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We present a modification of the Rose-Machta algorithm [N. Rose and J. Machta, Phys. Rev. E 100, 063304
(2019)] and estimate the density of states for a two-dimensional Blume-Capel model, simulating 105 replicas in
parallel for each set of parameters. We perform a finite-size analysis of the specific heat and Binder cumulant,
determine the critical temperature along the critical line, and evaluate the critical exponents. The obtained
results are in good agreement with those previously obtained using various methods—Markov chain Monte
Carlo simulation, Wang-Landau simulation, transfer matrix, and series expansion. The simulation results clearly
illustrate the typical behavior of specific heat along the critical lines and through the tricritical point.
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I. INTRODUCTION

The Ising system with anisotropy field [1,2], known as the
Blume-Capel (BC) model, is the simplest lattice spin model
in which a tricritical point is observed. This is the point on
the phase diagram where a smooth line of second-order phase
transitions suddenly turns into a first-order line [3,4]. The
model has been studied using various analytical and numerical
methods, and the status of the study is discussed in detail in
the paper [5].

A new framework for numerical entropy estimation of
systems with discrete energy spectrum was recently presented
[6]. It is designed to simulate equilibrium systems in a mi-
crocanonical ensemble using annealing on the energy ceiling.
It has been applied to a first-order phase transition in a
two-dimensional 20-state Potts model to study topological
transitions in the unstable energy region between two equilib-
rium states. One of the microcanonical algorithms proposed in
the paper [6], i.e., the microcanonical population annealing al-
gorithm, is an interesting combination of Markov chain Monte
Carlo (MCMC) and population annealing, and is designed to
calculate the density of states by estimating entropy. The basic
idea is to compute the random transitions of a huge number of
replicas and estimate the ratio of replicas that are separated
by an energy ceiling as the ceiling goes down the energy
spectrum.

In the original version, the algorithm starts by generating
R independent replicas of the system at the maximum energy
of the system and moves the replicas down the energy levels
using energy ceiling. The reasons for the modification are
several. First, in the general case, the choice of the spin config-
urations with the maximum energy is a difficult task. Second,
the number of configurations with maximum energy can be
finite. For example, for the two-dimensional Ising model,
there are only two such configurations and we would like to
have a large number of replicas. Third, the ceiling algorithm
of Rose and Machta will drop the systems down the energy
spectrum very quickly, and it is impossible to obtain a good
enough entropy estimate near the top of the energy spectrum.

In this paper, we extend the Rose-Machta population an-
nealing approach by introducing energy floor in addition to

energy ceiling. The idea of the microcanonical population
annealing algorithm (MCPA) is as follows. The randomly
generated spin configurations most likely correspond to the
most probable energy values centered around the maxima of
the density of states (DoS), which is a convex function. Using
annealing with energy ceiling, we get the left wing DoS.
Using an extension of the procedure with energy ceiling, i.e.,
the procedure with energy floor, we get the right wing DOS.

The accuracy of our approach is additionally verified in a
parallel article [7], which compares the results of the Rose-
Machta method with the Wang-Landau method [8,9] with
controlled accuracy [10] using the Potts model as an example.
It turns out that the accuracy of both algorithms, i.e., the
Wang-Landau algorithm and the ceiling or floor population
annealing algorithm, is comparable. The difference between
the algorithms is that the Wang-Landau algorithm is a process
of random walk in the energy space, and this algorithm is a
process of parallel annealing of a sufficiently large population
of replicas using ceiling or floor energy annealing.

One of the main problems in simulations using a
temperature-dependent transition probability is the critical
slowdown. In the case of second-order phase transitions, the
relaxation time increases in a power law with the size of
the system in the critical region [11]. In the case of first-
order phase transitions, the situation is even worse since the
timescale in the coexistence phase for simulation growth with
L is exp(� Ld−1), where L is the system size, d is the dimen-
sion of the system, and � is the surface tension of the interface
[12].

A practical feature of the Wang-Landau and energy ceiling
algorithms is that the transition probability does not contain
any temperature dependence and formally does not have such
a critical slowdown. In any case, the characteristic times of the
Wang-Landau algorithm, i.e., the tunneling time and mixing
time, continue to grow according to the power law of the
system size in the case of a second-order phase transition
[13] and simulating a model with large system size remains
problematic. At the same time, it seems that microcanonical
algorithms are more preferable for simulating systems with
first-order phase transitions [14].
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FIG. 1. Phase diagram obtained by different methods: trans-
fer matrix [30] (blue circles), Monte Carlo [31] (black triangles),
Wang-Landau [32] (green squares), high-energy and low-energy ex-
pansions [5,33] (red diamonds), microcanonical algorithm [34] (cyan
pluses), and microcanonical population annealing (current work, vi-
olet crosses). The error bars are much smaller than the symbols.

