 + R(q∗)2]2

. (78)

Now evaluating the action S(q, z) at q = q∗ gives the rate
function

�r (z) = S(q∗(z), z) = 1 − R

1 + R −
√

1 + R(q∗(z))2

+ q∗(z)z, (79)

where z depends on q∗ through Eq. (78). We need to eliminate
q∗ from Eqs. (79) and (78) to express �r (z) as a function of z.
This can be done using a parametric plot in Mathematica that
lets us plot �r (z) as a function of z in Fig. 3(a). Note that we
have only plotted �r (z) for z � 0. For the negative argument,
we would simply use the symmetry �r (−z) = �r (z).

We can also derive the asymptotic behaviors of �r (z) as
z → 0 and z → ∞. To derive these behaviors, let us first
express �r (z) in a convenient form. Indeed, by taking a total

derivative of �r (z) in Eq. (79), we get

d�r (z)

dz
= q∗(z) + ∂qS(q, z)

∣∣∣∣
q=q∗(z)

dq∗(z)

dz
= q∗(z), (80)

where the last equality holds because the second term on the
rhs vanishes, as ∂qS(q, z) = 0 at the saddle point q = q∗(z).
Now integrating Eq. (80) with respect to z gives the exact
identity (assuming z � 0)

�r (z) =
∫ z

0
q∗(z′)dz′, (81)

where we used the fact that �r (z = 0) = 0. Thus, we need to
first solve q∗(z) implicitly as a function of z from Eq. (78)
and then use it in Eq. (81) to derive �r (z). This gives us
access to the asymptotic behaviors of �r (z). For example,
when z → 0, we get from Eq. (78) that q∗(z) 	 z. Hence,
from Eq. (81) we get �r (z) 	 z2/2. In contrast, when z → ∞,
we expect q∗ → qmax = √

2 + R defined in Eq. (76). Hence,
from Eq. (81) we obtain a linear growth �r (z) = √

R + 2z
for large z. By symmetry, it behaves as �r (z) = √

R + 2|z|
as z → −∞. In summary, using R = r/γ , the two asymptotic
limits are given by

�r (z) 	
⎧⎨
⎩

z2

2 as z → 0√
2 + r

γ
|z| as z → ±∞.

(82)

The quadratic form and the crossover to linear behavior as z
increases can be seen in Fig. 3(a). Figure 3(b) shows that the
rate function at large z tends to the linear form in Eq. (82). We
have also represented this asymptotic behavior plus the first
subleading correction, of order |z|1/2, giving very good agree-
ment with the actual �r (z). We have not attempted to perform
a comparison of the large-deviation function with numerical
simulations because of the very slow convergence toward the
large-t asymptotic limit. As already noted in Ref. [1], the
convergence to the Gaussian central part is extremely slow,
as the leading corrections are of the order of 1/ln(t ) and still
not negligible at the times that can be accessed numerically.
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The two asymptotic limits of the rate function �r (z) have
interesting physical implications. For z → 0, substituting the
quadratic behavior of �r (z) in the large-deviation form in
Eq. (74), we get

pr (x, t ) ∼ exp

(
− γ rx2

2v2
0 ln(rt )

)
for |x| 
 ln(rt ), (83)

which shows that the typical fluctuations of O(
√

ln(rt ))
around the mean are Gaussianly distributed. Moreover, the
variance v2

0ln(rt )/γ r matches perfectly with the leading
asymptotic growth of the variance in Eq. (14). Furthermore,
using Deff = v2

0/2γ , we recover, at late times, the Gaussian
behavior with variance (2Deff/r)ln(rt ) as in ordinary diffu-
sion with the same memory-dependent resetting [1,13]. This is
expected since at very late times the active dynamics is known
to effectively behave as a standard diffusion with an effective
diffusion constant Deff = v2

