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Implementation of contact line motion based on the phase-field lattice Boltzmann method
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This paper proposes a strategy to implement the free-energy-based wetting boundary condition within the
phase-field lattice Boltzmann method. The greatest advantage of the proposed method is that the implementation
of contact line motion can be significantly simplified while still maintaining good accuracy. For this purpose,
the liquid-solid free energy is treated as a part of the chemical potential instead of the boundary condition, thus
avoiding complicated interpolations with irregular geometries. Several numerical testing cases, including droplet
spreading processes on the idea flat, inclined, and curved boundaries, are conducted, and the results demonstrate
that the proposed method has good ability and satisfactory accuracy to simulate contact line motions.
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I. INTRODUCTION

Multiphase flows are frequently encountered in industrial
operations and engineering applications, such as enhanced
oil recovery [1,2], geological carbon sequestration [3–5],
geothermal [6], as well as underground hydrogen storage
[7,8]. In these processes, the contact-line dynamics have
long been of interest to the fluid research community, and
intensive theoretical [9–11], experimental [12–14], and nu-
merical studies [15–19] have been performed. With significant
advancements in computational capabilities, numerical mod-
eling has emerged as an increasingly efficient approach. In
spite of traditional numerical methods, such as the level set
method, volume-of-fluid method, and the lattice Boltzmann
equation (LBE) method rooted in kinetic theory, a powerful
tool for simulating contact-line dynamics due to its innate ki-
netic nature, excellent adaptability for parallel computing, and
ease in dealing with irregular boundaries [20–22] has been de-
veloped. To date, numerous LBE models for multiphase flows
have been developed based on diverse physical perspectives
including the color-gradient model [23–25], the pseudopo-
tential model [26–28], the free-energy model [29–31], and
the phase-field-based model [32–34]. Compared with other
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models, the phase-field LBE model has attracted much atten-
tion due to its simplicity and accuracy. Since the total mass
variation is managed by the interface tracking equation, im-
plementation of the wetting boundary conditions for the phase
distribution function in the phase-field LBE model becomes
more straightforward.

Within the LBE method community, the wettability of the
solid boundaries is typically characterized by contact angles.
Wetting boundary schemes are required to dictate the phase
distribution at boundary nodes and achieve the desired con-
tact angles. According to a recent work proposed by Zhang
et al. [35], the most-used wetting boundary treatments for
phase-field LBE models can be categorized into three types.
The first approach, developed by Martys and Chen [36] and
later integrated into the phase-field LBE model by Iwahara
et al. [37], utilizes an artificial solid density to simulate fluid-
solid interactions, positing solids as a two-phase fluid mixture.
This straightforward and prevalent wetting boundary scheme
is particularly apt for curved boundaries and numerous suc-
cessful porous-media flow studies have been conducted based
on it. However, the biggest disadvantage of this type of wet-
ting boundary treatment is that contact angle is not an input
parameter, but has an implicit relationship with the solid
density, which requires extra prenumerical simulations [35].
The second type of wetting boundary treatment developed by
Ding and Spelt [38] is from the viewpoint of the geometrical
relation. Compared with the first type of boundary treatment,
this boundary scheme can be mathematically proved that the
numerically imposed contact angle can be guaranteed to be
the exact prescribed value explicitly. Many contributions have
been made to implement this method based on phase-field
LBE models and it has been successfully applied to the
LBE method simulations of fluid-solid wetting phenomena
[39–42]. The last type of wetting treatment was developed
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by Briant [43,44]. Based on the surface-energy method, and
Lee and Liu [45] extended this method into the phase-field
LBE model. In this scheme, the driven force of the motion
of contact line is the surface energy, which is regarded as
part of the free energy of the system. The surface energy
related to the gradient of the order parameter φ is considered
as the wetting boundary condition, which can be expressed as
κnw · ∇φ = dψs/dφ, where nw is the normal vector pointing
from solid to fluid, ψs represents the surface energy, and κ

is the positive free-energy coefficient. Compared to the above
two, this type of wetting boundary treatment can intuitively
and accurately simulate a given contact angle with a solid
physical foundation, so this work primarily focuses on this
kind of boundary treatment.

In the original models, surface energy was defined as a
linear function of the order parameter, which inadvertently
introduced an undesirable mass layer [46]. To address this,
recent adaptations have explored alternative functional rep-
resentations for surface energy, including sine and cubic
functions [47–49]. Taking the cubic form as an example, the
wetting boundary condition can be expressed as nw · ∇φ =
−√

2β/κ cos θ (φ − φ2), where β is a physical parameter de-
termined by the given interface thickness and surface tension.
In the calculation, the above boundary condition is actually
adopted to determine the order parameters on the ghost solid
node. Obviously, it is relatively easy to handle this for a
flat boundary, where the normal vector nw points to a given
lattice node. The order parameter on the ghost cells can be
obtained by solving the aforementioned quadratic equation,
with the gradient term directly determined through interpola-
tion. While for the curved boundaries, the calculation of order
parameters at ghost cells is very complicated. To simplify
the implementation, Connington and Lee [50,51] effectively
assumed that the normal vector is in the direction along the
lattice link, pointing away from the solid. This approach offers
a degree of simplification in boundary handling, but it comes
at the expense of computational accuracy. Apart from that,
Fakhari and Bolster [52,53] adopted a biquadratic interpola-
tion to determine the order parameter along the normal vector.
Given its implicit nature, this method might necessitate iter-
ative solutions. Although the authors introduced a simplified
version in their studies, linear or quadratic interpolations are
still required, and additional judgments for the normal vectors
are required in the calculation, which complicates its imple-
mentation.

