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Permutation time irreversibility in sleep electroencephalograms: Dependence on sleep stage
and the effect of equal values
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Time irreversibility (TIR) refers to the manifestation of nonequilibrium brain activity influenced by various
physiological conditions; however, the influence of sleep on electroencephalogram (EEG) TIR has not been
sufficiently investigated. In this paper, a comprehensive study on permutation TIR (pTIR) of EEG data under
different sleep stages is conducted. Two basic ordinal patterns (i.e., the original and amplitude permutations) are
distinguished to simplify sleep EEGs, and then the influences of equal values and forbidden permutation on pTIR
are elucidated. To detect pTIR of brain electric signals, five groups of EEGs in the awake, stages I, II, III, and
rapid eye movement (REM) stages are collected from the public Polysomnographic Database in PhysioNet. Test
results suggested that the pTIR of sleep EEGs significantly decreases as the sleep stage increases (p < 0.001),
with the awake and REM EEGs demonstrating greater differences than others. Comparative analysis and numer-
ical simulations support the importance of equal values. Distribution of equal states, a simple quantification of
amplitude fluctuations, significantly increases with the sleep stage (p < 0.001). If these equalities are ignored,
incorrect probabilistic differences may arise in the forward-backward and symmetric permutations of TIR,
leading to contradictory results; moreover, the ascending and descending orders for symmetric permutations
also lead different outcomes in sleep EEGs. Overall, pTIR in sleep EEGs contributes to our understanding of
quantitative TIR and classification of sleep EEGs.
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I. INTRODUCTION

The human brain, which contains large numbers of
neurons and interacts with other physiological organs [1,2],
is a highly complex system. Brain activity exhibits evidently
nonlinear, nonequilibrium properties and is influenced by var-
ious internal and external factors. Sleep is a vital physiological
activity for living beings; various changes occur in the phys-
iological systems during sleep, with brain electric activities
demonstrating pronounced changes. Therefore, the complex
characteristics of sleep electroencephalograms (EEGs) can
help in analyzing the sleep mechanisms [3,4]. Various non-
linear methods, such as fractal approaches and detrended
fluctuation analysis, have been used to explore the dynamics
of EEGs during different sleep stages. Entropy measures [5,6]
are widely employed to detect the complexity of sleep brain
signals, such as the Shannon entropy [7,8], sample entropy
[9,10], and multiscale entropy [11]. Among these complex
characteristics, the loss of time reversibility is a manifes-
tation of nonequilibrium brain electric activity [12,13] and
has been applied to several neural pathological conditions,
including epilepsy [14–16], Alzheimer’s disease [17], and
alcoholism [18].

Time irreversibility (TIR) [19], also defined as tempo-
ral asymmetry (TAS) [20], is an important characteristic
of nonequilibrium EEGs. To quantity TIR, the probabilistic
differences between the forward-backward processes or sym-
metry vectors must be measured [19–21]; both are nontrivial.
In real-world signal processing, TIR is generally quantified

by coarse-graining the time series. Probabilistic differences
between up and down were introduced by Costa [22,23], Porta
[24], and Ehlers et al. [25,26] as simplified temporal asym-
metries. Lacasa et al. [27–29] estimated the irreversibility
considering the distinguishability between the in-out distribu-
tions of the visibility graph [30]. The in-out difference was
then employed to detect irreversible characteristics in effective
interactions and particular networked connectivity [31,32].
Given nonequilibrium statistical mechanics in neuronal spike
trains, the network inference and couplings of asymmetric
models were investigated via asynchronous update [33,34].
Symbolic TIR based on a way of coarse-graining or reduction
of description is widely adopted in quantitative TIR owing to
its computational effectiveness and simplified statistical anal-
ysis [35,36]. Among these coarse-graining methods, ordinal
patterns convey structural dynamics and do not impose further
model assumptions [37–40]; thus, they are popular in the
quantification of TIR [14–18]. However, several challenges
are observed in permutation TIR (pTIR). It should be noted
that there are two basic ordinal patterns, i.e., original permu-
tation and amplitude permutation; they differently reflect the
structural dynamics of any series [40]. Amplitude permuta-
tion directly reflects the vector temporal structure, while the
application of original permutation might result in conceptual
errors in pTIR [15,41,42]. Forbidden permutation refers to
the missing ordinal pattern in the simplified transformation
of a temporal structure. Amigo et al. [43–45] extensively
analyzed the features of these forbidden ordinal patterns and
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proposed several methods for chaotic determination in real-
world time series analysis. The distributions of forbidden
permutation convey important system information, such as
chaotic dynamics, correlation, and nonlinearity [46–49]. For-
bidden permutation is an adverse factor in pTIR because it
generates individual permutations and make division-based
parameters (e.g., the Kullback-Leibler distance) unsuitable to
calculate the probabilistic difference between forbidden and
individual permutations [14,15,41,42]. Equal value is another
implicated factor because it significantly affects the construc-
tion of ordinal patterns and permutation analysis. Ma et al.
[50] focused on the indexes of equal values in permutation
and modified them into the same symbol (rank) for a more
accurate characterization of the system structure. Zunino et al.
[51] reported erroneous conclusions on permutation entropy
(PEn) in the event of equalities in time series; David et al.
[52] further identified the weakness of PEn, i.e., the possible
ambiguities introduced by equal values in the subsequences.
However, the influence of equal values on pTIR has not been
sufficiently analyzed. Equal values are generally assumed to
be rare if a process has a continuous distribution [37]. This is
partly true; however, equal values are observed in physiolog-
ical signals such as heartbeats [53,54] and raw EEGs [55,56],
and they significantly impact permutation analysis. Moreover,
equal values might generate self-symmetry vectors containing
important physical implication (i.e., time reversibility or tem-
poral symmetry) in TIR and produce contradictory findings in
real-world series analysis [53,54]. Furthermore, the different
treatment of equal values might lead to inconsistencies be-
tween forward-backward and symmetric permutations, thus
yielding differences in the quantification of TIR and TAS of
time series. Therefore, the effects on the pTIR during signal
processing, particular the TIR and TAS in real-world series
analysis, should be comprehensively studied. Owing to these
unfavorable factors in the quantification of TIR, the time irre-
versible characteristics of sleep EEGs have not been given the
deserved attention.

