
PHYSICAL REVIEW E 109, 054102 (2024)

Discrete heat equation for a periodic layered system with allowance for the interfacial
thermal resistance: General formulation and dispersion analysis
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Discrete heat equations for the multilayered periodic systems with allowance for the thermal resistance
between the layers and corresponding dispersion relations in ω−k space have been derived and analyzed. The
discrete equations imply a finite velocity of thermal disturbances and guarantee the positiveness of the solutions.
Analytical expressions for the attenuation distance, and phase and group velocities have been obtained as
functions of frequency and thermal resistance between the discrete layers. These functions demonstrate unusual
behavior at high frequency compared to the continuum case. Furthermore, the maximum allowed frequency
and wave number for the discrete heat equation are limited, whereas there are no such limits in a continuum.
The discrete equation contains an infinite hierarchy of continuous partial differential equations, which starts
with the Fourier law, proceeds with the hyperbolic equation, the Guyer-Krumhansl (or Jeffreys type) equation,
and then with higher-order equations. The partial differential equations with a finite number of terms are only
approximations of the discrete equation, which implies that on the ultrashort space and timescales the discrete
approach is preferable. This work provides a relatively simple, easy-to-adopt, conceptual tool, together with
analytical expressions allowing one to study ultrafast wavelike heat conduction regimes in periodic multilayered
metamaterials.
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I. INTRODUCTION

In recent years, there is a growing community from differ-
ent disciplines interested in the different aspects of transport
processes occurring on ultrashort time and space scales such
as heat conduction in layered correlated materials [1,2] and
nanosized systems [3–7], second sound [8], nonlocal diffusion
in nanosized systems [9–13] and during drug release [14,15],
and heat conduction under femtosecond laser irradiation [16].
The interest is motivated not only by technological needs,
but also by unusual non-Fourier and non-Fickian phenomena
arising on ultrashort space and/or time scales [17,18]. For
example, the classical Fourier description is not able to ex-
plain such phenomena as wavelike temperature propagation
[1–3,8], size-dependent [19–21] and distance-dependent [19]
thermal conductivity across nanofilms, boundary temperature
jump at the interfaces [19–25], and thermoelectricity effects
[26]. An extensive body of literature exists on the theoretical
description of the non-Fourier and non-Fickian effects (see,
e.g., Refs. [3–7,9–16] and recent reviews [17,18]). However,
most of the non-Fourier approaches are based on the contin-
uum hypothesis, which assumes that both time and space are
continuous variables. In contrast to the conventional continu-
ous description, the discrete variable model (DVM) assumes
that the space and time are discrete variables [19,20,27–43].
The basic concept of the DVM is to develop a relatively
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simple model that includes into consideration the essential
physics of the transfer process, that is, the space and time
nonlocality. The nonlocal effects play an important role on
ultrashort space and time scales when the characteristic space
and/or time scales begin to be comparable to the mean free
path (MFP) and/or mean free time (MFT) of energy carriers.
In addition, the discrete description is relevant for processes
of many physical contexts, such as calcium burst waves in
living cells, propagation of action potentials through the tissue
of the cardiac cells, chains of neurons or chemical reactions,
and the local denaturation of the DNA double strand [40,41].
Information conduction and convection in noiseless Vicsek
flocks [37] has been studied using the two-dimensional (2D)
version of the DVM [31,32]. Classical continuum approaches
cannot adequately describe high-frequency vibrations, behav-
ior of material near cracks and fronts of destruction waves
[38]. McGaughey and Kaviany [44] notice that the thermal
transport in dielectrics materials is not localized in space
because the frequencies and wave numbers in a crystal are
discrete and limited, which cannot be described within the
framework of a continuum approach.

In the context of transport phenomena, the paper of Fock
[27] (see also comments in Ref. [45]) seems to be the first
effort to use the discrete variable approach. Fock considered
the one-dimensional (1D) problem of light (photon) diffu-
sion in semi-infinite media and obtained transport equations
with corresponding boundary conditions in the discrete form.
In the continuum limit, the model of Fock leads to both a
classical Fourier equation of parabolic type and a hyperbolic
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(telegraph) heat equation. The DVM has been formulated
also for the 2D case for one- [31,33] and two-temperature
systems [32]. To bridge the gap between the DVM and contin-
uum approaches, two types of the continualization procedure
with different invariants have been introduced [30–33,35].
Recently, it has been shown that the dispersion relation even
for the simplest version of the discrete heat equation (DE)
demonstrates critical high-frequency and short-wavelength
behavior [43]. The DVM provides evolution equations in
the discrete form both for the temperature and for the heat
flux [19,28,30,33–35,39,42], which can be used directly for
computer simulations [31]. However, in some cases the DVM
allows one to obtain analytical solutions in a relatively simple
way [19,20,43]. For example, the DVM predicts a transi-
tion from the diffusive controlled to ballistic controlled heat
conduction regimes, size-dependent and distance-dependent
(local) thermal conductivity, and boundary temperature jumps
as functions of the film size for the steady-state heat con-
duction across nanofilms [19,20]. Clearly, there is a strong
need of the generalized version of the DVM to better un-
derstand heat transport on ultrashort space and time scales
when the process occurs under far from local equilibrium
conditions [16,39,34,35]. The generalized DVM will be useful
in developing and engineering composite multilayered mate-
rials, which have been widely used due to their wide range
of applications, especially in thermal management of micro-
electronics and manufacturing nanoarchitected metamaterials
[1,2,8]. The paper is structured as follows. In Sec. II we
obtain the generalized DEs, which are able to describe heat
conduction in the periodic two- and one-layer systems with
allowance for the thermal resistance between the discrete lay-
ers. The continuum limit of the DE is discussed in Sec. III. The
dispersion relation for the generalized DE has been obtained
and analyzed analytically in Sec. IV. In Sec. V we consider the
continuum limit of the dispersion relation obtained in Sec. IV.
In Sec. VI we discuss the main advantages of the DVM, before
we conclude in Sec. VII.

II. DISCRETE HEAT EQUATIONS WITH ALLOWANCE
FOR THE INTERFACIAL THERMAL RESISTANCE

A. Discrete heat conduction equation for a
periodic two-layer system

1. Discrete variables

First, we consider a periodic structure composed of layers
of two different materials indexed A and B [see Fig. 1(a)]. The
thicknesses of the layers are denoted as hA and hB, respec-
tively. For example, such a system can serve as a temperonic
crystal [1]. Each discrete layer indexed by j is characterized
by heat capacity Cj = c jρ jh j , where h j is the length of the
layer, c j is the specific heat, and ρ j is mass density. It is
assumed that the temperature of a discrete layer j, denoted
Tj,n, is constant inside the layer and evolves at the discrete
time instants n = 0, 1, 2, . . . due to the heat fluxes across
the boundaries of the layer (see Fig. 1). The heat fluxes act
during the time step τ between two successive changes of
temperature at the discrete instants of time n and (n + 1).
This implies that in the discrete representation we can assume
that the heat flux, denoted q j−1, j,n+1/2, is the average heat
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FIG. 1. Schematic representation of the discrete heat conduction
model with allowance for the thermal resistance between the discrete
layers. (a) Spatially periodic two-layer discrete system: h and l are
the thicknesses of the discrete layers. (b) Spatially periodic one-layer
discrete system. Temperature of the discrete layers (see red lines) is
a volume property. Heat fluxes act through the boundary between the
layers (see red arrows), i.e., are a boundary (surface) property.