To the best of our knowledge, there remains a trade-off
between implementation accuracy and complexity when
dealing with the free-energy wetting boundary in the phase-
field LB model. A boundary treatment with a clear physical
basis, simple implementation, and good accuracy is still
needed. To achieve this objective, a simplified implementation
of the wetting boundary condition for Cahn-Hilliard (CH)
based phase-field LBE method is proposed in this work. The

remainder of this paper is organized as follows. In Sec. II, the
details of implementation for the wetting boundary condition
are introduced after giving the governing equations and LBE
method for two-phase flow. Section III provides the numerical
validation to test the performance of the proposed boundary
treatment. Finally, a summary is given in Sec. IV.

II. MATHEMATICAL METHOD

A. Governing equations and lattice Boltzmann method for
two-phase flow

1. Governing equations

The two-phase incompressible fluid flows can be governed
by the Navier-Stokes (NS) equations and the CH equation,
which can be expressed as [54]

∇ · u = 0, (1a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT )
]

+ Fs + Fb, (1b)

∂tφ + u · ∇φ = ∇ · (M∇μφ ), (1c)

where u is the velocity, ρ is the density, p is the pressure, and
ν is the kinematic viscosity. Fs donates the surface tension
force, which is chosen as Fs = μφ∇φ, with μφ being the
chemical potential. Fb is the body force. φ represents the order
parameter, which is used to distinguish the different phases. In
this work, the order parameter is set as 1 and 0 for liquid and
vapor phases, respectively, with a diffuse phase interface from
0 to 1. M represents the mobility.

In a two-phase system, the density and viscosity are no
longer homogeneous as they exhibit discontinuities at the
liquid-gas interface, which are all assumed to be linear func-
tions of the order parameter here [55]

ρ = φ(ρl − ρv ) + ρv, ν = φ(νl − νv ) + νv, (2)

where the subscripts l and v represent the liquid phase and the
vapor phase, respectively.

2. Lattice Boltzmann model for incompressible fluid flow

In the LBE method, the space is discretized into regular lat-
tices and all particle distribution functions (PDF) are assumed
to move with a series of discrete velocities on the nodes. In
the standard LBE model, the evolution of these PDF can be
described by [20]

fi(x + ciδt , t + δt ) − fi(x, t ) = − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]

+ δt Fi(x, t ), (3)

where fi(x, t ) is the PDF at position x and time t . ci is the
discrete velocity. In two dimensions, the most popular two-
dimension-nine-velocity (D2Q9) is adopted here, and ci is
defined as

ci =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0)c, i = 0,

(cos[(i − 2)π/2], sin[(i − 2)π/2])c, i = 1 ∼ 4,
√

2(cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4])c, i = 5 ∼ 8,

(4)

045307-2



IMPLEMENTATION OF CONTACT LINE MOTION BASED … PHYSICAL REVIEW E 109, 045307 (2024)

where c = δx/δt is the lattice speed with δx and δt being the lattice spacing and time step, respectively. In three dimensions, the
three-dimension-nineteen-velocity (D3Q19) model is used in which the discrete velocity can be expressed as

ci =

⎧⎪⎨
⎪⎩

c(0, 0, 0), i = 0,

c(±1, 0, 0), c(0,±1, 0), c(0, 0,±1), i = 1 ∼ 6,

c(±1,±1, 0), c(±1, 0,±1), c(0,±1,±1), i = 7 ∼ 18.

(5)

τ f in Eq. (3) is the viscosity-related relation time. f eq
i is the equilibrium distribution function, which can be written as

f eq
i =

{ p
c2

s
(ωi − 1) + ρsi(u), i = 0,

p
c2

s
ωi + ρsi(u), i �= 0,

(6)

with si(u) being written as

si(u) = ωi

[
ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
, (7)

where ωi is the weighting coefficient and cs is the sound speed, which are defined as

ω0 = 4

9
, ω1−4 = 1

9
, ω5−8 = 1

36
, c2

s = c2

3
, for D2Q9, (8a)

ω0 = 1

3
, ω1−6 = 1

18
, ω7−18 = 1

36
, c2

s = c2

3
, for D3Q19. (8b)

Fi(x, t ) in Eq. (3) symbolizes the force distribution function,
which is elaborately designed as [56]

Fi =
(

1 − 1

2τg

)
ωi

[
u · ∇ρ + ci · F

c2
s

+ u∇ρ : (cici − c2
s I)

c2
s

]
,

(9)

where F = Fs + Fb is the total force. The fluid pressure and
velocity in the present model can be calculated as

p = c2
s

(1 − ω0)

⎡
⎣∑

i �=0

fi + 0.5δt u · ∇ρ + ρs0(u)

⎤
⎦, (10a)

ρu =
∑

i

ci fi + 0.5δt F, (10b)

Based on the Chapman-Enskog analysis [20], the NS equa-
tions can be recovered from Eq. (3) with the fluid kinematic
viscosity determining by

ν = c2
s (τ f − 0.5)δt . (11)