To address this problem, a comprehensive analysis of pTIR
and its application in sleep EEG classification is performed.
Accordingly, two basic ordinal patterns are compared to sim-
plify the time series, and several crucial factors in pTIR are
clarified. Subsequently, the distributions of equal values and
individual permutations that affected the pTIR of sleep EEGs
are detected. For comparison, nonequal permutations of TIR
are employed, and PEn is applied to evaluate the complexity
of sleep EEGs. Furthermore, several issues are discussed such
as equal values in sleep EEGs and the relationship between
entropy and TIR. The contributions of this research are as
follows: (1) it elucidates the key factors of pTIR in physi-
ological signal processing, especially the influence of equal
values, (2) it explores the time irreversible characteristics of
EEGs under different sleep conditions, which is helpful for
sleep classification.

II. METHODS

A. Time irreversibility

A process is defined as time reversible if it is invariant
under the reversal of the timescale; otherwise, it is time ir-

reversible. Given below are two statistical definitions of time
reversibility:

Definition 1. According to Weiss [19], a stationary pro-
cess, X (t ), is time reversible if {X (t1), X (t2), . . . , X (tm)} and
{X (−t1), X (−t2), . . . , X (−tm)} have the same joint probabil-
ity distributions for every t1, t2, . . . , tm and m; otherwise, X (t )
is time irreversible.

Definition 2. Based on the works of Kell [20], if X (t )
is time reversible, {X (t1), X (t2), . . . , X (tm)} and {X (−t1 +
n), X (−t2 + n), . . . , X (−tm + n)} have the same probabil-
ity distributions for every t1, t2, . . . , tm and n. Particularly,
under n = t1 + tm, symmetric {X (t1), X (t2), . . . , X (tm)} and
{X (tm), . . . , X (t2), X (t1)} have the same joint probabilities.
Moreover, the symmetric form of a vector is the same as its
counterpart in the time-reversal series. Therefore, TIR is also
defined as TAS.

To quantify the TIR or TAS of a process, the forward-
backward probabilistic difference and symmetric vectors’
probabilistic divergence should be equivalent [21]; however,
their applications in real-world processes are different [14,15].
The forward-backward approach for TIR is operationally con-
venient and more reliable in application. Meanwhile, it should
have the entire process to obtain the reversed one, which is
not feasible if the process is large or uninterrupted; therefore,
TIR based on forward-backward differences does not satisfy
the real-time requirement. By contrast, TAS based on the
probabilistic difference of symmetric vectors demonstrates
real-time performance; therefore, it has higher applicability in
physiological and environmental condition monitoring. Note
that TAS based on symmetric vectors has a limitation, i.e.,
the vector should be faithfully associated with its alternative;
otherwise, conceptual misleading may occur [15,41,42].

B. Original and amplitude permutations

TIR can be measured by alternatively calculating the joint
probabilistic differences of simplified processes instead of the
raw process. Among these simplified measures, pTIR is par-
ticularly popular. The ordinal pattern comes naturally from the
series and does not pose further model assumptions [37,40];
hence, it plays an important role in quantitative TIR.

According to the representation of a vector structure, there
are two basic ordinal patterns, i.e., the original permutation
(OrP) and amplitude permutation (AmP) [40,42]. The OrP
consists of the indexes of reorganized values in the orig-
inal series, while the AmP comprises the positions of the
original values in the reordered series. Given series X (i) =
{x(i1), . . . , x(ii ), . . . , x(im)}, it is reordered in the ascending
or descending order to X ( j) = {x( j1), . . . , x( j j ), . . . , x( jm)},
e.g., increased as x( j1) < · · · < x( j j ) < · · · < x( jm). Then,
the OrP and AmP are generated according to the organized
indexes of the original and reordered series as

OrP : (x1, j, . . . , xi−1, j, xi, j, xi+1, j, . . . , xm, j ),

AmP : (xi,1, . . . , xi, j−1, xi, j, xi, j+1, . . . , xi,m ). (1)

In the construction of OrP, i increases from 1 to m and j
is the location of reorganized values in the original series
X (i), i.e., OrP j = ( j1, j2, . . . , ji−1, ji, ji+1, . . . , jm−1, jm). In
the generation of AmP, j increases from 1 to m and i is
the position of original values in the reordered series X ( j),
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FIG. 1. OrP and AmP of triple-value series. AmPs are bold and underlined. Indexes of red equal values in the ascending order are modified
to be the smallest ones in their corresponding groups. (a) OrPs and AmPs of all-up, all-down, and all-equal vectors are always the same.
(b) Symmetric AmPs of time-symmetric (y axis) series are connected by dashed black arrows; symmetric OrPs of x-axis symmetric series are
connected by solid red arrows. (c) AmPs of time self-symmetry vectors are symmetric.

i.e., AmPi = (i1, i2, . . . , i j−1, i j, i j+1, . . . , im−1, im). Taking a
series with five values X (i) = {5, 1, 7, 3, 9} as an example, the
reordered series can be represented as X ( j) = {1, 3, 5, 7, 9} in
the ascending order. The indexes of reorganized X ( j) values
in the original X (i) is OrP = (2, 4, 1, 3, 5); the positions of
the original X (i) values in the reorganized X ( j) is AmP =
(3, 1, 4, 2, 5).