flux acting through the boundary between the discrete layers
( j−1) and j at the intermediate instant of time indexed by
(n + 1/2) [19,28,30,33–35]. Thus, the energy balance law for
the discrete layer j is given by

Cj (Tj,n+1 − Tj,n) = (q j−1, j,n+1/2 − q j, j+1,n+1/2)τ + Qj,n+1/2,

(1)
where q j, j+1,n+1/2 is the heat flux acting through the boundary
between the discrete elements indexed by j and ( j + 1) at the
instant of time (n + 1/2), and Qj,n+1/2 is the heat source. The
form of Eq. (1) takes into account that the temperature is a
volume property, while the heat flux is a surface property (see
Fig. 1).

The heat fluxes across the boundary between the neighbor-
ing discrete layers can be represented as follows:

qj−1, j,n+1/2 = α(Tj−1,n − Tj,n)/τ, (2)

q j, j+1,n+1/2 = α(Tj,n − Tj+1,n)/τ, (3)

where α is the heat-exchange coefficient between the neigh-
boring discrete layers. The inverse of the heat-exchange
coefficients R = 1/α is also referred to as thermal or Kapitza
resistance. This definition for the heat fluxes, Eqs. (2) and (3),
corresponds to the Newton law of cooling. The term αTj−1,n

in Eq. (2) is nothing but the rate of energy flow from the layer
( j−1) to the layer j, and vice versa, αTj,n is the rate of energy
flow from the layer j to the layer ( j−1). Thus, qj−1, j,n+1/2

in Eq. (2) is the net energy flow per unit time between the
elements j−1 and j, i.e., the heat flux.
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Using Eqs. (1)–(3), we obtain the DE with allowance for
the boundary resistance between the discrete layers as fol-
lows:

(Tj,n+1 − Tj,n) = β j

2
(Tj−1,n − 2Tj,n + Tj+1,n) + 1

Cj
Qj,n+1/2,

(4)
where β j = 2α/Cj . For the sake of simplicity, we assume in
the following that Qj,n+1/2 = 0.

2. Continuous variables

Now let us represent Eq. (4) in terms of the continuous
variables x and t that are related with the discrete ones as

follows x = jh and t = nτ . In such case, Eq. (4) takes the
form

T (x, t + τ ) − T (x) = β(x)

2

[
T

(
x − hA + hB

2
, t

)

−2T (x, t ) + T

(
x + hA + hB

2
, t

)]
.

(5)

Here β(x) = 2α/C(x), where C(x) is given by

C(x) =
{

cBρBhB; at 0 + j(hA + hB) < x < j(hA + hB) + hB

cAρAhA; at hB + j(hA + hB) < x < ( j + 1)(hA + hB) , (6)

where j = 0, 1, 2, 3, . . . is a number of a discrete layer [see
Fig. 1(a)]. Equations (4)–(6) can be directly used for computer
simulation of space-time evolution temperature in the periodic
discrete multilayered systems, such as temperonic crystals
and layered correlated materials [1,2]. However, approximate
methods based on Eqs. (4)–(6), that are capable of capturing
the ultrashort size and time effects in multilayered systems
with allowance for the interfacial resistance but easy to imple-
ment analytically are still desired.

B. Discrete heat equation for a periodic one-layer system

1. A periodic one-layer system with allowance for the interfacial
thermal resistance

While computational simulations, as discussed above, can
be used to solve the discrete equations (4)–(6), they will
not replace the analytical approach, which is able to provide
physical insights without much numerical effort. In what fol-
lows, we are going to slightly simplify Eq. (4) to obtain an
analytical expression for the dispersion relation in ω-k space,
which readily provides useful information, in particular about
attenuation distance, and phase and group velocities. For the
sake of simplicity and to present the results analytically, we
assume that hA � hB [see Fig. 1(b)]. In such case, CA �
CB and, consequently, the layers B do not affect the energy
balance in the system, but strongly affect the temperature
distribution resulting in the thermal resistance between the
layers A. Manipulating the physical properties of the layer B
and/or its thickness, one can change the value of the interfacial
resistance and govern heat conduction regimes in the system.
Thus, in what follows, we consider a periodic one-layer sys-
tem consisting of identical layers A of the same length h [see
Fig. 1(b)] and with the same heat capacity Cj = C, whereas
the heat-exchange coefficient between layers A depends now
on the set of thermal properties of the layer B. In such case,
Eq. (4) yields

Tj,n+1 − Tj,n = β

2
(Tj−1,n − 2Tj,n + Tj+1,n), (7)

where β = 2α/C, α(cB, ρB, hB) is the heat-exchange coef-
ficient between layers A, which depends on the length and
thermal properties of the layer B.

In the continuous variables Eq. (7) takes the form

T (x, t + τ ) − T (x, t ) = β

2
[T (x + h, t ) − 2T (x, t )

+ T (x − h, t )]. (8)

2. A periodic one-layer system: Probability formulation

The discrete heat equation can be also obtained on the basis
of the random-walk approach [27–29]. In the following it is
assumed that the energy carriers at the discrete layer j are
allowed to move the neighboring layers ( j + 1) and ( j−1),
as well as they are allowed to stay at rest. In such case, the
discrete heat equation takes the form [43]

Tj,n+1 = p+Tj+1,n + p−Tj−1,n + p0Tj,n, (9)

where p− and p+ are the probability that the energy carrier
comes from the discrete layer ( j−1) and ( j + 1), respectively,
whereas p0 is the probability that the energy carrier comes
to rest. Conservation law implies that p+ + p− + p0 = 1. For
the following consideration, we assume the symmetrical case
p+ = p− ≡ p, which gives p0 = 1−2p. In such case, Eq. (9)
takes the form

Tj,n+1 − Tj,n = p (Tj−1,n − 2Tj,n + Tj+1,n), (10)

or in terms of the continuous variables

T (t + τ, x) − T (x, t ) = p[T (t, x + h) − 2T (x, t )

+ T (t, x − h)]. (11)

A comparison of Eqs. (7) and (10), as well as Eqs. (8)
and (11), demonstrates that the thermodynamic approach and
random-walk model lead to a similar discrete heat equation.
The nondimensional interfacial thermal resistance between
the discrete layers β can be expressed in terms of probability
as β = 2p. Taking into account that p � 1/2, we obtain that
β � 1.
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III. CONTINUUM LIMIT

A. Discrete equation vs continuous partial differential equations

To bridge the gap between the discrete and continuum ap-
proaches, we consider Eq. (8) in the limit τ → 0 and h → 0.
The Taylor expansion of the DE, Eq. (8), around τ = 0 and
h = 0 contains an infinite number of terms with two small
parameters τ and h:

∞∑
m=1

τm

m!