0/2γ .
In the opposite limit |z| → ∞, we get, by substituting the

linear behavior (82) into the large-deviation form (74),

pr (x, t ) ∼ exp

(
−

√
r(r + 2γ )

v0
|x|
)

for |x| � ln(rt ). (84)

This result may, at first glance, look surprising because it says
that very far away from the center, i.e., for |x| � ln(rt ), the
distribution actually becomes time independent at late times.
However, this is what one would expect in hindsight. At late
times, the particle is essentially concentrated in a core region
around the origin of width

√
ln(rt ). Seen from very far away

from the core, the dynamics essentially reduces to an active
particle that is reset effectively to the origin. This later prob-
lem was studied in Ref. [19] and the authors demonstrated that
the position distribution approaches a stationary form at late
times which happens to exactly coincide with Eq. (84). Thus
it is quite natural that pr (x, t ) in our problem, for |x| � ln(rt ),
becomes stationary as shown by Eq. (84). In Appendix A we
show that the results of this section are consistent with the
recent findings of Ref. [17].

VI. CONCLUSION

We have studied an active diffusion model with memory
in one spatial dimension, in which a self-propelled particle
moves at constant speed v0 and switches direction stochasti-
cally at rate γ . Memory effects are implemented through a
protocol where the particle interrupts its active motion and
resets at rate r to positions and velocities that were occupied
at previous times. More specifically, during a time interval
[t, t + dt], with probability rdt the particle chooses a time
t ′ in the past, uniformly distributed in [0, t], and takes the
position and velocity it had at time t ′, before continuing
its active motion from there. This model extends previous
studies that considered random walks or Brownian particles
with similar resetting protocols [1,11–13]. The case studied
here also differs significantly from the same active process in
which resetting occurs to a unique position, e.g., the starting
position [19], due to the fact that it lacks a steady state.
The memory rule makes the particle return more often to

positions frequently occupied (typically near its starting po-
sition), generating a diffusive process in which the variance of
the position grows very slowly with time, but without being
arrested asymptotically.

We have calculated exactly the distribution of the posi-
tion of the particle in Fourier space, extending the results of
Ref. [13] for Brownian motion. While we were not able to
invert this Fourier transform, we used it to calculate exactly
the full time dependence of the variance of the position. The
interplay between activity and memory leads to a variance
growing as t2 at short times and as ln(rt ) as long times, this
latter regime being a fingerprint of preferential visit models.
The knowledge of the position distribution, whose central
part becomes Gaussian at long times, allowed us to derive
a large-deviation principle and to study the rate function ex-
plicitly for this type of process. At distances much larger
than a typical scale ln(rt ), the distribution of the position
becomes exponential, independent of time, and coincides with
the nonequilibrium steady state produced by resetting an
active particle to its starting position only.

This problem could be generalized in several directions
in the future, for instance, to other protocols such as those
involving periodic resetting. The results recently derived in
Ref. [17] for large deviations could be applied to this case and
many others. Systems of many independent particles become
correlated over time when subject to simultaneous resetting
[48,49]. How correlations are built though resetting in pref-
erential revisit models is also a question that deserves further
study.
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APPENDIX A: QUENCHED LARGE-DEVIATION
PRINCIPLE FOR BROWNIAN AND ACTIVE

PARTICLES WITH MEMORY

We show that our results on large deviations, in particular
the expression (75) of the rate function, can be derived by an
alternative method using a recent theorem of Boci and Mailler
valid for a more general class of processes with preferential
revisits [17]. We first recall briefly their main results. Let
z(t ) be a Markov process and L = {Li}i∈N an infinite set of
independent and identically distributed positive random vari-
ables, each distributed via φ(L). The Li’s represent the time
intervals between successive resetting events. During each
such interval the position of the walker x(t ) evolves freely
according to the process z(t ). When the nth resetting occurs
(at time tn =∑n

i=1 Li), the walker randomly chooses a time
in the past t ′ ∈ [0, tn] with a normalized probability density
μ(t ′)/
∫ tn