Equal values are not rare in real-world signals and are
usually generated owing to limitations in signal collection
[55,56], especially the quantization error in analog-to-digital
conversion (ADC). Equal values have an important role
in the construction of ordinal patterns and permutation
analysis [50–54]; therefore, their indexes in ordinal pat-
terns should be improved accordingly. If there are equal
values in series X (i), they can be organized in neigh-
boring orders according to their order of occurrence;
for example, · · · < x(i1, j1) = x(i2, j2) < · · · < x(i3, j3) =
x(i4, j4) = x(i5, j5) < · · · . Then, the indexes of equal val-
ues can be rewritten to be the same in each group, such as
to the smallest indexes as · · · < x(i1, j1) = x(i1, j1) < · · · <

x(i3, j3) = x(i3, j3) = x(i3, j3) < · · · [50] or the largest ones
as · · · < x(i2, j2) = x(i2, j2) < · · · < x(i5, j5) = x(i5, j5) =
x(i5, j5) < · · · , and modify the OrP and AmP accordingly.
Further taking a series with five values X (i) = {5, 1, 9, 1, 7}
as an example, the second “1” could be treated as “2” accord-
ing to its order of occurrence; then, the OrP and AmP become
(2,4,1,5,3) and (3,1,5,2,4) in the ascending order, respectively.
In equal-value ordinal patterns, the indexes of equal values are
modified to be the smallest; consequently, the OrP and AmP
are improved to be (2,2,1,5,3) and (3,1,5,1,4), respectively.
Without equal values, if the length of the series is m, there
exist m! ordinal patterns, and there are more motifs if the
equality is considered. Equal-value permutation is necessary
for the comprehensive reflection of the series’ temporal struc-
ture [40,42]. Figure 1 illustrates the structures of triple-value
series and their OrPs and AmPs.

Figure 1 displays the comprehensive temporal structures
of triple-value series where equal values have an important
role. Furthermore, OrP and AmP are two basic ordinal pat-
terns that differently convey the temporal structure of the
series [40]. AmP directly reflects the temporal structure of

the series because its elements directly correspond to the
amplitude of the original sequence element. Therefore, AmPs
of symmetric vectors (e.g., y axis or time symmetric) are all
symmetric in Fig. 1, and AmPs of the three temporally self-
symmetric vectors are also self-symmetric. By contrast, OrP
indirectly reflects the original series structure owing to targets
on the reordered series, and OrPs of amplitude-symmetric
(i.e., x-axis symmetry) series are symmetric. The differences
between OrP and AmP differently affect permutation anal-
ysis. When ordinal patterns are used as an alternative label
or symbol of the series, there are no differences between the
two basic permutations, such as in PEn [8,37]. Otherwise, if
ordinal patterns are constructed as a direct replacement of the
series structure, OrP and AmP should be dealt with carefully
to avoid possible errors, such as in pTIR [15,41,42]. In this
study, AmP is used as a direct alternative for the temporal
structure of the series to avoid possible errors in pTIR.

C. Permutation time irreversibility

Permutation TIR is the probabilistic difference between
forward-backward or symmetry permutations as an alternative
to the original series. Owing to the advantages of ordinal pat-
terns and their application in quantitative TIR, pTIR is widely
used in time series analysis. In real world signal analysis,
the application of pTIR encounters some challenges, as listed
below:

(1) OrP is not a direct reflection of the temporal structure
of vectors, as shown in Fig. 1, and its effect on TAS is such that
if the probabilistic difference between symmetric vectors is
calculated, symmetric OrPs should not be used. The AmPs of
time-symmetric vectors are symmetric, and symmetric AmPs
could be employed as alternatives for evaluating TIR [40].
Meanwhile, the OrPs of amplitude-symmetric vectors are
symmetric, and symmetric OrPs should be employed as alter-
natives for measuring amplitude irreversibility [15,42]. When
measuring the joint probabilistic difference of the forward-
backward process for TIR, there is no difference between the
OrP and AmP. Overall, AmP directly reflects the temporal
structure of vectors and is recommended for pTIR.

(2) The consideration of equal values is necessary to con-
struct comprehensive and reliable vector structures; more
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importantly, equal values can generate self-symmetric vectors.
Self-symmetric vectors, e.g., the vectors and their AmPs in
boxes in Figs. 1(a) and 1(c), have a special physical impli-
cation, i.e., time reversibility or temporal symmetry [40,42].
Furthermore, equal values widely exist in physiological data
(either directly collected EEGs or indirect heartbeats derived
from electrocardiography) owing to the nonlinear and irre-
versible quantization process of signal collection [53,55,56].
Therefore, equal values should not be broken by adding small
random perturbations or ranked according to their order of
appearance, and their indexes in ordinal patterns should be
modified accordingly.

(3) Forbidden permutations are a special type of forbid-
den symbol, i.e., symbols that do not exist for a process.
Forbidden permutations are closely related to system char-
acteristics [43–49], but they negatively impact quantitative
TIR. Among the pairs of permutations for quantitative TIR,
if there exists a forbidden permutation, its corresponding
permutation is an individual permutation. The mathematical
difference between the probabilities of forbidden and indi-
vidual permutations is zero or infinite if using division-based
parameters, such as the Kullback-Leibler distance. There-
fore, such division-based parameters are not suitable for
quantitative TIR [14,15,41,42]. It is recommended to use
subtraction-based parameters, such as Ys in Eq. (2), in quan-
titative TIR to calculate the probabilistic differences, where
pi and p j probability of corresponding permutations and pi

should not be less than p j .

Ys〈pi, p j〉 = pi
pi − p j

pi + p j
. (2)

(4) TIR and TAS are statistically consistent; theoretically,
the probabilistic differences between symmetric permutations
and those between forward-backward permutations should be
the same. However, the existence of equal values and the tra-
ditional treatment that ranks them according to their order of
emergence make TIR and TAS different. Figure 2 illustrates a
comparative construction of nonequal and equal-value AmPs
considering equal values.

As evident in Fig. 2, nonequal AmP represents a temporal
structure of vector without equal values. Equal values are
transformed into “false up” in nonequal ordinal patterns and
their symmetric permutation is “real down,” but their corre-
sponding permutations in the backward series are “false up”
and “real up.” Note that “real down” in the forward series is
“real up” in the backward series; moreover, the probability
distributions of “up” in the forward and backward series are
both incorrect. Furthermore, if there are equal values in the
process and nonequal permutation is applied, neither TIR nor
TAS can be correctly quantified; in addition, the AmPs of
symmetric and forward-backward vectors are not the same,
leading to inconsistent and even contradictory TIR and TAS
in the quantitative nonequilibrium of signal processing, which
will be confirmed in this study.