3. Lattice Boltzmann model for phase interface capture

For the phase interface capture, the well-balanced LBE
model is adopted here [57], in which the LB evolution equa-
tion with the BGK collision operator for the CH equation is
expressed as

gi(x + ciδt , t + δt ) − gi(x, t )

= − 1

τg

[
gi(x, t ) − geq

i (x, t )
]

+ δt Gi(x, t ) + 1

2
δ2

t ∂t Gi(x, t ), (12)

where gi is another set of PDFs used to describe the evolu-
tion of the phase interface, with the equilibrium distribution

function geq
i defined as

geq
i =
{

φ − (1 − ω0)αμφ, i = 0,

ωiαμφ, i �= 0,
(13)

where α is an adjusted parameter. The source term Gi is
defined as

Gi = ωi(u · ∇φ)

[
−1 + I :

(
cici − c2

s I
)

2c2
s

]
, (14)

D2Q9 LBE model is adopted for two-dimensional calcula-
tions and three-dimension-seven-velocity (D3Q7) LBE model
is used for three-dimensional simulations, which could reduce
the computational cost without loss of accuracy. In D3Q7
model, the discrete velocity ci is defined as

ci =

⎛
⎜⎝0 1 −1 0 0 0 0

0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

⎞
⎟⎠. (15)

The weighting coefficient and sound speed are defined as

ω0 = 1

4
, ω1−6 = 1

8
, c2

s = c2

4
. (16)

The order parameter in this model can be computed by

φ =
∑

i

gi. (17)

Applying the CE analysis to Eq. (12), the CH equation can be
exactly recovered without any additional assumption, and the
relation between the mobility M and the relation time τg can
be expressed as

Mφ = c2
s α(τg − 0.5)δt . (18)

To achieve precise numerical computations, it’s essential
to employ suitable difference schemes when discretizing the
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model’s derivative terms. For simplicity, the gradient term can
be determined using a second-order isotropic central scheme
[55,58]

∇�(x) =
∑
i �=0

ωici�(x + ciδt )

c2
s δt

, (19)

and the Laplace operator can be calculated by

∇2�(x) =
∑
i �=0

2ωi[�(x + ciδt ) − �(x)]

c2
s δ

2
t

, (20)

where � is the any physical variable.

B. Wetting boundary condition

1. Construction of the wetting boundary condition

When two-phase fluids come into contact with a solid
substrate, the substrate’s wettability significantly impacts fluid
interface dynamics. Therefore, it is essential to establish a
wetting boundary condition that incorporates the contact an-
gle between the phase interface and the solid surface. In this
subsection, we will give the details on the construction of
the wetting boundary conditions, and propose a simplified
implementation for it based on the above phase-field LBE
model.

First, we denote a multiphase flow domain by � and its
solid boundary by ∂�, then the total free energy of this system
can be expressed as [9,59,60]

F =
∫

�

�(φ,∇φ)d�

=
∫

�

[
ψ (φ) + κ

2
|∇φ|2

]
d� +

∫
∂�

ψs(φ)ds, (21)

where � donates the total free-energy density and ψ (φ) is the
bulk free-energy density which is chosen to have a double-
well form [55] in this work

ψ (φ) = βφ2(φ − 1)2. (22)

κ
2 |∇φ|2 accounts for the phase-interface free energy density
with κ being a positive free-energy coefficient and ψs is the
free-energy density on the fluid-solid boundary. Applying the
variational operator to Eq. (21), we can obtain

δF =
∫

�

[
∂ψ

∂φ
δφ + κ∇φ · δ(∇φ)

]
d� +

∫
∂�

∂ψs

∂φ
δφds,

(23)

which can be further written as follows by using the Gauss
integral theorem [60]:

δF =
∫

�

[
∂ψ

∂φ
− κ∇2φ

]
δφd�

+
∫

∂�

[
−κnw · ∇φ + ∂ψs

∂φ

]
δφds. (24)

Obviously, how to specify the wall free-energy density ψs is
important. Similar to the existing studies, the cubic wall free
energy is adopted with the interactions between solid and bulk
phases neglected, and only the interaction at the three-phase

junction is considered [36,49]

ψs = b1

2
φ2 − b1

3
φ3, (25)

then ∂ψs/∂φ = b1(φ − φ2), with b1 needing to be specified.
Referring to Ref. [60], another constraint condition in the bulk
region can be derived according to Eq. (24),

dψs

dφ
= ±
√

2κψ. (26)

Combining Eqs. (22), (25), and (26), It can be found that
Eq. (26) has two stable solutions of φs1 = 0 and φs2 = 1.
Subsequently, the surface tensions of the gas-solid and liquid-
solid phases can be represented as [61]

σsg = b1

2
φ2

s1 − b1

3
φ3

s1 +
∫ φs1

0

√
2κψdφ = 0, (27a)

σsl = b1

2
φ2

s2 − b1

3
φ3

s2 +
∫ φs2

1

√
2κψdφ = b1

6
. (27b)

Then, for the two-phase fluids on the chemically homoge-
neous wall, the contact angle can be determined based on the
Young’s equation [62]

cos θ = σsg − σsl

σ
= − b1√

2κβ
. (28)

According to Eqs. (25) and (28), the free-energy functional
can be written as

δF =
∫

�

[
∂ψ

∂φ
− κ∇2φ

]
δφd�

+
∫

∂�

[−κnw · ∇φ −
√

2κβ cos θ (φ − φ2)]δφds,

(29)

where nw is the normal vector pointing from solid to the fluid.
In fact, by introducing the effective surface area, i.e., av , the
surface integral in the above equation can be transformed into
a volume integral [63], which can be expressed as

δF =
∫

�

[
∂ψ

∂φ
− κ∇2φ − avκnw · ∇φ

− av

√
2κβ cos θ (φ − φ2)

]
δφd�. (30)

The variation of free energy F with regard to order parameter
is referred to as the chemical potential [31]

μφ = dψ

dφ
− κ∇2φ − av[κnw · ∇φ +

√
2κβ cos θ (φ − φ2)].