∂mT

∂tm
= β

2

[ ∞∑
m=2

(
hm

m!

∂mT

∂xm
+ (−h)m

m!

∂mT

∂xm

)]
. (12)

To obtain partial differential equations (PDEs) with a finite
number of terms, it is necessary to use two types of the con-
tinualization procedure, which balances the fast-time τ and
short-space h scales in the continuum limit τ → 0 and h → 0
[30–33,35,42,43].

1. Diffusivelike continualization procedure

The first type of continualization procedure assumes
that D = h2/2τ , which plays a role of thermal diffu-
sivity, preserves a finite value when τ → 0 and h → 0
[30–33,35,42,43]. In such case, the first-order approximation
of Eq. (12) leads to the classical Fourier equation of parabolic
type:

∂T

∂t
= βD

∂2T

∂x2
, (13)

where βD is the effective thermal diffusivity, which depends
on the heat-exchange coefficient β.

The second-order approximation gives

∂T

∂t
+ τ

2

∂2T

∂t2
= βD

∂2T

∂x2
+ βDh2

24

∂4T

∂x2
. (14)

Using Eq. (13), the last term in Eq. (14) can be represented
as ∂2

∂x2 ( ∂2

∂x2 ) = ∂2

∂x2 ( 1
βD

∂
∂t ). In such case, Eq. (14) takes the form

∂T

∂t
+ τ

2

∂2T

∂t2
= βD

∂2T

∂x2
+ h2

24

∂3T

∂x2∂t
. (15)

Equation (15) is similar to the 1D Guyer-Krumhansl (GK)
equation and Jeffreys type equation [46]. Note that Eqs. (13)–
(15) are of parabolic type with an infinite velocity of thermal
signal v. Indeed, v = h/τ = (D/h) → ∞ when D preserves
a finite value and h → 0.

2. Wavelike continualization procedure

The second invariant of the continualization procedure
keeps a finite value of propagation velocity of thermal signal
v = h/τ when τ → 0 and h → 0 [30–33,35,42,43]. In such
case, the first-order approximation of Eq. (12) leads to the
hyperbolic equation (HE) as follows:

∂T

∂t
+ τ

2

∂2T

∂t2
= βv2τ

2

∂2T

∂x2
. (16)

Similar to the previous case, the effective thermal dif-
fusivity given by βv2τ/2 depends on the heat-exchange
coefficient β.

3. Some comments

Equation (12) demonstrates that the DE, Eq. (8), con-
tains an infinite hierarchy of the continuous PDEs [42,43].
In particular, the hierarchy includes the parabolic equation
(PE), HE, GK, and Jeffreys type equations [see Eqs. (13)–
(16)]. This corresponds to the conclusion of Mickens and
Washington [36] that “any finite order difference equation
corresponds to an infinite order differential equation.” The
continualization procedure, which balances the internal fast-
time and the short-space scales when they tend to zero,
preserves the basic invariant of the process described by the
DE [30–33,35,42,43]. The diffusivelike continualization pro-
cedure preserves a finite value of thermal diffusivity. This
takes into account only the diffusive (dissipative) mode of
heat transport but loses the wave mode. The procedure leads
to a hierarchy of PDEs of parabolic type with an infinite
propagation velocity of thermal disturbances. The wavelike
continualization procedure preserves both modes and leads to
a hierarchy of PDEs of hyperbolic type with a finite velocity of
thermal disturbances. It should be stressed that the PDEs with
a finite number of terms, in particular Eqs. (13)–(16), are the
truncated Taylor series expansions of the DE and approximate
the DE with some accuracy (see also discussion in [36]). The
type of PDEs with a finite number of terms, parabolic or
hyperbolic, depends on the invariant of the continualization
procedure.

To select a suitable approach, i.e., the DE or PDE with
a finite number of terms, one should consider the ratios of
the internal fast time τ and/or short space h scales to the
characteristic time and/or space scales of the process un-
der consideration, respectively. When these ratios are much
smaller than unity, the heat transport is purely diffusive, and
the classical Fourier PE can be used. When one or both ratios
increase but are still smaller than unity, the PDE of higher
order is required. The invariant chosen depends on whether
the diffusive or the wave mode of heat conduction plays the
most important part in the problem of interest. The number of
terms in the PDE depends on what accuracy of calculations
is required in the analysis. When one or both ratios become
comparable to unity, the PDEs with a finite number of terms
may result in significant errors and the DE is preferable.

B. Discrete equation vs mixed discrete-continuous heat equation

Using the Taylor series expansion of the left-hand side of
the DE, Eq. (8), and keeping the right-hand side in the discrete
form, we obtain the mixed discrete-continuous (or difference-
differential) equation as follows:

τ
∂T

∂t
+ τ 2

2

∂2T

∂t2
+ O(τ 3) = β

2
[T (x + h, t ) − 2T (x, t )

+ T (x − h, t )]. (17)

Similar mixed difference-differential equations arise in the
theory of atomic [47–50] and thermal [51,52] lattice (chains)
dynamics, which assume that only space is described by a
discrete variable, whereas time is continuous. Keeping the
first term on the left-hand side of Eq. (17), one obtains the
mixed discrete-continuous equation whose left-hand side cor-
responds to the classical Fourier law, Eq. (13). Such kind of
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equation has been used to study the nonlocal thermal diffusion
in a one-dimensional periodic thermal lattice [51]. Taking into
account the two first terms on the left-hand side of Eq. (17),
one obtains the mixed continuous-discrete equation whose
left-hand side corresponds to the continuous HE, Eq. (16). In
such case, Eq. (17) with two first terms on the left-hand side
can be treated as a spatial discrete formulation of the HE [52].

Equation (17) is similar to the quantum Langevin equation
for a harmonic atomic chain without noise term [48,49]. In
this case the first-time derivative in the dynamic discrete-
continuous equation arises due to friction (dissipation) effects.

Note that the mixed discrete-continuous equations ob-
tained as the truncated Taylor series of the DE around τ = 0
are only approximations of the DE and their solutions may
differ significantly when the characteristic time of the process
under consideration is of the order of τ . In such case the mixed
discrete-continuous equations may lead to erroneous results.

Another type of discrete-continuous equation can be ob-
tained under the assumption that time is discrete, while space
is continuous. In this case, the DE, Eq. (8), gives

T (x, t + τ ) − T (x, t ) = βh2

2

∂2T

∂x2
+ O(h4).

The Taylor series expansion of the left-hand side of this
equation gives the PE, Eq. (13), as the first-order approxima-
tion and the HE, Eq. (16), as the second-order approximation.