III. RESULTS

EEG is a typically complex signal and subject to differ-
ent physiological activities. In this section, EEG data under
different sleep conditions are collected from the publicly

(1,1,1)

(1,2,2) (2,2,1) (3,1,1) (1,1,3)

(2,1,2)(1,3,1)

(1,2,3)

(1,2,3) (1,2,3)(2,3,1) (3,1,2)

(1,3,2) (2,1,3)

equal-value

nonequal

FIG. 2. AmPs of triple-value series considering equalities. Equal
values are represented in red and the crossed greens are their alterna-
tives according to their order of occurrence in the ascending order. In
equal-value AmPs (bold and underlined), indexes of red equal values
are modified to be the smallest in their corresponding groups.

available PhysioNet [57] to test the sleep stages on pTIR.
The probabilistic differences of AmPs are calculated using the
subtraction-based Ys to quantify TIR; TIR and TAS based on
equal-value AmP are denoted pTIR and pTAS, while those
based on nonequal AmP are denoted noeTIR and noeTAS,
respectively.

A. Sleep EEGs

The MIT-BIH Polysomnographic Database is a collection
of sleep physiologic data. This database contains information
related to the sleep physiological signals of 16 male subjects
(age ranging from 32 to 56, mean age 43; weight ranging from
89 to 152 kg, mean weight 119 kg). The database contains
over 80 h of four-, six-, and seven-channel polysomnographic
recordings, with a standard expert annotation for sleep stages
after every 30 s according to the criteria of Rechtschaffen
and Kales [58]. EEG signals are recorded from the C4-A1,
O2-A1, or C3-O1 channel at a sampling rate of 250 Hz and
12-bit quantization. Referring to the annotation files, sleep
EEGs in five stages, i.e., awake and sleep stages 1 (SI),
2 (SII), 3 (SIII), and rapid eye movement (REM) are extracted;
each stage contained 45 sets of EEG signals with a duration
of 60 s (15 000 points) after visual inspection for artifacts.
More detailed information can be found in Refs. [57,59]. The
nonparametric Mann–Whitney U test is performed to test the
statistical differences in pTIR between each of the two stages
of sleep EEGs, and Kruskal–Wallis analysis of variance is
applied to measure those in pTIR of sleep EEGs in five stages.

Equal values play an important role in the construction of
ordinal patterns and might significantly change the probability
distribution of permutations; moreover, they convey important
physical implication, i.e., time reversibility [14,15,40,42]. The
distribution of equal states (DES) [55] is measured by Eq. (3),
where L denotes the length of series, N (s(t ) = s(t + τ )) rep-
resents the number of neighboring equal states with delay τ .
The states of DES indicate EEG values in this report. DES
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FIG. 3. Exemplary EEGs in awake, SI–SIII, and REM states and the distribution of equal states (mean ± standard error) of sleep EEGs. The
state in DES is the direct amplitude value during sleep EEGs. The symbole “#” indicates p < 0.0001 across all stages using the Kruskal–Wallis
test and “*” suggests p < 0.01 between each two stages of sleep EEGs using Mann–Whitney U test.

of five groups of sleep EEGs are shown in Fig. 3. DES is
given as

DES = N (s(t ) = s(t + τ ))

L − τ
. (3)

The results in Fig. 3 are consistent with those obtained in
our previous report on the distribution of equal values in
sleep EEGs [56]. Raw sleep EEGs have numerous neigh-
boring equal values. Although awake EEGs have minimum
equal values, their DES are 12%, and as the sleep stages
increase, the DES increase significantly; hence, REM EEGs
have almost 34% equal values. Under acceptable data record-
ing resolution, awake EEGs have larger amplitude fluctuations
that produce fewer neighboring equal values, and as the depth
of sleep increases, amplitude fluctuations of the brain’s elec-
trical activity decrease, thus significantly decreasing the DES.
Equal values are generated owing to the limitation of the
ADC, i.e., the zero-amplitude fluctuation [55,56]. Test results
suggest that the DES of EEGs under the five sleep condi-
tions are statistically significantly different (p < 0.01 for the
Mann–Whitney U test; p < 0.0001 for the Kruskal–Wallis
test), and the DES of REM EEGs are particularly different
between others (p < 0.000 01). Therefore, equal values not
only have important effects on pTIR, but their distribution
also serves as a simple parameter for time-domain feature
extraction and should not be ignored.

The existence of forbidden permutations makes division-
based parameters unsuitable for pTIR, and their distribution
has been widely proved to be closely associated with sys-
tematic information [43–49]. In sleep EEGs, all permutations
have their corresponding forms when m = 2 and 3, while the
distribution of individual permutations is rare when m = 4.
When m = 5 and larger, there exist forbidden as well as in-
dividual permutations. Furthermore, forbidden permutations
contain false forbidden permutations that do not exist because
the data length is short, and they decay with the sequence
length [44]. Considering false forbidden permutations, if the
selected EEG data length is short, the pTIR of classified sleep

EEGs might not be reliable. The distribution of individual
permutations (DIPs) is expressed in Eq. (4), where N (πI )
and N (π ) represent the amount of individual permutation πI

and existing permutation π , respectively. Taking m = 5 as an
example, the effect of data length on the DIPs of five groups
of sleep EEGs is illustrated in Fig. 4. DIP is given as

DIP = N (πI )/N (π ). (4)

Figure 4 shows that sleep EEG signals contain individual
permutations whose probability distributions are affected by
the signal length. With the increase in data length from 1 to
10 s (2500 points), the DIP values of sleep EEGs decrease
stepwise and tend to converge when the data length was larger
than 20 s (5000 points). Therefore, when the data length is
short, there exist false forbidden as well as false individual
permutations, and they decay when the data length increases.
The DIP is also related to sleep conditions when the EEG
length is more than 20 s. SIII and REM EEGs have larger
DIPs when awake and SI EEGs exhibit smaller DIPs. The
existence of forbidden and individual permutations suggests
that subtraction-based index is a necessity in quantitative TIR.
Moreover, the length of EEG signals cannot be too low; they
should be greater than 30 s in this study, otherwise these false
individual permutations will lead to unreliable pTIR for the
nonequilibrium analysis of sleep EEGs.