(31)

The first two terms on the right-hand side of Eq. (31) represent
the chemical potentials in the bulk area and at the phase inter-
face. The third term represents that on the domain boundary
∂�. Actually, Eq. (31) is usually implemented coupled with
the boundary treatments

nw · ∇φ = χ, (32)
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FIG. 1. Schematic illustration for the lattice nodes around the
physical boundary.

with Eq. (31) being expressed as

μφ = dψ

dφ
− κ∇2φ − av[κχ +

√
2κβ cos θ (φ − φ2)], (33)

where any expressions of χ can lead to the preset wetting
conditions, which is proved numerically in the Appendix. If
χ = −√

2β/κ cos θ (φ − φ2) is chosen, Eqs. (32) and (33)
then becomes the usually used cubic wetting boundary con-
dition. As discussed in the Introduction, it is complicated to
implement the above boundary condition for the boundary
with irregular geometry. To simplify the boundary treatment,
we take χ = 0 to switch Eq. (32) from the Robin boundary
condition to the Neumann-type here

nw · ∇φ = 0. (34)

Obviously, compared with the typical cubic wetting boundary
condition, the implementation of Eq. (34) is much simpler.
The chemical potential in a control volume then can be ex-
pressed as

μφ = 4βφ(φ − 1)(φ − 0.5) − κ∇2φ

− av

√
2κβ cos θ (φ − φ2). (35)

The combination of boundary condition [Eq. (34)] and chemi-
cal potential [Eq. (35)] can be used to describe the contact line
motion of two-phase fluids.

2. Implementation of the boundary conditions

Figure 1 shows a two-dimensional schematic illustration
for some lattice nodes near the boundary. A mark symbol ζ

is introduced to distinguish the fluid (ζ = 1)and solid (ζ = 0)
nodes. It is noted that the boundary nodes are marked as the
same as the fluid nodes with ζ = 1 due to the no-slip and
no-flux boundary conditions are all implemented based on
the modified bounce-back scheme in this work, where the
boundary nodes also participate in the collision and streaming
processes.

For the no-slip and no-flux boundary conditions, the un-
known PDFs fi(xb) and gi(xb) can be calculated by the
modified bounce-back scheme after the streaming step

fi(xb) = fi′ (xb), gi(xb) = gi′ (xb), (36)

where i′ is the opposite direction of i. To capture the wetting
phenomena, Eq. (34) should be used to determine the order
parameter φ on the ghost lattice nodes. As shown in Fig. 1,
φ(xs) should be equal to φ(xs′ ), which is approximated by the
average value of its surrounding nodes [35,64]

φ(xs) = φ(xs′ ) ≈
∑b

i ζ (xs + c′
iδt )φ(xs + c′

iδt )∑b
i ζ (xs + c′

iδt )
, (37)

(a) (b) (c)

FIG. 2. Schematic illustration for (a) volume fraction ε, (b) the
calculated effective surface area av/dx, and (c) lattice nodes involved
in calculating the effective surface area of a curved boundary. The
red dots represent boundary nodes and the green ones denotes fluid
nodes.

where b is the total linked directions of a ghost node. For two-
dimensional (2D) simulations, b = 9 and c′

i = ci in Eq. (4),
but for three-dimensional (3D) cases, b = 27 and c′

i can be
expressed as

c′ = (M N), (38)

where M is the discrete velocity ci in the D3Q19 model in
Eq. (5) and N donates its supplement

N = c

⎛
⎝1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

⎞
⎠.

(39)

3. Approximation of the effective surface area

In our proposed wetting boundary treatment, the effective
surface area av is a crucial parameter, which is needed to be
calculated with great care. For a flat boundary, the effective
surface area is precisely equal to 1/δx. However, it is difficult
to obtain its precise value for a solid boundary with irregular
geometries and here we approximate it by [65,66]

av ≈ |∇ε|. (40)

The above equation starts from the volume averaging theorem,
which links the porosity gradient to the average surface nor-
mal within a control volume, i,e., −∇ε = (1/V )

∫
∂V

nwdA. ε

is the volume fraction of void space within a control volume,
which is defined as

ε =
{

1, fluid nodes,

0, boundary nodes and solid nodes.
(41)

It should be noted that ε at boundary nodes is set as zero,
which is different with ζ . The gradient of ε can be calculated
by Eq. (19). However, there is a sharp transition between the
fluid region and the solid region, As shown in Figs. 2(a) and
2(b), Eq. (19) actually extends the wetting boundary effects to
the adjacent fluid nodes. This two-layer’s structure can ensure
better accuracy when dealing with curved boundaries with the
stair-step approximation. As shown in Fig. 2(c), the lattice
nodes in the solid phase (marked as red dot) usually used to
approximate the curved boundary, obviously, this approxima-
tion will extend the actual physical boundary towards the solid
phase region which could introduce significant deviations.
However, the structure of the double-layer surface chemical
potential could naturally involve nearby fluid points (marked
as the green dot), and lattice nodes on both sides of the
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FIG. 3. Schematic illustration for the calculation of the gradient
of order parameter along the boundary normal direction.

physical boundary are used to calculate the surface chemical
potential, ensuring that the calculated chemical potential is in
the vicinity of the actual physical surface. The accuracy of this
treatment will be validated in subsequent testing cases.