IV. DISPERSION ANALYSIS

A. Dispersion relation for the DE

Now we are going to obtain an analytical expression for
the dispersion relation of Eq. (8). The dispersion analysis is
able to provide important information, such as attenuation
distance, and phase and group velocities as functions of the
governing parameters [1,2,39,53,54]. We use the standard
procedure seeking for a solution of Eq. (8) in the form T =
T0exp[i(ωt + kx)], where ω is the real frequency and k is the
complex wave number. In such case, we obtain the dispersion
relation for Eq. (8) in the form

exp(iωτ ) − 1 = β[cos (kh) − 1]. (18)

Equation (18) gives the complex wave number as a func-
tion of the frequency as follows:

kh = arccos

(
cos (ωτ ) − 1 + i sin(ωτ )

β
+ 1

)
. (19)

After some algebra (for details, see the Appendix), we
obtain analytical expressions for the real and imaginary parts
of the wave number in the form

Rekh = ± arccos
2[cos (ωτ ) + β − 1]

2βG
+ 2mπ, (20)

Imkh = ±ln(G +
√

G2 − 1) + i2mπ, (21)

where m is an integer and

G = 2 sin(ωτ/2) +
√

1 + (2β − 1)2 + 2(2β − 1) cos(ωτ )

2β
.

(22)
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FIG. 2. Real part of the wave number Rekh, Eq. (20), for the DE,
Eq. (8), as a function of ωτ in the region 0 � ωτ � π for different
values of β.

Figure 2 shows the Rekh, Eq. (20), as a function of ωτ

for the principal value of arccosine in the region 0 � ωτ � π

at different β (the same function in a wider range of ωτ

is shown in Supplemental Material (SM) [55]). The Rekh
monotonically increases with increasing ωτ for any value of
β and reaches its maximum value Rekh = π at the maximum
allowed frequency ωτ = π (see Fig. 2). Similar behavior of
the dispersion curve has been observed in the lattice (chain)
model [47] and in the two-temperature mass-in-mass chain
model [50], where the allowed wave number is restricted
by the spacing of the atoms. However, an important distinc-
tion between the present DVM and the lattice model is that
in Eqs. (7)–(11) both space and time are discrete variables,
whereas in the lattice model only the space is discrete but time
is a continuous variable. As a consequence, in the discrete
model the maximum allowed frequency (or, equivalently, min-
imum allowed time scale) is limited, whereas in the lattice
models there is no any restriction on the frequency.

Figure 3 shows the Rekh as a function of β at 0 <

β � 1 for ωτ = π/4, ωτ = π/2, and ωτ = 3π/4. Figure 3
demonstrates that the real part of the wave number, Eq. (20),
monotonically decreases with increasing heat-exchange coef-
ficient between the discrete layers β.

Figure 4 shows the Imkh, Eqs. (21) and (22), as a function
of the ωτ for the principal value of arccosine 0 � ωτ � π

at different β (the same function in a wider range of ωτ is
shown in the SM). When β is in the region closed to unity,
namely, 0.7 � β � 1, the Imkh first increases with increasing
ωτ , reaches a maximum value at ωτ ≈ π/2, and then de-
creases. For β � 0.7, the Imkh monotonically increases with
increasing ωτ . Note that at β = 1, Imkh → 0 both at ωτ → 0
and at high ωτ → π . When β < 1, Imkh → 0 only in the
low-frequency limit ωτ → 0, whereas at ωτ → π we obtain
that Imkh > 0 (see Fig. 4).

Figure 5 shows the Imkh, Eq. (21), as a function of β

at 0 < β � 1 for ωτ = π/4, ωτ = π/2, and ωτ = 3π/4.
Similar to the Rekh, the Imkh monotonically decreases with
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FIG. 3. Real part of the wave number Rekh, Eq. (20), as a func-
tion of β for ωτ = π/4, ωτ = π/2, and ωτ = 3π/4.

increasing β for all values of ωτ . However, the values of Imkh
for different ωτ at a given value of β are significantly smaller
than the values of Rekh (compare Figs. 3 and 5).

B. Special case β = 1

Let us consider a special case β = 1, which, as discussed
above, corresponds to p = 1/2 and p0 = 0. In such case, both
Eq. (7) and Eq. (11) reduce to [28–30,39]

Tj,n+1 = 1
2 (Tj−1,n + Tj+1,n).

This equation implies that all the energy carriers move out
of a layer j through the boundaries with neighboring layers.
In other words, this can be treated as an absence of interfacial
thermal resistance. The corresponding dispersion relation is
given by [39]

exp(iωτ ) = cos (kh).
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FIG. 4. Imaginary part of the wave number Imkh, Eq. (21), as a
function of ωτ at different β.
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FIG. 5. Imaginary part of the wave number Imkh, Eq. (21), as
a function of β at 0 < β � 1 for ωτ = π/4, ωτ = π/2, and ωτ =
3π/4.

The real and imaginary parts of the wave vector as func-
tions of frequency can be obtained from Eqs. (20) and (21),
respectively, and are given by [39]

Rekh = ±{arccos[cos(ωτ/2) − sin(ωτ/2)] + 2mπ},

Imkh = ±{ln[sin(ωτ/2) + cos(ωτ/2) +
√

sin(ωτ )]}
+ i2mπ.

The behavior of the Rekh and Imkh at β = 1 as functions
of frequency is shown in Figs. 2 and 4, respectively.

C. Phase and group velocities

Phase velocity and group velocity are defined as vp =
ω/Rek and vg = ∂ω/∂ Rek, respectively. Figure 6 shows the
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FIG. 6. Nondimensional phase velocity vp/v as a function of ωτ

for different β.
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FIG. 7. Nondimensional group velocity vg/v as a function of ωτ

for different β.

behavior of the phase velocity as a function of ωτ for 0.5 <

β � 1 calculated from Eq. (20). The nondimensional phase
velocity vp/v exceeds unity at a relatively high frequency
ωτ > 1.5, whereas at β < 0.5 the ratio vp/v is less than unity
at any frequency. The small values of β decrease the energy
exchange between the layers, which in turn decreases the
phase velocity.

Figure 7 shows the behavior of the group velocity as a func-
tion of ωτ for β = 1; 0.9; 0.5 calculated from Eq. (21). When
β = 1, the group velocity vg equals zero both at ωτ → 0 and
ωτ → π . At β < 1, vg → 0 only in the low-frequency limit
ωτ → 0, whereas in the high-frequency limit ωτ → π , we
obtain that vg > 0 (see Fig. 7).

D. Attenuation distance

The temperature oscillation can be represented as

T (x, t ) = T0exp{i[ωt + x(Rek + i Imk)]},
where Rek(ωτ ) and Imk(ωτ ) are given by Eqs. (11) and (12),
respectively. After some algebra, we obtain

T (x, t ) = T0[cos (ωt + x Rek) + i sin (ωt + x Rek)]

× exp(−x Imk).

This equation gives the real part of temperature T (x, t ) as
follows:

ReT (x, t ) = T0[cos(ωt + x Rek)]exp(−x Imk).

This equation implies that γ ≡ 1/Imk is an attenuation
distance, whereas ϕ ≡ x Rek(ωτ ) is a phase lag, i.e., the phase
difference between oscillations at a point x and the boundary
x = 0 where ReT (0, t ) = T0 cos(ωt ). Figure 8 shows the at-
tenuation distance γ as a function of ωτ for different values
of β.