Overall, there are equal values and individual permutations
in sleep EEGs that affect pTIR analysis. Hence, the two
basic ordinal patterns must be distinguished considering the
necessity of equal-value permutation, the subtraction-based
probabilistic difference and requirement of data length also
should be paid attention to in the pTIR of sleep EEGs.

B. pTIR in sleep EEGs

Given the DIPs in sleep EEGs, dimension is set to two,
three, and four in an enumerative manner. The increase in de-
lay is equivalent to the reduction in signal sampling frequency,
i.e., 250/τ Hz [55,56]. To satisfy the Nyquist sampling rate
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FIG. 4. Distribution of individual permutations (mean ± standard error) of wake, SI–SIII, and REM EEGs.

(i.e., more than twice the signal band), the delay is set to 1–4,
thus maintaining sufficient information about sleep conditions
in EEG data. The pTIR of sleep EEGs in awake, SI–SIII, and
REM stages are shown in Fig. 5.

Contrary to the DES in Fig. 3, the pTIR of sleep EEGs
exhibit decreasing trends as the sleep depth increase, as shown
in Fig. 5. As the subjects come into sleep from wakefulness,
the pTIR of EEG signals significantly decrease; moreover,
as the sleep depth increase, the pTIR consistently decrease.
Particularly, when subjects enter the REM state, the pTIR
of EEGs show a considerable decrease. The choice of di-
mension and delay do not affect the trend of EEG’s pTIR
with the increasing sleep depth, but it affect the statistical
discriminations. According to statistical results, when m = 3
and τ = 1, the pTIR of EEGs in the five sleep stages exhibit
optimal classification (p < 0.0001 for Kruskal–Wallis test).
As shown in Fig. 5, more significant reductions are observed
in the pTIR of EEGs from the awake to sleep and SIII to
REM stages when m = 2 and 3 and τ = 1. Therefore, time
irreversible features of brain electric activity decrease as the
sleep stages advance, and more significant differences are
observed in nonequilibrium features during the awake–sleep

transformation and REM state. For comparison, the proba-
bilistic differences between symmetric AmPs, i.e., pTAS, are
also calculated. The pTAS and pTIR yielded the same results,
suggesting that equal-value AmPs reliably characterize the
temporal structure of vectors in sleep EEGs and are not af-
fected by the reverse process in backward time series.

It should be noted that equal values significantly affect
the pTIR, and sleep EEGs generally contain numerous equal
values [56]. Given the amplitude fluctuations measured by
DES in Fig. 3, the noeTIR and noeTAS of EEGs under the
five sleep stages are calculated and shown in Fig. 6.

As evident in Fig. 6, noeTIR and noeTAS of the five groups
of sleep EEGs considerably differed and even showed com-
pletely contradictory results based on the nonequal AmP. The
comparison shows that noeTIR results exhibited a consistent
classification of sleep stages with the pTIR, while noeTAS
had contradictory results. Although pTIR and noeTIR demon-
strated similar decreasing trends with the increase in sleep
depth, they were not the same in these EEGs. Statistically,
noeTIR of sleep EEGs was not significantly different, while
noeTAS with m = 3 and τ = 1 effectively differed in the
five groups of EEGs (p < 0.01 for Mann–Whitney U test;

FIG. 5. pTIR (mean ± standard error) of wake, SI–SIII, and REM EEGs. “#” indicates p < 0.0001 across all stages using Kruskal–Wallis
test and “*” suggests p < 0.01 between pTIR of sleep EEGs and others using Mann–Whitney U test.
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stages using Kruskal–Wallis test and “*” suggests p < 0.01 between each of the two stages of sleep EEGs using Mann–Whitney U test.

p < 0.0001 for Kruskal–Wallis test). Figure 2 shows that
when the signal contained equal elements and was reorganized
in ascending order, the probabilistic differences of permuta-
tions between the forward and backward series were closer
to the pTIR, while those of symmetric permutations had
a greater deviation. Note that neither noeTIR nor noeTAS
yielded correct results. Taking m = 2 as an example, only up,
down, and equal forms are observed, among which, equality
was transformed into up in both the forward and backward
series. The pTIR, noeTIR, pTAS, and noeTAS were calculated
using Eq. (5), where upp, downp, and equalp represent the
probability of up, down, and equal values, respectively, and
upp/downp denotes the probabilistic difference between upp
and downp using Ys:

pTIR : 0.5
(
upp/downp + downp/upp

)
,

noeTIR : 0.5

(
upp + equalp

downp + equalp
+ downp/upp

)
,

pTAS : upp/downp,

noeTAS :
(
upp + equalp

)
/downp. (5)

In Eq. (5), pTIR is the same as pTAS, but different from
noeTIR and noeTAS. Due to equal being mistaken as up, both
noeTIR and noeTAS wrongly measure the time reversibility of
sleep EEGs. Evidently, if there is no equality, pTIR, noeTIR,
pTAS, and noeTAS are the same.