4. Discussion for the advantage of the proposed new approach

From the above derivation, it becomes evident that the
greatest advantage of our scheme is its ability to simplify
the path to achieving wettability of boundaries with complex
geometric shapes, while still ensuring calculation accuracy.

For the implementation of commonly used cubic wetting
boundary condition, i.e., nw · ∇φ = −√

2β/κ cos θ (φ − φ2),
it is essential to ensure the accuracy of solving the normal
gradient on the left-hand side of this boundary equation. As
shown in Fig. 3, the most straightforward approach involves
determining a point along the normal vector of the surface
for a ghost grid with unknown order parameters. However,
it’s not guaranteed that this point falls precisely on the grid.
Therefore, we typically require the grid points around it to
approximate and obtain the order parameter value at that
point. Finally, the normal gradient is expressed as a function
of the ghost grid order parameter through the finite difference
method. Combined with the cubic wetting boundary condi-
tion, the order parameter on the ghost grid can be obtained.
This process is relatively complicated to implement in the
program, and numerical instability may occur for some cases
with complex media structures.

However, in our proposed method, the above cubic wetting
boundary condition is calculated explicitly in the chemical po-
tential, and only Neumann-type boundary condition [Eq. (34)]
needs to be implemented, where the unknown order parameter
on a ghost grid can be approximated by the average value of
its surrounding nodes [Eq. (37)]. Compared with the original
scheme, this greatly simplifies the implementation process,
and numerical results show that it can also ensure high ac-
curacy, which will be discussed in the next section.

FIG. 4. Schematic illustration for the wetting of a droplet on an
idea flat surface.

III. NUMERICAL TEST AND DISCUSSIONS

In this section, several benchmark examples including the
droplet spreading on both flat, inclined, and curved ideal
walls, are going to be performed to validate the accuracy of
our proposed wetting boundary treatments.

A. Droplet spreading on the flat ideal wall

A fundamental two-phase droplet spreading problem on
an ideal wall is initially employed to validate the capability
of the established numerical approach in predicting the wide
range of contact angles. The simulations are performed in
Nx × Ny = 256 × 128 rectangular domain for 2D simula-
tions. A semicircular droplet with the radius R = 50 is initially
deposited on the flat solid wall. The thickness of the solid plate
is 0.25Ny, which is 0.05Ny from the bottom (as displayed in
Fig. 4). It is noted that for very low contact angles of θ = 20◦
and 10◦, the steady droplet has exceeded the grid space, and
then we decrease the radius of the droplet to R = 40 and
30, respectively. To match this setup, the initial distribution
profile of the order parameter is given by [67]

φ(x, y) = 0.5 + 0.5 tanh
2[R −

√
(x − x0)2 + (y − y0)2]

W
.

(42)

The analytical solution of the order parameter for the droplet
at the equilibrium state can be expressed as

φr = 0.5 + 0.5 tanh
2[Rr −

√
(x − xr )2 + (y − yr )2]

W
, (43)

where Rr = Lr/ sin(θ ), xr = x0, and yr = y0 − Rr cos θ . Dur-
ing the simulations, some physical parameters are set as

FIG. 5. The predicted droplet equilibrium shapes in 2D using the
present boundary treatment with wide range of prescribed contact
angles, (a) θ = 10◦, (b) θ = 20◦, (c) θ = 30◦, (d) θ = 60◦, (e) θ =
90◦, (f) θ = 120◦, (g) θ = 150◦, and (h) θ = 160◦.
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TABLE I. Simulation results of the proposed wetting schemes in
predicting wide range of contact angles.

Contact 2D 3D 2D 3D
angle (◦) results (◦) results (◦) errors (◦) errors (◦)

10 10.2 12.3 0.2 2.3
20 19.3 19.7 0.7 0.3
30 29.6 30.2 0.4 0.2
40 39.2 39.7 0.8 0.3
60 59.3 59.5 0.7 0.5
90 89.5 89.9 0.5 0.1
120 119.9 120.7 0.1 0.7
140 140.2 142.8 0.2 2.8
150 150.1 156.3 0.2 6.3
160 159.7 180 0.3 –
170 168.3 180 1.7 –

ρl = 10.0, ρg = 1.0, νl = νg = 0.1, σ = 0.005, M = 0.01,
and W = 4. The periodic boundary condition is applied at all
surrounding boundaries, and the wetting boundary treatments
are adopted for the fluid-solid interface. Figure 5 illustrates
the droplet equilibrium shapes predicted by the LBE method,
incorporating the proposed surface energy wetting boundary
treatment across a broad spectrum of specified contact angles.
As evident from Fig. 5, the droplet can assume various stable
configurations on the substrate, which are significantly influ-
enced by the specified contact angle, and the numerical results
all agree well with the analytical solutions.