V. CONTINUUM LIMIT OF THE DISPERSION RELATION

Now let us consider the dispersion relation, Eq. (18), for
the DE, Eq. (8), in the continuum limit ωτ → 0 and kh → 0.

FIG. 8. Attenuation distance γ /h as a function of ωτ for
different β.

In such case Eq. (18) gives

∞∑
m=1

(iωτ )m

m!
= β

∞∑
m=1

(kh)2m

(2m)!
. (23)

A. Diffusivelike continualization procedure

The first-order approximation of Eq. (23) results in

iωτ = β
(kh)2

2
. (24)

The dispersion relation (24) corresponds to the PE (classi-
cal Fourier law), Eq. (11). Using Eq. (24), we obtain

kh = ±
(

2iωτ

β

)1/2

= ±
(

ωτ

β

)1/2

(1 + i). (25)

Equation (25) leads to

Rekh = Imkh =
(

ωτ

β

)1/2

. (26)

Figure 9 shows the Rekh = Imkh, Eq. (26), as a function
of ωτ .

Corresponding phase and group velocities and attenuation
distance are given by

vp

v
= ω

Rek
= (ωτβ )1/2,

vg

v
= dω

d Rek
= 2(ωτβ )1/2,

γ

h
=

(
β

ωτ

)1/2

.

Using Eq. (23), we obtain the second-order dispersion re-
lation as follows:

iωτ + (iωτ )2

2
= β

[
(kh)2

2
+ (kh)4

24

]
, (27)
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FIG. 9. Real part of the wave number for the dispersion relations
of the continuous PE, Eq. (26) (dash-dot-dot curve), continuous HE,
Eq. (33) (dash-dot curve), and the DE, Eq. (20) (solid curve) as
functions of normalized frequency ωτ for β = 0.9.

which gives

kh = ±
{

−β ± [β2 − 2β(iωτ − ω2τ 2/2)/3]1/2

β/6

}1/2

. (28)

Equation (28) represents the wave number as a function
of frequency with allowance for the second-order terms in
the Tylor series expansion, Eq. (23). Using Eq. (24), one can
represent Eq. (27) as follows:

iωτ + (iωτ )2

2
= (kh)2

2

[
β + iωτ

6

]
. (29)

Equation (29) leads to

kh = ±
[
ω2τ 2(1/3 − β ) + iωτ (2β + ω2τ 2/6)

β2 + ω2τ 2/36

]1/2

. (30)

Equation (30) is the dispersion relation for the GK or
Jeffreys type equation. A dispersion relation for the equation
similar to the GK or Jeffreys type equation has been discussed
in [53].

B. Wavelike continualization procedure

The first-order approximation of Eq. (21) in the wavelike
continuum limit yields

iωτ + (iωτ )2

2
= β(kh)2

2
, (31)

which corresponds to the HE, Eq. (13). Equation (31) leads to
the dispersion relation in the form

kh = ±
(

2iωτ − ω2τ 2

β

)1/2

. (32)

1 2 3 4
0.0

0.5

1.0

1.5

2.0

  PE    =0.9 

  HE   =0.9

  DE =0.9

  DE =1

 

Im
hk

 

π

FIG. 10. Imaginary part of the wave number for the dispersion
relations of the continuous PE, Eq. (26) (dash-dot-dot curve), con-
tinuous HE, Eq. (34) (dash-dot curve), and the DE, Eq.(21) (solid
curve) as functions of normalized frequency ωτ for β = 0.9. Dashed
curve: the imaginary part of the DE, Eq. (21), for β = 1.

Equation (32) gives

Rekh = ±
[

(ω4τ 4 + 4ω2τ 2)1/2 − ω2τ 2

2β

]1/2

, (33)

Imkh = ±
[

(ω4τ 4 + 4ω2τ 2)1/2 + ω2τ 2

2β

]1/2

. (34)

Figures 9 and 10 show Rekh, Eq. (33), and Imkh, Eq. (34),
as functions of normalized frequency ωτ .

Using Eq. (33), we obtain the phase and group velocities
as follows:

vp

v
= ω

v Rek
=

[
2βω2τ 2

(ω4τ 4 + 4ω2τ 2)1/2 + ω2τ 2

]1/2

,

vg

v
= 1

v

dω

d Rek
= 2[β sin(ωτ )]1/2

sin (ωτ/2) + cos (ωτ/2)
.

Equation (34) gives the attenuation distance γ in the form

γ

h
= 1

Imkh
=

[
2β

(ω4τ 4 + 4ω2τ 2)1/2 + ω2τ 2

]1/2

.

Note that Rekh, Imkh, vp, vg, and γ for the continuous
PDEs are defined in the region 0 � ωτ < ∞.

C. Comparison with the spectrum of the DE

First, let us recall that the continuous PE and HE are
the truncated Taylor series expansions of the DE at small
frequencies and, consequently, cannot approximate the DE
quite well at a high frequency. Figures 9 and 10 compare
the spectra of the continuous PE and HE with the spectrum
of the DE and confirm this conclusion. At small frequencies,
the characteristic time of the process under consideration is
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much larger than τ and the dissipative mode dominates over
the wave (propagative) mode. This implies that the spectra of
the continuous PE and HE, as well as the DE, are purely diffu-
sive and match each other. However, at higher frequencies the
spectra deviate significantly. Moreover, the allowed values of
the frequency and the wave number for the spectrum of the DE
are limited due to the discrete structure of the DE, whereas the
spectra of the continuous PDEs are not (see Figs. 9 and 10).

At a moderate frequency the spectrum of the HE approx-
imates the spectrum of the DE better than the spectrum of
the PE (see Figs. 9 and 10). The fact is that the HE, as well
as the DE, incorporates the fast-time scale τ , which takes into
account the wave mode of heat transport, whereas the PE takes
into account only the diffusive mode and ignores the wave
mode. As the frequency increases, the wave effects begin to
play a role and the HE approximates the spectrum of the DE
better than the PE. However, despite the fact the HE extends
the domain of applicability of the PE from small frequencies
to relatively moderate ones, it still cannot be used at high
frequencies when the characteristic time scale of the process
begins to be comparable to the fast-time scale τ . In such
case, the spectral behavior of the HE and DE is completely
different (see Figs. 9 and 10) and the HE being the truncated
Taylor series expansion of the DE may lead to physically
doubtful solutions. A more detailed analysis of the spectra of
the continuous PDEs in comparison to the spectrum of the DE
for the special case β = 1 can be found in [39].

A comparison of the attenuation distance obtained from
the DE and the PDEs is shown in the SM for different values
of β.