To compare with the pTIR, PEn [37,54], i.e., the Shannon
entropy of permutation probability p(π ), given in Eq. (6), is
further employed in the analysis of sleep EEGs. It is a widely
applied statistical parameter used to measure the nonlinear
characteristics of complex systems [37]. The selection of OrP

and AmP does not affect the calculation of PEn because PEn
is the mean information contained in the existing ordinal pat-
terns [40], while equal values affect PEn in signal analysis
[50–52]. PEn based on equal-value AmP with delay from one
to four and dimension ranging from two to four of sleep EEGs
is displayed in Fig. 7. PEn is given by

PEn = −
∑

p(π ) ln p(π ). (6)

As is evident from Figs. 7 and 5, PEn is observed to be the
opposite of pTIR in the five groups of sleep EEGs. When
m = 2, PEn of EEGs increases as the subjects fell asleep
and sleep depth increased, suggesting that EEGs have larger
complexity with the increase of sleep stages. As m increases,
no consistent trend is observed in the PEn complexity of EEGs
with the increasing sleep stages. Statistically, the PEn of five
groups of sleep EEGs is not significantly different. Therefore,
pTIR is more reliable for sleep stage classification owing to
the quantification of EEG nonequilibrium features.

The contradictory results of pTIR and PEn can be ex-
plained by their statistical concepts. Shannon entropy and
TIR compute the difference in probability distributions, but
they focus on different sets of probabilistic differences. PEn
calculates the average amount of information contained in the
distribution of permutations, i.e., the probabilistic differences
in all existing permutations, whereas pTIR measures the dif-
ference between forward and backward permutation series or
that between symmetric permutations of a series. Therefore,
when the permutation probability difference is smaller, the
entropy complexity of signals will be higher, while the TIR
will be smaller. This is the fundamental reason for the opposite
outcomes of pTIR and PEn in sleep EEGs, which is consistent

054104-7



WENPO YAO PHYSICAL REVIEW E 109, 054104 (2024)

FIG. 7. Permutation entropy (mean ± standard error) of wake, SI-SIII, and REM EEGs based on equal-value AmP.

with the contradictory results obtained in our previous report
on heartbeats [54]. Moreover, because they characterize com-
plexity and nonequilibrium features, the results exhibit the
diversity of features from different perspectives of complex
physiological signals and enable us to explore complex sys-
tems more comprehensively.

The comparative analysis of sleep EEGs demonstrated that
the TIR, TAS, and Shannon entropy have a complex relation-
ship, as shown in Fig. 8. TIR and TAS based equal-value
AmP share same results while they yielded contradictory
outcomes based on nonequal AmP. The trend of noeTIR is
consistent with that of pTIR, while noeTAS exhibited dif-
ferent results in the five groups of sleep EEGs. PEn also
presented contradictory findings in comparison to pTIR. To
determine the difference between these associated measures
and the influence of equal values, probability distributions of
AmPs are further analyzed numerically. Taking m = 2 and
τ = 1 as an example, the probabilities of AmPs with and
without equal values of five groups of sleep EEGs are shown
in Fig. 8.

Figure 8 shows that the distribution of false up (bold “1, 2”)
in nonequal AmPs is a combination of real up (denoted by
“1,2”) and equal (denoted by “1,1”) in equal-value AmPs
because equal values are replaced by up patterns, and that
of equal values is the DES of sleep EEGs in Fig. 3. The
distributions of downs (denoted by “2,1”) are the same in the
two types of ordinal patterns. In nonequal AmP, the proba-
bility distribution of up increases with the sleep depth, while
that of down presents the opposite trend. In equal-value AmP,
the probability distributions of up and down are significantly
close, and both decreased as the sleep depth increased. Equal-
value AmPs further confirm our conclusion, as shown in
Fig. 3, that fluctuations in the EEG amplitude decreased as
the sleep depth increased. Owing to the decrease in amplitude
fluctuations in sleep EEGs, the probabilities of both ups and
downs in sleep EEGs decrease, while those of equal values
(i.e., DES) significantly increase with the sleep depth.

The probabilistic difference in AmPs and different ways
to use them directly influenced the different outcomes of
pTIR, pTAS, and PEn in sleep EEGs. According to Eq. (5),
numerical simulations suggest that the probabilistic difference
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FIG. 8. Relationship of permutation analysis in sleep EEGs and probability distributions (mean ± standard error) of AmPs when dimension
is two and delay is one. (a) Consistent results of pTIR and pTAS are linked by black solid arrows, while contradictory results of noeTIR and
noeTAS are connected by crossed red dashed arrows. (b) Probability distributions of down “2,1” in the two types of AmPs are the same, while
those of bold “1, 2” in nonequal AmPs are the sum of those of up “1,2” and equal “1,1” in equal-value AmPs.
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between false up (“1, 2”) and down (“2,1”) in nonequal AmPs,
i.e., (“1,2” + “1,1”)/“2,1” increased with the sleep depth;
hence, noeTAS in Fig. 6 also increased with the sleep depth.
In the backward EEG signal, equal values were transformed
into up “1,2.” Therefore, noeTIR is measured using the sum
of forward-backward probabilistic differences between up and
down, i.e., 0.5[(“1,2”+“1,1”)/(“2,1”+“1,1”)]+“2,1”/“1,2”
exhibiting a decreasing trend in sleep EEGs, as shown in
Fig. 6. However, neither noeTIR nor noeTAS truly quantified
the nonequilibrium characteristic of sleep EEGs. Meanwhile,
in equal-value AmPs, pTIR represented the probabilistic dif-
ference between up and down because equality indicated time
reversibility and temporal symmetry, while PEn measured
the probabilistic difference between up, down, and equality.
Numerical results indicated that the probabilistic difference
in up and down decreased as the sleep depth increased, while
the average amount of information contained in up, down, and
equality increased. Therefore, the pTIR in Fig. 5, i.e., up-down
probabilistic differences, decreased with the increasing sleep
depth, while the PEn of EEGs in Fig. 7 increased with the
sleep depth. Hence, the probability distribution of sleep EEG
permutation and different usage of probabilistic difference
of pTIR, pTAS, and PEn are responsible for the conflicting
results in sleep EEGs.