Table I summarizes the quantitative comparison between
the given contact angles and the numerically obtained ones. It
reveals that the current wetting boundary treatments are able
to obtain satisfactory results for the entire range of contact an-
gles from 10◦ to 160◦ for 2D simulations, with the maximum
absolute errors generally falling below 1◦. A contact angle
above 150◦ indicates superhydrophobic wetting properties.
Numerically modeling the contact angle within such wetting
regions poses challenges due to significant interface defor-
mation, which can potentially lead to numerical instability.
However, it is shown that the predicted values are overall
consistent with the prescribed one, even when for the case

FIG. 7. The predicted droplet equilibrium shapes in three di-
mensions using the present boundary treatment with wide range
of prescribed contact angles (a) θ = 10◦, (b) θ = 20◦, (c) θ =
30◦, (d) θ = 60◦, (e) θ = 90◦, (f) θ = 120◦, (g) θ = 150◦, and
(h) θ = 160◦.

with contact angle θ = 170◦, the absolute error is also less
than 2◦, which proves the good performance of the present
scheme.

We further computed and plotted the velocity field at dif-
ferent contact angles in Fig. 6 to further confirm whether the
spurious velocity at steady state will affect the simulation
results. As can be observed, the maximum velocity for the
wetting problem on a two-dimensional flat plate is of the order
of 10−6, which is regarded as negligible in most scenarios.

In the 3D testing cases, the initial conditions and param-
eter settings are basically consistent with those of the 2D
scenario. The simulations are performed in Nx × Ny × Nz =
256 × 256 × 128 domain. The initial distribution profile of
the order parameter is given by

φ(x, y, z) = 0.5 + 0.5 tanh

× 2[R −
√

(x − x0)2 + (y − y0)2 + (z − z0)2]

W
,

(44)

where x0 = 0.5Nx, y0 = 0.5Ny, and z0 = 0.25Nz. Figure 7
depicts the 3D equilibrium shapes of the droplet at differ-

FIG. 6. Equilibrium velocity field for the cases of two-dimensional droplet spreading on the flat ideal wall. (1) Speed vector illustration
and (2) Contour plot of velocity |u|.
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(a) (b) (c)

FIG. 8. Contour plot of velocity |u| at equilibrium state for the cases of three-dimensional droplet spreading on the flat ideal wall.

ent wetting angles, and Table I presents the corresponding
computed contact angles. From Table I, we can find that the
present scheme is able to obtain satisfactory results for the
entire range of contact angles from 10◦ to 140◦, of which
the maximum absolute errors are almost less than 3◦. How-
ever, for the superhydrophobic wetting condition, the present
boundary treatment works with poor performance, especially
for the cases with θ = 160◦ and 170◦, where the droplets
could be detached from the solid substrate, leading to a large
prediction error. Compared to the 2D results, the 3D cases
exhibit poorer performance in predicting superhydrophobic
wetting. This can be attributed to the smaller contact area
in 3D cases compared to 2D cases, where the contact line
essentially acts as a contact surface of infinite length in the
third dimension. This is considerably larger than the contact
area in the 3D cases, which gradually reduces to a contact
point as the wetting angle increases. Its inability to provide
sufficient adhesion finally leads to the detachment of the
droplet [60]. Figure 8 shows the contour plots of velocity |u|
at the equilibrium state with different contact angles, and it
can be seen that the maximum velocity for three-dimensional
cases is on the order of O(10−6).

B. Droplet spreading on the inclined ideal surface

To demonstrate the applicability of the present wetting
boundary treatment for problems with more general geome-
tries, testing cases, where droplets spread on the inclined
ideal surface with different inclination angles are performed.
The 2D configuration of the problem is shown in Fig. 9. As
shown in this figure, an inclined solid is placed in the Nx ×
Ny = 256 × 256 rectangular domain for 2D simulations, with
its slanted edge represented by y = tan (γ )x, where γ is

FIG. 9. Schematic illustration for the wetting of a droplet on an
idea inclined surface, θ is the contact angle, γ represents the inclined
angle of the solid boundary.

the inclination angle, and it is selected as γ = arctan (1.0),
arctan (0.5), and arctan (0.25) to assess the accuracy of the
proposed method. Initially, a semicircular droplet with ra-
dius of R = 50 is placed on the inclined surface, and the
order parameter can be described by Eq. (42), with (x0, y0) =
[0.5Nx, tan (γ )0.5Nx]. Some parameters in the testing cases
are set as ρl = 10.0, ρg = 1.0, νl = νg = 0.1, σ = 0.005, and
M = 0.01, and the wetting boundary treatments are adopted
for the fluid-solid interface. For 2D cases, the interface thick-
ness is set as W = 4.