VI. ADVANTAGES OF THE DISCRETE APPROACH

An important feature of the discrete approach is that it
includes into consideration additional fast-time scale τ and
short-space scale h, which are associated with the MFT and
MFP of energy carriers, respectively. This takes into account
an inherent space-time nonlocality of the transfer process,
which begins to play a crucial role when the characteristic
space and/or time scales of the process under consideration are
of the order of h and/or τ , respectively. The discrete approach
leads to evolution equations for the temperature and the heat
flux in purely discrete form, which can be used directly for
computer simulations. In the framework of the discrete ap-
proach the boundary and interfacial conditions receive more
precise physical meaning and adequate formulations com-
pared to the continuum approach [19,20,27–29]. The structure
of the DE implies a finite propagation velocity of thermal
signal and guarantees positiveness of solutions. The additional
discrete space-time scales restrict the maximum allowed fre-
quency and wave vector in the dispersion analysis. There are
no such limits in a continuum description.

The DE contains an infinite hierarchy of the continuous
PDEs including the classical Fourier law, hyperbolic heat
equation, and GK (or Jeffreys type) equation. The continuous
PDEs are the truncated Taylor series expansions of the DE
and approximate the DE with some accuracy. The equation,
DE or PDE, chosen to describe a particular heat conduction
process depends on the relations between the internal scales,
i.e., h and τ , and corresponding external (macro) scales of the

process, respectively, and what level of accuracy is required
in the analysis. Generally, the DE equation is superior for
simulations of heat transport on ultrashort space-time scales.
However, corresponding truncated Taylor series expansions
in the form of PDEs may be used to study relatively small
frequency situations.

Another advantage of the discrete approach over the con-
tinuum one is that only boundary and initial conditions for the
temperature are required to obtain solutions of the DE [31,36].
However, the PDEs require knowledge of additional time and
spatial (or mixed) derivatives along with initial and boundary
conditions for the temperature. Thus, mathematical solutions
of the PDEs require additional information that cannot be
physically determined [36].

As discussed above, the HE, as well as the GK or Jeffreys
type equation, approximates the DE quite well at a relatively
moderate frequency when the MFT is still less than the char-
acteristic time scale of the process. At higher frequencies,
when the characteristic time scale of the process is of the
order of τ , the spectrum of the HE, as well as the GK or
Jeffreys type equation, deviates significantly from that of the
DE (see Figs. 9 and 10) and the continuous PDEs may lead to
physically doubtful solutions.

In addition, the DVM is able to describe the boundary tem-
perature jumps [19–25] and the transition from the diffusive
to ballistic modes of heat transport [19–25], which arise on
ultrashort space-time scales. The boundary temperature jump
occurs, for example, in the nanosized system between the
thermostatted and nonthermostatted regions [19,20], which
can be treated as a consequence of thermal boundary re-
sistance. Numerical methods such as finite element analysis
to study heat conduction problems usually assume that the
temperature and heat flux are continuous functions. However,
the temperature jumps invalidate the continuity condition of
temperature at the interface and result in both larger calcula-
tion error and longer simulation time in molecular dynamics
(MD) simulations [22], while the DVM copes with the jumps
quite well [19,20]. Moreover, the DVM predicts that the lo-
cal thermal conductivity in nanofilms is position dependent
and introduces into consideration the thermal extrapolation
length, which virtually eliminates the temperature jump at
the boundaries with thermal baths [19]. Thus, the DVM can
be used as an effective tool for preliminary calculations to
make a more elaborate MD approach less computationally
expensive.

Now let us briefly comment about the definition of tem-
perature for the discrete systems. According to Cahill et al.
[56] “the question ‘What is Temperature?’ is really a question
about the size of the regions over which a local temperature
can be defined.” Indeed, the classical definition is entirely
local, and one can define a temperature for each space point.
The DVM assumes that inside the discrete layers the tem-
perature does not change and the thickness of the layers h
is the minimum size of the region over which the temper-
ature can be defined. Majumdar [57] seems to be the first
to conclude that “a meaningful temperature can be defined
only at points separated on an average by the phonon MFP.”
This agrees with the statement of Cahill et al. [56] that “a
local region with a designated temperature must be larger
than the phonon scattering distance” (which is of the order
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of MFP). The idea corresponds to the concept of a minimum
heat affected region suggested by Chen [58], which assumes
that during phonon transport from a nanoscale heat source
the minimum size of the heat affected region is of the order
of the MFP. In addition to these limitations, the DVM also
assumes that the minimum size of the heat source acting in
the systems is defined by the discrete internal scale h [see
Eq. (4)]. Note that the DVM also assumes that for the homo-
geneous systems the minimum discrete scale h corresponds
to the MFP. However, for the multilayer materials the scale
h can be associated with the thickness of the layers if the
temperature gradient in the layers is relatively small. The
reader interested in a detailed definition of temperature on
short-space and time scales when the heat conduction occurs
under far from local equilibrium conditions is referred to in
Refs. [34,35,50,59,60].

In addition, the DVM casts some doubts about the over-
shooting phenomena [29], which appears as the solutions of
the continuous HE and dual-phase-lag (DPL) model on the
fast-time scale [61] when the continuous PDEs, as discussed
above, reach their limit. Note that the so-called DPL model
lacks any evidence of physical or mathematical justification
and is nothing but an already existing Jeffreys type or GK
equation [46,62,63].

VII. CONCLUSION

DEs for the periodic one- and two-layer systems with al-
lowance for the thermal resistance between the layers have
been obtained introducing into consideration two additional
internal fast-time and short-space scales. The scales are asso-
ciated with the MFT and MFP of energy carriers, respectively,
and take into account the inherent space-time nonlocality of
the transfer process. Based on the dispersion relation for the
DE for the one-layer periodic system, we derive analytical
expressions for the real and imaginary parts of the wave
number, attenuation distance, and phase and group velocities
as functions of the frequency and thermal resistance between
the layers. In contrast to a continuum description, the max-
imum allowed angular frequency and wave number for the
DE are limited. The dispersion analysis provides a straight-
forward, easy-to-adopt, analytical tool to investigate different
heat conduction regimes, in particular the temperature wave-
like phenomena, arising in metamaterials on the ultrashort
space-time scales.

Furthermore, it is shown that the DE contains an infi-
nite hierarchy of the continuous PDEs including the classical
Fourier law of parabolic type (PE), hyperbolic HE, and Guyer-
Krumhansl (or Jeffreys type) equation. To obtain PDEs with
a finite number of terms, we use continualization procedures
that balance internal fast-time and short-space scales to pre-
serve the main invariant (diffusive or wave) of the original
process described by the DE. The continuous PDEs with a
finite number of terms approximate the DE quite well only
in the low-frequency limit. At a moderate frequency, the HE
approximates the spectrum of the DE better than the PE. How-
ever, at high frequency, the spectrum of the DE and the spectra
of the continuous PDEs differ significantly. This implies that

the continuum approach reaches its limit on the fast-time and
short-space scales at which the DE is preferable.