In ordinal patterns and permutation analysis, elements are
reordered in the ascending order; however, it remains un-
clear how these methods perform of a series reordered in
the descending order. In ordinal patterns, if equal values are
organized according to their order of occurrence, they will be
treated as down in nonequal permutations in the descending
order. If indexes of equal values are modified to be the same in
their corresponding groups, the AmP and OrP have the same
relationship as that shown in Fig. 1; moreover, the results
for TIR, TAS, and PEn show no difference in the ascending
order. Otherwise, if the indexes of equal values are not modi-
fied, these permutation methods might still generate incorrect
results as the ascending order. Particularly, noeTAS yields
different outcomes in the ascending and descending orders.
The results of noeTAS (m = 2 and τ = 1) for sleep EEGs are
shown in Fig. 9.

In the ascending order, noeTAS is the probabilistic dif-
ference between upp + equalp and downp, while in the
descending order, noeTAS is measured by the probabilistic
difference between downp + equalp and upp. The two noeTAS
share consistent results, i.e., their value increases as the sleep
stage progresses; meanwhile, they are both incorrect.

Ordinal pattern is a simplified alternative to the vector;
their construction is a coarse-grained procedure to signals.
Weak noises and artifacts are eliminated during the genera-
tion of permutations; therefore, permutation analysis exhibits
evident noise insensitivity [37–39]. To further test the pTIR,
Gaussian noises are added and some frequency components
are removed from the sleep EEG data of the five groups. These
procedures through software (e.g., MATLAB in this work) elim-
inate equal values and the information conveyed by DES [56]
from sleep EEG data. Therefore, no difference was observed
between TIR and TAS based the ordinal pattern, regardless of
the ascending or descending order. Taking m = 2 and τ = 1 as
an example, when Gaussian noises with signal-to-noise ratio
(SNR) from 0 to 0.01 dB are added, the results are not sig-
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FIG. 9. Different noeTAS (mean ± standard error) in wake,
SI-SIII, and REM EEG data in ascending and descending ordinal
patterns.

nificantly affected that the pTIR values of EEG data decrease
as the sleep stage progresses. Alternatively, when a 0.3–35 Hz
bandpass filter is implemented to the sleep EEG data, pTIR
also shows a decreased trend with the increase of sleep stages,
confirming the robustness of permutation analysis [37–39].

According to the research on pTIR for sleep classification,
pTIR effectively quantifies nonequilibrium characteristics in
EEGs, yielding more reliable results than the entropy mea-
sure. Owing to the important influence of equal values on
ordinal patterns, equal-value permutation is necessary in the
pTIR analysis of sleep EEGs. The TIR, TAS, and PEn based
on equal-value and nonequal permutations yielded different or
even opposite results in the five groups of sleep EEG signals;
however, this helped us in gaining a deeper understanding
of the differences between analytical methods, important role
of equal values, and multifaceted characteristics of complex
physiological signals.

IV. DISCUSSIONS

In the research on pTIR in sleep EEGs, several issues
should be further discussed.

Equal values in time series and their effect on permutation
analysis should be given sufficient attention. Equal values
are generally ignored considering the limitation resolution
of ADC, particularly coarse-grain quantization. In traditional
signal processing theory, an arbitrary time series with a weak
stationarity exhibits a continuous distribution; therefore, equal
values are rare and can be broken numerically by adding
small random perturbations [37]. The traditional treatment to
equality is based on the assumptions that equal values have no
significant effect on signal processing and they do not contain
information about systems. These assumptions are not correct.
Equal values significantly impact permutation analysis. More-
over, they are necessary for the comprehensive construction
of ordinal patterns [40]. As shown in Fig. 1, irrespective of
the OrP or AmP, the structural information of vectors can be
fully displayed only when equal values are considered. The
distribution of equal values in some signals conveys important
information and has significant effects on the construction
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and probability of ordinal patterns, thus yielding different or
even contradictory results, such as the results presented in
Figs. 5 and 6. According to our previous report, PEn and
pTIR exhibited contradictory results for PhysioNet heartbeats
data with and without equal values [54]. In time reversibility,
vectors with equal values might be self-symmetric, such as
those in Figs. 1 and 2, and have definitive physical implica-
tion, i.e., time reversibility and temporal symmetry [40,42].
Under acceptable ADC resolution, the DES are an effec-
tive parameter for quantifying signal amplitude fluctuations
in extreme forms, i.e., zero fluctuation. The advantages of
DES have been observed in the characterization of sleep and
epileptic EEGs [55,56]; they also exhibit reliable performance
in heart-rate data (derived from electrocardiography) to reflect
the decrease in heart rate variability with age and heart failure
[53]. If the ADC has a high resolution or the data undergo
preprocessing (e.g., software filtering), equal states are rarely
observed and amplitude fluctuation information cannon be
detected; in this case, a low-pass threshold can be established
to filter the differential states for measuring the amplitude
fluctuation [56]. Otherwise, the equalities can be increased by
further coarse graining the digital signal, such as the partition
symbolic transformation that resembles the ADC. It should
be noted that the results of DES were consistent with those of
pTIR for sleep EEGs. The amplitude fluctuation of signals is
the most direct representation of system information, which is
influenced by various factors such as frequency composition
and dynamic characteristics. According to Figs. 3 and 8, the
DES of EEG signals increased with the sleep depth, indicat-
ing that the amplitude fluctuation decreased. In the previous
analysis of heart-rate signals, amplitude fluctuations in heart
rate decreased with age and heart failure, consistent with the
theory of loss of complexity [53]. Our results further con-
firmed the positive correlation between amplitude fluctuations
and time irreversible features, and whether there exist other
factors closely related to amplitude fluctuations require further
research. Overall, the distribution of equal values conveyed
important information about amplitude fluctuation and signif-
icantly affected signal processing; moreover, it is required to
construct reliable ordinal patterns and has explicit physical
meaning in TIR; hence, equal values cannon be ignored.