Figure 10 shows the simulation results with different wall
inclination angles for different contact angles from θ = 30◦
to 150◦. For γ = arctan(1) and arctan(0.5), it can be seen that
the numerical results agree well with the reference solutions,
which are a set of circles with specific contact angles on the
wetting surface obtained from geometric relationships. How-
ever, for the cases with γ = arctan (0.25), there are noticeable
discrepancies between the numerical results and the reference
solution when θ = 90◦ and 120◦. This discrepancy arises from
the stair-stepped grid approximation for the inclined surface.
A smaller inclination angle of the wall results in an elongated
horizontal platform (as shown in Fig. 11). In certain scenarios,
the triphase contact point may be located on this platform,
leading to a deviation in the prediction of the contact angle.
To validate this perspective, an increased interface thickness
W = 6 and 8 were adopted to ensure that the three-phase
contact region encompasses a broader extent of solid grid

(a)

(b)

(c)

FIG. 10. The predicted droplet equilibrium shapes on the in-
clined surface in two dimensions using the present boundary
treatment with wide range of prescribed contact angles and different
inclined angles γ , (a) γ = arctan(1.0), (b) γ = arctan(0.5), (c) γ =
arctan(0.25).
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(a)

(b)

FIG. 11. The predicted droplet equilibrium shapes in two dimen-
sions using the wetting boundary treatment with different width of
phase interface W ; contact angle (a) θ = 90◦ and (b) θ = 120◦.

points, thereby enhancing the accuracy of the stair-stepped
approximation. Figure 11 shows the numerical results for wet-
ting angles of 90◦ and 120◦ with interface thicknesses W = 6
and 8. As observed, the alignment between the calculated and
reference results improves with increasing interface thickness.
These numerical findings substantiate the accuracy of the pro-
posed scheme in 2D scenarios.

The velocity fields at equilibrium state with different con-
tact angles and inclined angles in these two-dimensional cases
are plotted in Fig. 12. It can be seen that for the cases,
where the solid boundary aligns with the lattice link [γ =
arctan (1)], the spurious velocity is the smallest, on the order
of 10−7, while for the cases with a zig-zag approximated
solid boundary, the spurious velocities are significantly larger,

(a)

(b)

(c)

FIG. 13. The predicted droplet equilibrium shapes on the in-
clined surface in three dimensions using the present boundary
treatment with wide range of prescribed contact angles and different
inclined angles γ , (a) γ = arctan(1.0), (b) γ = arctan(0.5), (c) γ =
arctan(0.25).

but overall the maximum spurious velocity is still of the
order of 10−5.

For the 3D validation, the simulations are performed in
the Nx × Ny × Nz = 256 × 256 × 256 domain. The slanted
edge of the solid can be represented by z = tan (γ )x. A
droplet, shaped as a semicircle with a radius of R = 50,
is positioned on the tilted surface with its center located
at (x0, y0, z0) = [0.5Nx, 0.5Ny, tan (γ )0.5Nx]. Aside from set-
ting the interface thickness to W = 6, all other parameters
remain consistent with the two-dimensional setup. Figure 13
shows a comparison between the numerical solution and
the reference solution. It can be observed that for various
inclinations of the inclined surface, the wetting boundary
treatment proposed in this study accurately predicts the

(a) (b) (c)

FIG. 12. Contour plot of velocity |u| at equilibrium state for the cases of two-dimensional droplet spreading on the inclined ideal wall. (1)
Contact angle θ = 60◦, (2) contact angle θ = 120◦.
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(a) (b) (c)

FIG. 14. Contour plot of velocity |u| at equilibrium state for the cases of three-dimensional droplet spreading on the inclined ideal wall.
(1) contact angle θ = 60◦, (2) contact angle θ = 120◦.

wetting angle. The numerical solution aligns closely with
the reference solution, demonstrating the capability of the
proposed method for addressing three-dimensional wetting
problems.

Figure 14 shows the velocity fields at equilibrium state with
different contact angles in three-dimensional cases. Similar
with those in two-dimensional cases, the maximum velocity
is on the order of O(10−5), which has negligible effects on the
accuracy of the simulating results.

C. Droplet spreading on the cylindrical and sphere surface

In the above subsections, the performance of the proposed
boundary treatment on flat walls has been proven, including
both scenarios where the physical boundary aligns with the
lattice link or not. In this subsection, the accuracy of the
present model to enforce a designated contact angle on a
curved boundary will be validated using the equilibrium con-
figuration of a stationary droplet on a 2D circular surface and
a 3D sphere.

For 2D simulations, a circular solid with a radius of Rs =
60 and the center located at (xs, ys) = (0.5Nx, 0.5Ny − 50) is
placed within a rectangular area of size Nx × Ny = 256 × 256.
Initially, a droplet with a radius of Ri = 50 is placed on the
surface of the solid, and the initial order parameter can be
expressed as follows:

φ(x, y) = 0.5 + 0.5 tanh
2[Ri −

√
(x − x0)2 + (y − y0)2]

W
,

(45)

where (x0, y0) = (0.5Nx, 0.5Ny ) is the initial center location
of the droplet. At equilibrium, the free energy of the system
minimizes, suggesting an inherent tendency for the droplet to
assume a circular form. Figure 15 illustrates this equilibrium
configuration of a droplet resting on a circular surface, and the

reference solution can be expressed as

φ f (x, y) = 0.5 + 0.5 tanh
2[R −

√
(x − xe)2 + (y − ye)2]

W
,

(46)

where R = L/ cos θ ′ is the radius of the equilibrium droplet.
L can be obtained from the numerical solution and
θ ′ = θ − θ∗ with θ∗ = arccos(L/Rs). (xe, ye) is the center lo-
cation of the equilibrium droplet, where xe = xs and ye = ys +√

R2 + R2
s − 2RRs cos θ . Parameters in simulations in these

testing cases are set as ρl = 10.0, ρg = 1.0, νl = νg = 0.1,
σ = 0.005, M = 0.01, and W = 6.