0 dt μ(t ), where μ is a given function, and relocates to
the position it occupied at that time, i.e., x(tn) = x(t ′). From
there, x continues to evolve as z until the next resetting at
time tn+1. While we take a uniform kernel μ(t ′) = 1, Boci and
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Mailler considered a more general form

μ(t ′) = α

t ′ (ln t ′)α−1eβ(ln t ′ )α , (A1)

which reduces to the uniform case when α = β = 1.
The next goal is to find a large-deviation principle for the

position x(t ), given that a large-deviation principle exists for
the underlying free Markov process z(t ) between two reset-
tings. The prescription of Boci and Mailler for computing
this large-deviation principle proceeds via three steps (here
we simplify the notation of Ref. [17] to adapt to the language
of physicists).

(i) One first assumes that the free Markov process z(t )
admits a large-deviation principle, i.e., there exists a function
�(ζ ) such that

lim
t→∞

1

t
ln〈eζ z(t )〉 = �(ζ ) (A2)

for all ζ and with z(t = 0) fixed. This simply means that, to
leading order for large t ,

〈eζ z(t )〉 ∼ exp[t�(ζ )]. (A3)

(ii) The next step is to compute the generating function g(ξ )
for all ξ ,

g(ξ ) ≡ 〈eξL − 1 − ξL〉
ξ 〈L〉 =

∫∞
0 (eξL − 1 − ξL)φ(L)dL

ξ
∫∞

0 Lφ(L)dL
,

(A4)

where we recall that φ(L) is the distribution of the interval L
between two successive resets.

(iii) Knowing the two functions �(ζ ) and g(ξ ) from above,
the final step consists in computing the Legendre transform

�(w) = sup
y

[wy − g(�(y))]. (A5)

Once �(w) is computed, the Boci-Mailler theorem states
that under rather mild conditions the position x(t ) satisfies
a quenched large-deviation principle, i.e., conditioned on the
Li’s. For all w > 0, this principle can be written as

lim
t→∞

ln{Prob[|x(t )| � ws(t )|L]}
s(t )

= − inf
y�w

�(y) = −�(w),

(A6)

where the last equality assumes that �(y) is a monotonically
increasing function of y. The scaling factor s(t ) is given by

s(t ) = (ln t )α if β �= 0. (A7)

In the language of physicists, the statement in Eq. (A6) simply
means that to leading order in large t , the cumulative position
distribution behaves as

Prob[|x(t )| � X ] ∼ exp

[
−(ln t )α�

(
X

(ln t )α

)]
, (A8)

where the rate function �(w) is computed from Eq. (A5). For
the uniform memory kernel where α = 1 and β = 1, Eq. (A8)
takes precisely our large-deviation form in Eq. (74).

The results in Eqs. (A8) and (A5) were derived in Ref. [17]
by a very different probabilistic method, namely, a mapping
of the memory-induced resetting random walk to a weighted
random recursive tree. This is a quenched principle in the

sense that the averages are not taken over L. The authors of
Ref. [17] nevertheless believe that the same principle should
hold in the more difficult annealed case, provided φ(L) decays
to 0 fast enough at large L. Below we apply this general
prescription to compute the large-deviation principle in two
simple cases. In both cases, we assume

φ(L) = re−rL for L � 0, (A9)

where r represents the resetting rate.
(i) When the underlying free process z(t ) is a standard

Brownian motion in one dimension. We first compute �(ζ )
in Eq. (A2). This is easy since

〈eζ z(t )〉 =
∫ ∞

−∞

dz√
4πDt

eζ z−z2/4Dt = eDtζ 2
, (A10)

implying from Eq. (A2) that

�(ζ ) = Dζ 2. (A11)

Next, substituting φ(L) from Eq. (A9) in (A4), it is easy to see
that

g(ξ ) =
{

ξ

r−ξ
if ξ < r

∞ if ξ � r.
(A12)

We use Eq. (A5) with the functions �(ζ ) and g(ξ ) explicitly
given by Eqs. (A11) and (A12), respectively, and obtain, for
the Brownian motion with memory-induced resetting,

�BM(w) = sup
0<y<

√
r/D

(
wy − y2

r/D − y2

)
for w � 0.