Time reversibility and temporal symmetry are equivalent in
statistical definitions, even though they may generate different
results in real-world quantification. In pTIR and pTAS, the
construction of ordinal patterns, particularly the treatment of
equal values, plays an important role. In traditional ordinal
patterns, equal values are generally ranked according to their
order of emergence. Considering double values, there are
three kinds of permutations, namely, up, down, and equal. In
the traditional ordinal, equal values are neglected and treated
as up. As shown in Figs. 2 and 8, the probabilistic difference
between up + equal and down is calculated in noeTAS, while
that between up + equal and down + equal is measures in noe-
TIR. Numerical calculations demonstrated that the difference
in forward-backward permutations was closer to the pTIR
than that in symmetric permutations, but both were wrong.
The noeTIR and noeTAS were both incorrect and not the
same. Taking an extreme example, for a series of all-equal
values, the pTAS is one, indicating the difference between all
up and zero down, while the noeTIR is zero for the forward

and backward series (it is the same as the pTIR of one). If
more values are considered, the situation will become more
complex.

Next, the relationship between PEn and pTIR requires
more discussion. Test results indicated that pTIR enables the
more effective classification of sleep stages than PEn, consis-
tent with the results of our previous report on epilepsy EEGs
[14]. TIR and Shannon entropy are both statistical parameters
for measuring probabilistic differences; they are both widely
employed in complex process analysis. Shannon entropy
quantifies the static complexity and unpredictability consid-
ering the amount of information, i.e., the mean logarithmic
calculation of all probabilities of permutations. TIR measures
nonequilibrium features considering the sum of probabilistic
differences between vectors in forward-backward series or
pairs of symmetric vectors. Mathematically, if two permuta-
tions have larger probabilistic differences, they convey less
information while being more nonequilibrium, thus leading to
smaller PEn and bigger pTIR. In the special case where all
permutations of symmetric vectors have the same probability
distribution, PEn reaches a maximum value while pTIR is
0. In another special case where all permutations are sin-
gle permutations, pTIR is the maximum 1 while PEn varies
with the difference among probability distributions. This is
the fundamental reason for different or even contradictory
results in the same process. Similar results have also been
reported in heart-rate analysis [54]; irrespective of nonequal or
equal-value permutation, PEn and pTIR yielded contradictory
results. Such discrepant results of pTIR and PEn inspired
us to gain a more comprehensive and profound understand-
ing of the characteristics of complex systems from different
perspectives.

Forbidden permutation is an important influencing factor
that is generally overlooked in the pTIR analysis of real-
world signals. The existence of forbidden permutations might
generate individual permutations, which have no symmetric
form in forward series and do not exist in backward series;
moreover, their probabilistic difference is zero or infinite con-
sidering division-based parameters, which is not appropriate
in quantitative TIR. Associated with forbidden permutations,
individual permutations also convey information about sleep
EEGs. In Fig. 4, the DIPs generally increased with the sleep
stage when the data length was larger than 20 s. This may be
because as the sleep depth increased, amplitude fluctuations,
type of temporal structure, and number of ordinal patterns
decreased, yielding more forbidden as well as individual per-
mutations. Similar associations have also been reported in
epileptic EEG analysis [14,55]. Seizure ictal EEGs exhibit
abnormally large amplitude fluctuations and TIR owing to the
development of synchronous neuronal firings, while seizure-
free postictal brain activity exhibits rather smooth amplitude
fluctuations as well as smaller TIR [55]. Consistently, brain
electric signals under ictal and postictal states demonstrate
larger and smaller DIP values, respectively [14]. In a series of
related studies, Amigo et al. found that the existence of forbid-
den patterns is a feature of chaotic dynamics and can be used
to distinguish random from pseudorandom orbit generation
[43]; subsequently, they identified false forbidden patterns
[44] and detected determinism in noisy time series based on
the properties of topological PEn [45]. The decay rate of
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forbidden permutations [47] in stochastic processes has been
reported to be associated with their correlation structures;
moreover, nonlinearity in time series can be possibly detected
by the number of forbidden permutations [48,49]. Given the
systematic information conveyed by forbidden permutations
and association of DIPs with sleep stages, individual permu-
tations might also be potentially used for feature detection in
complex systems.

V. CONCLUSIONS

In this study, pTIR in sleep EEG particular the dependence
on sleep stage and the effect of equal EEG values are ana-
lyzed. Main findings are summarized below:

Permutation TIR is an important measure for the quan-
tification of nonequilibrium EEGs. When symmetric vector
differences are used for real-time requirements, AmP is more
suitable as a direct alternative to vector. Moreover, equal-value
ordinal patterns are required because they construct compre-
hensive vector structures and self-symmetric vectors convey
an important physical implication, i.e., time reversibility.

Brain electrical activity demonstrates nonequilibrium fea-
tures that are influenced by sleep conditions. EEGs during
wakefulness exhibit higher pTIR; during sleep and with the
advancement of sleep stages, the pTIR values of EEGs sig-
nificantly decrease. These findings suggest that when people
fall asleep, their brain electric activity contains less nonequi-
librium characteristics. The effective classification of sleep
EEGs suggested that pTIR could serve as an aid for the expert
manual annotation of sleep stages.

When constructing ordinal patterns, if equal values are
ordered according to their order of occurrence, the values of

noeTIR and noeTAS may be inconsistent, and even if noe-
TIR is closer to the actual result, they would both be wrong.
Moreover, noeTAS performs differently over series reordered
in the ascending and descending orders. Therefore, the con-
sideration of equal values is necessary to construct reliable
permutations, and it is important to modify the indexes of
equal values to same forms in permutation TIR.

Equal values and individual permutations affect the pTIR,
but both DES and DIP contain important information about
sleep EEGs. The DES characterize amplitude fluctuations in
sleep EEGs such that as the sleep stages advance, DES val-
ues significantly increase as amplitude fluctuations decrease.
The DIP may be related to structures that require further
investigation.

Comparative analysis of pTIR and PEn as well as nu-
merical simulations of permutation probability distributions
verified the different and even contradictory results of time
reversibility and entropy complexity, thus providing us with
valuable insights on statistical measures and enabling us to
explore complex physiological signals more comprehensively.
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