Figure 16 shows the comparison between the numerical
results and the reference solutions for contact angles rang-
ing from 30◦ to 150◦. As we can see, the numerical results
agree well with the reference solutions, which proves the
good performance of the proposed boundary treatment for 2D
curved walls. The velocity field with different contact angles
are shown in Fig. 17. As can be observed, the maximum
velocity for the wetting problem on a two-dimensional on the

FIG. 15. Schematic illustration for the wetting of a droplet on a
cylindrical solid, θ is the contact angle.
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(a) (b) (c) (d) (e)

FIG. 16. The predicted droplet equilibrium shapes on the cylindrical solid in two dimensions using the present boundary treatment with
wide range of prescribed contact angles.

(a) (b) (c)

FIG. 17. Equilibrium velocity field for the cases of two-dimensional droplet spreading on the cylindrical surface. (1) Speed vector
illustration and (2) Contour plot of velocity |u|.

(a) (b) (c) (d) (e)

FIG. 18. The predicted droplet equilibrium shapes on a 3D solid sphere using the present boundary treatment with wide range of prescribed
contact angles. The first row shows the 3D wetting morphology of the droplet, and the second row provides the distribution of order parameters
in the central cross section, along with a comparison to the reference solution.
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(a) (b) (c)

FIG. 19. Contour plot of velocity |u| at equilibrium state for the cases of three-dimensional droplet spreading on the phere surface.

cylindrical surface is of the order of 10−7. For 3D testing
cases, the computational domain is Nx × Ny × Nz = 256 ×
256 × 256, and the initial distribution of the order parameter
can be expressed as

φ(x, y, z) = 0.5 + 0.5 tanh

× 2[Ri −
√

(x − x0)2 + (y − y0)2 + (z − z0)2]

W
.

(47)

All the other simulation and geometrical parameters are set
as the same as those in 2D cases. Figure 18 displays the 3D
wetting morphology of the droplet at equilibrium, along with
the phase-field distribution on the cross section at y = 0.5Ny

and its corresponding reference solution. From the figure,
it can be observed that when the contact angle is less than
150◦, the numerical results agree well with the reference
solutions. However, for the case with the designated contact
angle θ = 150◦, the present boundary treatment works with
poor performance. This serious deviation may be attributed
to the fact that the droplet achieves a small wetting area on
the sphere, as a result, the droplet could be detached from the
solid substrate, which is similar to the testing cases on the
flat wetting boundary, as is discussed in the above subsection.
The velocity field in these three-dimensional cases are shown
in Fig. 19. As can be observed, the maximum velocity for the
wetting problem is of the order of 10−6.

IV. CONCLUSION

In the present work, a simplified method is proposed to
implement the free-energy-based wetting boundary condition
based on the phase-field LBE method. The two-phase flow
behavior is described by a well-balanced LBE model, and
the wetting phenomena are governed by surface free energy.
Taking the example of surface-free energy in cubic form, the
proposed approach incorporates a portion of the surface-free

energy into the chemical potential. Unlike previous methods
that traditionally treated it as a boundary condition, the
proposed approach only requires handling the boundary con-
dition with zero gradients of the order parameter in the normal
direction on the solid nodes, which can be approximated by
the average value of the surrounding nodes. This approach
significantly simplifies the implementation complexity of
the wetting boundary condition. Several benchmark testing
cases, including the 2D and 3D droplet spreading processes
on flat, inclined, and curved ideal walls, were carried out to
validate the accuracy of the proposed scheme. The results
indicate the good ability and satisfactory accuracy of the
proposed schemes to simulate wetting phenomena on curved
boundaries, showing the application potential in the filed of oil
recovery, carbon sequestration, soft matter, and active matter
[68–71]. The boundary treatment proposed in this paper pro-
vides a simple and effective tool for the numerical simulations
of phase behavior in the above potential research directions.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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TABLE II. Selection of chemical potential μφ and χ in different cases.

χ Chemical potential μφ

Case 1 −√
2β/κ cos θ (φ − φ2) dψ

dφ
− κ∇2φ

Case 2 0 dψ

dφ
− κ∇2φ − av[

√
2κβ cos θ (φ − φ2)]

Case 3
√

2β/κ cos θ (φ − φ2) dψ

dφ
− κ∇2φ − 2av[

√
2κβ cos θ (φ − φ2)]
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FIG. 20. Time evolution of the droplet spreading shapes with different contact angles, (a) θ = 60◦, (b) θ = 120◦. The results of case 1
with χ = −√

2β/κ cos θ (φ − φ2) are shown with color figure. The contours with φ = 0.5 of case 2 and case 3 are marked with black line and
white dashed line, respectively.

APPENDIX: NUMERICAL VERIFICATION
OF THE IRRELEVANCE OF χ TO THE RESULTS

In this Appendix, we want to numerically prove that it
is equivalent to treat the wall-free energy at the bound-
ary condition or to embody it in the chemical potential.
Thus, three different groups of chemical potential, μφ and
χ are chosen to be the testing cases, which are listed in
Table II.

To facilitate the calculation of cases 1 and 3, we selected
the spreading process of droplets on an ideal horizontal plane
as the test. The physical design and numerical parameters of
the test are all consistent with those in Sec. III A. Figure 20
shows the time evolution of the droplet spreading shapes
obtained by different cases. It can be clearly seen that at
different contact angles, the results obtained at different times
by different combinations of μφ and χ are consistent, which
proves the irrelevance of χ to the wetting boundary treatment.
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