(A13)

The rate function �BM(w) is symmetric in w; hence it suffices
just to consider w � 0. We note that the function inside the
supremum in (A13) diverges at y = √

r/D, thus making the
allowed interval for y bounded. This is similar to the situation
we encountered in Eq. (75) before. It is a consequence of
Eq. (A12) and of the fact that φ(L) does not decay faster than
an exponential at large L.

The above result for the Brownian case can also be derived
from our active particle calculation by setting r 
 γ , i.e.,
by expanding Eq. (75) at first order in R. Then, recalling
that Deff = v2

0/2γ and z = √
r/2Deff(x/ ln t ) in the notation

of Sec. V, we make the change of variables x/ln t → w and√
r/2Deffq → y in Eq. (75) and actually recover Eq. (A13)

with D = Deff.
Although the maximization of Eq. (A13) cannot be carried

out explicitly, we can study the behavior of �BM(w) at small
and large w, in the same way as in Sec. V. It is easy to show
that �BM(w) has the asymptotic behaviors

�BM(w) 	
{

r
4Dw2 as |w| → 0√ r

D |w| as |w| → ∞.
(A14)

Consequently, Eq. (A8) gives

Prob[|x(t )| > X ] ∝
⎧⎨
⎩exp
(
− X 2

4D
r (ln t )α

)
as X 
 (ln t )α

exp(−√ r
D X ) as X � (ln t )α.

(A15)
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This result agrees with Eq. (83) with D in (A15) replaced by
Deff = v2

0/2γ and α = 1, while the large deviations are again
independent of time at large X and coincide with the nonequi-
librium steady state of a Brownian particle under stochastic
resetting to the origin only [2].

(ii) When the underlying process z(t ) corresponds to a free
run-and-tumble particle in one dimension. Here z(t ) is the
position of the active particle driven by the telegraphic noise.
Although this process is non-Markov, we may still try to apply
the general prescriptions in Eqs. (A3)–(A6) to this case.1 To
compute �(ζ ) for the active particle, we start from the general
relation

〈eζ z(t )〉 =
∫ ∞

−∞
dz eζ zP(z, t ) ∼ e�(ζ )t , (A16)

where P(z, t ) is the position distribution of the active parti-
cle at time t . As the exact expression for P(z, t ) is not so
simple [see Eq. (5)], we rather take the Laplace transform of
Eq. (A16) with respect to t and get∫ ∞

−∞
dz eζ zP̃(z, s) ∼ 1

s − �(ζ )
, (A17)

where s > �(ζ ) and P̃(z, s) = ∫∞
0 dt e−st P(z, t ). Therefore,

�(ζ ) is the largest real pole of the integral on the left-
hand side of Eq. (A17). This integral can be calculated
from the known expression for P̃(z, s) (see, e.g., [19]), given
explicitly by

P̃(z, s) = λ(s)

2s
e−λ(s)|z|, (A18)

with λ(s) = √
s(s + 2γ )/v0. We then obtain∫ ∞

−∞
dz eζ zP̃(z, s) = λ(s)

2s

(
1

λ(s) − ζ
+ 1

λ(s) + ζ

)
. (A19)

Assuming ζ > 0 without loss of generality (since the active
particle process is symmetric), a pole is contained in the first
term on the rhs of Eq. (A19),

1

λ(s) − ζ
	 1

λ′(s∗)(s − s∗)
, (A20)

where s∗ is the largest root of the equation λ(s) − ζ = 0.
Identifying s∗ with �(ζ ), we deduce from Eq. (A18)

�(ζ ) = −γ +
√

γ 2 + v2
0ζ

2. (A21)

Inserting this expression in Eq. (A5) with g(ξ ) given by
Eq. (A12), the rate function becomes

�active(w) = sup
0<y<ymax

⎛
⎜⎝wy −

√
1 + v2

0
γ 2 y2 − 1

1 + R −
√

1 + v2
0

γ 2 y2

⎞
⎟⎠, (A22)

with R = r
γ

. By making the same changes of variable as in
the Brownian motion case above, we see that Eq. (A22) is
equivalent to Eq. (75).