The approach may be of interest for the design of nanoscale
thermal devices and metamaterials operating on ultrafast-time
and ultra-short-space scales, in particular for the case of quan-
tum materials and graphite.
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APPENDIX

Equation (19) can be represented as follows:

kh = arccos(z + iy), (A1)

where

z = cos (ωτ ) − 1

β
, (A2)

y = sin(ωτ )

β
. (A3)

Taking into account that y > 0 for the principal value of
the arccosine between 0 and π , Eqs. (A1)–(A3) lead to [64]

kh = ±
(

arccos
2z

p + q
+ 2mπ − i arch

p + q

2

)
, (A4)

where m is an integer and

p =
√(

cos ωτ + 2β − 1

β

)2

+
(

sinωτ

β

)2

, (A5)

q =
√(

1 − cos ωτ

β

)2

+
(

sinωτ

β

)2

. (A6)

Equation (A4) gives the real and imaginary parts of the
wave vector as follows:

Rekh ±
(

arccos
2z

p + q
+ 2mπ

)
, (A7)

Imkh = ∓
(

arch
p + q

2

)
. (A8)

Equations (A5) and (A6) can be represented as

p = 1

β

√
1 + (2β − 1)2 + 2(2β − 1) cos ωτ, (A9)

q = 2

β

√
1 − cos ωτ

2
= 2

β
sin

ωτ

2
, (A10)

which gives

p + q = 1

β
(
√

1 + (2β − 1)2 + 2(2β − 1) cos ωτ

+ 2 sin ωτ/2). (A11)
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Thus, using Eqs. (A7)–(A11), we obtain

Rekh = ± arccos
2 (cos ωτ + β − 1)

2 sin ωτ/2 +
√

1 + (2β − 1)2 + 2(2β − 1) cos ωτ
+ 2mπ, (A12)

Imkh = ∓arch
2 sin ωτ/2 +

√
1 + (2β − 1)2 + 2(2β − 1) cos ωτ

2β
. (A13)

Equation (A13) can be represented as [64]

ArchG = ±ln(G +
√

G2 − 1) + i2mπ, (A14)

where G is given by Eq. (22). Equations (A12)–(A14) lead to Eqs. (20) and (21).
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[15] M. Čukić and S. Galovic, Mathematical modeling of anomalous
diffusive behavior in transdermal drug-delivery including time-
delayed flux concept, Chaos, Solitons Fractals 172, 113584
(2023).

[16] S. L. Sobolev, Local nonequilibrium electron transport in
metals after femtosecond laser pulses: A multi-temperature hy-
perbolic model, Nanoscale Microscale Thermophys. Eng. 25,
153 (2021).

[17] A. I. Zhmakin, Non-Fourier Heat Conduction (Springer, Cham,
2023).

[18] R. Kovacs, Heat equations beyond Fourier: From heat waves to
thermal metamaterials, Phys. Rep. 1048, 1 (2024).

[19] S. L. Sobolev and I. Kudinov, Heat conduction across 1D
nano film: Local thermal conductivity and extrapolation length,
Int. J. Therm. Sci. 159, 106632 (2021).

[20] S. L. Sobolev, Bing-Yang Cao, and I. V. Kudinov, Non-
Fourier heat transport across 1D nano film between thermal
reservoirs with different boundary resistances, Physica E
(Amsterdam, Neth.) 128, 114610 (2021).

[21] J. Ordonez-Miranda, R. Yang, S. Volz, and J. J. Alvarado-Gil,
Steady state and modulated heat conduction in layered systems
predicted by the analytical solution of the phonon Boltzmann
transport equation, J. Appl. Phys. 118, 075103 (2015).

[22] J.-W. Jiang, J. Chen, J.-S. Wang, and B. Li, Edge states induce
boundary temperature jump in molecular dynamics simulation
of heat conduction, Phys. Rev. B 80, 052301 (2009).

[23] T. Xue, X. Zhang, and K. K. Tamma, On a generalized non-
local two-temperature heat transfer DAE modeling/simulation
methodology for metal-nonmetal thermal interfacial problems,
Int. J. Heat Mass Transfer 138, 508 (2019).

[24] M. G. Hennessy, M. Calvo-Schwarzwälder, and T. G. Myers,
Modelling ultra-fast nanoparticle melting with the Maxwell-
Cattaneo equation, Appl. Math. Modell. 69, 201 (2019).

[25] M. Calvo-Schwarzwälder, T. G. Myersa, and M. G. Hennessy,
The one-dimensional Stefan problem with non-Fourier heat
conduction, Int. J. Thermal Sci. 150, 106210 (2020).

[26] F. Vázquez, M. López de Haro, and A. Figueroa, On the
causality relations in thermoelectricity, Continuum Mech.
Thermodyn. 30, 1201 (2018).

[27] V. A. Fock, The solution of a problem of diffusion theory by the
method of finite differences and its application to the diffusion
of light, Trans. Opt. Inst., Leningrad 4, 1 (1926).

[28] Ya B. Zeldovich and A. D. Myskis, Elements of Mathematical
Physics (Nauka, Moscow, 1973).

054102-11

https://doi.org/10.1103/PhysRevLett.125.265901
https://doi.org/10.1038/s41467-021-27081-2
https://doi.org/10.1007/s00231-020-02994-8
https://doi.org/10.1016/j.ijthermalsci.2018.08.038
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.080
https://doi.org/10.1515/jnet-2016-0080
https://doi.org/10.1007/s00161-018-0666-2
https://doi.org/10.1126/sciadv.abg4677
https://doi.org/10.1007/s00419-020-01700-8
https://doi.org/10.1007/s10338-021-00257-5
https://doi.org/10.1080/15376494.2019.1601308
https://doi.org/10.1080/17455030.2020.1743379
https://doi.org/10.1007/s10928-019-09625-8
https://doi.org/10.1016/j.chaos.2023.113584
https://doi.org/10.1080/15567265.2021.1985022
https://doi.org/10.1016/j.physrep.2023.11.001
https://doi.org/10.1016/j.ijthermalsci.2020.106632
https://doi.org/10.1016/j.physe.2020.114610
https://doi.org/10.1063/1.4928770
https://doi.org/10.1103/PhysRevB.80.052301
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.067
https://doi.org/10.1016/j.apm.2018.12.004
https://doi.org/10.1016/j.ijthermalsci.2019.106210
https://doi.org/10.1007/s00161-018-0620-3


S. L. SOBOLEV PHYSICAL REVIEW E 109, 054102 (2024)

[29] Y. Taitel, On the parabolic, hyperbolic, and discrete formulation
of the heat conduction equation, Int. J. Heat Mass Transfer 15,
369 (1972).

[30] S. L. Sobolev, Transport processes and traveling waves in
systems with local nonequilibrium, Sov. Phys. Usp. 34, 217
(1991).

[31] S. L. Sobolev, Discrete model for transfer processes, Phys. Lett.
A 163, 101 (1992).

[32] S. L. Sobolev, Two-temperature discrete model for nonlocal
heat conduction, J. Phys. III 3, 2261 (1993).

[33] S. L. Sobolev, Equations of transfer in non-local media, Int. J.
Heat Mass Transfer 37, 2175 (1994).

[34] S. L. Sobolev, Effective temperature in nonequilibrium state
with heat flux using discrete variable model, Phys. Lett. A 381,
2893 (2017).

[35] S. L. Sobolev, Hyperbolic heat conduction, effective tempera-
ture, and third law for nonequilibrium systems with heat flux,
Phys. Rev. E 97, 022122 (2018).