1We may consider the active process as a two-dimensional Markov
process Z(t ) = (z(t ), σ (t )). The Boci-Mailler theorem applies with
〈eζ·Z(t )〉 in Eq. (A2) with ζ = (ζz, ζσ ). In the analysis, we then set
ξσ = 0.

APPENDIX B: SMALL-k EXPANSION OF Qr(k, t )
UP TO ORDER 2

Substituting the small-k expansions (63) and (64) in the
expression (60) of Qr (k, t ), we get

Qr (k, t ) 	 t

2

[
−v2

0k2

2γ 2
M

(
λ1(k)

r + λ1(k)
, 2,−[r + λ1(k)]t

)

+
(

2 + v2
0k2

2γ 2

)
M

(
λ2(k)

r + λ2(k)
, 2,−[r + λ2(k)]t

)]
.

(B1)

Since we are interested in the expansion only up to O(k2) for
small k, we can now put k = 0 in the arguments of the function
M in the first term on the rhs of Eq. (B1), i.e.,

M

(
λ1(k)

r + λ1(k)
, 2,−[r + λ1(k)]t

)

	 M

(
2γ

r + 2γ
, 2,−(r + 2γ )t

)
. (B2)

For the second term on the rhs of Eq. (B1), we need to
expand the arguments of M for small k. Using Eq. (64),
we get

λ2(k)

r + λ2(k)
	 v2

0k2

2γ r
, r + λ2(k) 	 r + v2

0k2

2γ
. (B3)

Thus the M function in the second term on the rhs in Eq. (B1)
reduces to

M

(
λ2(k)

r + λ2(k)
, 2,−[r + λ2(k)]t

)

	 M

(
v2

0k2

2γ r
, 2,−
(

r + v2
0k2

2γ

)
t

)
. (B4)

We now need to expand this function for small k up to
O(k2). This is a bit tricky. We first expand the third argument
of M in Eq. (B4) and get

M

(
λ2(k)

r + λ2(k)
, 2,−[r + λ2(k)]t

)

	 M

(
v2

0k2

2γ r
, 2,−rt

)
− v2

0k2

2γ
t∂zM

(
v2

0k2

2γ r
, 2, z

)∣∣∣∣
z=−rt

.

(B5)

Using the identity ∂zM(a, b, z) = (a/b)M(a + 1, b + 1, z),
we see that the second term in Eq. (B5) is of O(k4) for small
k. Hence we can neglect the second term, and up to O(k2)
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we get

M

(
λ2(k)

r + λ2(k)
, 2,−[r + λ2(k)]t

)
	 M

(
v2

0k2

2γ r
, 2,−rt

)
.

(B6)

Now we need to expand the rhs of Eq. (B6) for small
k. For this, it is useful to use the small-a expansion
of M(a, b, z),

M(a, b, z) = 1 + a

b
z 2F2({1, 1}, {2, 1 + b}, z) + O(a2), (B7)

where 2F2 is the generalized hypergeometric function. Hence,
from Eq. (B6) we get

M

(
λ2(k)

r + λ2(k)
, 2,−[r + λ2(k)]t

)
	 1

− v2
0k2

4γ
t 2F2({1, 1}, {2, 3},−rt ). (B8)

Collecting all these expansions together into Eq. (B1), we
finally get the small-k expansion of Qr (k, t ) given by Eq. (65).
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