[36] R. Mickens and T. Washington, Construction and analysis of a
discrete heat equation using dynamic consistency: The meso-
scale limit, Appl. Numer. Math. 199, 114 (2024).

[37] D. Geiß, K. Kroy, and V. Holubec, Information conduction and
convection in noiseless Vicsek flocks, Phys. Rev. E 106, 014609
(2022).

[38] I. V. Andrianov, J. Awrejcewicz, and D. Weichert, Improved
continuous models for discrete media, Math. Probl. Eng. 2010,
986242 (2010).

[39] S. L. Sobolev, Discrete heat conduction equation: Dispersion
analysis and continuous limits, Int. J. Heat Mass Transfer 221,
125062 (2024).

[40] P. G. Kevrekidis and I. G. Kevrekidis, Heterogeneous ver-
sus discrete mapping problem, Phys. Rev. E 64, 056624
(2001).

[41] P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop, and E. S. Titi,
Continuum approach to discreteness, Phys. Rev. E 65, 046613
(2002).

[42] S. L. Sobolev, Local non-equilibrium transport models, Usp.
Fiz. Nauk. 167, 1095 (1997); Phys.-Usp. 40, 1043 (1997).

[43] O. Zobiri, A. Atia, and M. Arıcı, Mesoscale investigation of
specularity parameter impact on heat transport in graphene
nanoribbon, Physica E (Amsterdam, Neth.) 139, 115153
(2022).

[44] A. J. H. McGaughey and M. Kaviany, Phonon transport in
molecular dynamics simulations: Formulation and thermal con-
ductivity prediction, Adv. Heat Transfer 39, 169 (2006).

[45] S. L. Sobolev, On hyperbolic heat-mass transfer equation, Int.
J. Heat Mass Transfer 122, 629 (2018).

[46] D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61,
41 (1989).

[47] M. T. Dove, Introduction to the theory of lattice dynamics,
Collection SFN 12, 123 (2011).

[48] D. Roy, Crossover from ballistic to diffusive thermal transport
in quantum Langevin dynamics study of a harmonic chain
connected to self-consistent reservoirs, Phys. Rev. E 77, 062102
(2008).

[49] D. Segal, Absence of thermal rectification in asymmetric har-
monic chains with self-consistent reservoirs, Phys. Rev. E 79,
012103 (2009).

[50] S. D. Liazhkov and V. A. Kuzkin, Unsteady two-temperature
heat transport in mass-in-mass chains, Phys. Rev. E 105,
054145 (2022).

[51] V. Picandet and N. Challamel, Nonlocal thermal diffusion in
one-dimensional periodic lattice, Int. J. Heat Mass Transfer 180,
121753 (2021).

[52] E. Nuñez del Prado, N. Challamel, and V. Picandet, Discrete
and nonlocal solutions for the lattice Cattaneo-Vernotte heat
diffusion equation, Math. Mech. Complex Syst. 9, 367 (2021).

[53] M. Gandolfi, G. Benetti, C. Glorieux, C. Giannetti, and F. Banfi,
Accessing temperature waves: A dispersion relation perspec-
tive, Int. J. Heat Mass Transfer 143, 118553 (2019).

[54] D. Zhang and M. Ostoja-Starzewski, Telegraph equation: Two
types of harmonic waves, a discontinuity wave, and a spectral
finite element, Acta Mech. 230, 1725 (2019).

[55] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.109.054102 for shows the real and imagi-
nary parts of the wave number in a wide frequency range.

[56] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A.
Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl.
Phys. 93, 793 (2003).

[57] A. Majumdar, Microscale heat conduction in dielectric thin
films, J. Heat Transfer 115, 7 (1993).

[58] G. Chen, Nonlocal and nonequilibrium heat conduction in the
vicinity of nanoparticles, J. Heat Transfer 118, 539 (1996).

[59] S. L. Sobolev and I. V. Kudinov, Ordered motion of active col-
loids and effective temperature, Physica A (Amsterdam, Neth.)
540, 123155 (2020).

[60] S. L. Sobolev and I. V. Kudinov, Extended nonequilibrium
variables for 1D hyperbolic heat conduction, J. Non-Equilib.
Thermodyn. 45, 209 (2020).

[61] Y. J. Yu, C.-L. Li, Z.-N. Xue, and X.-G. Tian, The dilemma of
hyperbolic heat conduction and its settlement by incorporating
spatially nonlocal effect at nanoscale, Phys. Lett. A 380, 255
(2016).

[62] X. Zhou, K. K. Tamma, and C. V. D. R. Anderson, On a new
C- and F-processes heat conduction constitutive model and
the associated generalized theory of dynamic thermoelasticity,
J. Therm. Stresses 24, 531 (2001).

[63] K. K. Tamma and X. Zhou, Macroscale and microscale thermal
transport and thermo-mechanical interactions: Some notewor-
thy perspectives, J. Therm. Stresses 21, 405 (1998).

[64] H. B. Dwight, Tables of Integrals and Other Mathematical Data
(Prentice Hall, Englewood Cliffs, NJ, 1961).

054102-12

https://doi.org/10.1016/0017-9310(72)90085-3
https://doi.org/10.1070/PU1991v034n03ABEH002348
https://doi.org/10.1016/0375-9601(92)90169-M
https://doi.org/10.1016/0017-9310(94)90319-0
https://doi.org/10.1016/j.physleta.2017.07.018
https://doi.org/10.1103/PhysRevE.97.022122
https://doi.org/10.1016/j.apnum.2023.05.017
https://doi.org/10.1103/PhysRevE.106.014609
https://doi.org/10.1155/2010/986242
https://doi.org/10.1016/j.ijheatmasstransfer.2023.125062
https://doi.org/10.1103/PhysRevE.64.056624
https://doi.org/10.1103/PhysRevE.65.046613
https://doi.org/10.3367/UFNr.0167.199710f.1095
https://doi.org/10.1070/PU1997v040n10ABEH000292
https://doi.org/10.1016/j.physe.2022.115153
https://doi.org/10.1016/S0065-2717(06)39002-8
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.022
https://doi.org/10.1103/RevModPhys.61.41
https://doi.org/10.1051/sfn/201112007
https://doi.org/10.1103/PhysRevE.77.062102
https://doi.org/10.1103/PhysRevE.79.012103
https://doi.org/10.1103/PhysRevE.105.054145
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121753
https://doi.org/10.2140/memocs.2021.9.367
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118553
https://doi.org/10.1007/s00707-018-2356-3
http://link.aps.org/supplemental/10.1103/PhysRevE.109.054102
https://doi.org/10.1063/1.1524305
https://doi.org/10.1115/1.2910673
https://doi.org/10.1115/1.2822665
https://doi.org/10.1016/j.physa.2019.123155
https://doi.org/10.1515/jnet-2019-0076
https://doi.org/10.1016/j.physleta.2015.09.030
https://doi.org/10.1080/014957301300158094
https://doi.org/10.1080/01495739808956154