We choose the Blume-Capel model to check how the modi-
fied Rose-Machta framework works for a system with second-
and first-order phase transitions, and in the case of a tricritical
point, which is very difficult to study numerically.

II. MODEL

The Blume-Capel model [1,2] in the absence of a magnetic
field is described by a Hamiltonian,

H = −J
∑
〈i, j〉

σiσ j + �
∑

i

σ 2
i , (1)

where the spins σi are located on the sites of a square lattice
of linear size L and take one of three values (−1, 0, 1). Pe-
riodic boundary conditions are used, and pairwise interaction
of spins occurs only through the nearest-neighbor sites. The
natural variables in the Eq. (1) are the ferromagnetic coupling
constant J > 0 and crystal field �. We will also use the nota-
tion D = �/J . The parameter D can be viewed as a disorder
parameter since the model (1) can be mapped to the Ising
model with annealed disorder [4].

No exact solutions for the Blume-Capel (BC) model on
lattices of dimension d > 1 are known. The phase diagram
obtained by numerical estimation of the continuous phase
transition line, i.e., the first-order phase transition line and the
tricritical point, is shown in Fig. 1. The agreement between
the different numerical methods is quite good and the most
accepted position of the tricritical point is Dtr ≈ 1.966 and
Ttr ≈ 0.608. Our phase diagram estimate is consistent with
other methods.

III. MICROCANONICAL POPULATION ANNEALING

In this section, we briefly introduce the Rose and Machta
ceiling population algorithm presented in Sec. II of the paper
[6]. The authors demonstrate the efficiency of the algorithm
in the coexistence phase and are able to capture interesting
details of topological transitions in this domain.

In order to apply the ceiling population annealing algo-
rithm to calculate thermodynamic variables, the entire energy
spectrum must be covered to be able to estimate entropy.

So the simulating starts by generating a population of states
with maximum energy. Applying the ceiling algorithm [6] will
very quickly drive all replicas into the most likely states, and
the accuracy of the density of states (DoS) estimate will be
insufficient.1 We propose to generate a population with an
initially random configuration of spins.

In this case, the most likely configurations will have an
energy corresponding to the maximum of the density of states,
which is a convex function with a maximum somewhere in the
middle of the energy spectrum (see, for example, Fig. 6). In
this way, we can cover the whole energy spectrum with good
statistics and estimate the DoS by combining the results of
the ceiling and floor simulations using an appropriate proce-
dure. We present the ceiling and floor processes in a unified
description.

A. Rose-Machta ceiling procedure

Rose and Machta’s approach to simulating equilibrium
systems in a microcanonical ensemble does not relax with
temperature; instead, the independent variable of the algo-
rithm is energy. The MCMC procedure consists of a single
spin-flip algorithm. The moves occur in configuration space,
and the probability of transition from the state α to the state ω

with energy Eω is given by

Pceiling(α → ω) =
{

1 if Eω � Ec

0 if Eω > Ec,
(2)

where Ec is the value of ceiling energy, the cooling energy
value. The elementary MCMC step consists with N updating
of randomly chosen spins, with N the number of spins. An-
other parameter of the algorithm is the number of elementary
MCMC steps, ns(E ).

The algorithm satisfies detailed balance, but is not ergodic
for all ceiling energies Ec, especially near a ground state
consisting of more than one ordered state. Ergodicity can be
ensured by simulating a sufficiently large number of parallel
replicas [6]. The success of the method was demonstrated by
the example of a strong first-order phase transition in the Potts
model with 20 states [6]. The method is, in a sense, a mixture
of three algorithms: the simulated annealing algorithm [15],
the Wang-Landau algorithm [8,9], and the populations anneal-
ing algorithm [16,17].

B. Floor microcanonical procedure

Extension of this idea is annealing using the floor instead
of ceiling. The moves occur with the probability of transition
from the state α to the state ω with energy Eω given by

Pfloor (α → ω) =
{

1 if Eω � E f

0 if Eω < E f ,
(3)

where E f is the value of floor energy, the heating energy value.

1It should be noted that it is the Wang-Landau probabilities [8] that
drive the system in the Wang-Landau algorithm to the edges of the
energy spectrum.
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C. Microcanonical population annealing algorithm

Combining the ceiling and floor procedures, we get the fol-
lowing algorithm. We do not apply any annealing protocols,
but instead perform lowering and raising of energy levels that
are calculated dynamically.

Initialization. Generate R copies of a system with a ran-
dom spin configuration, most of which are located near the
maximum of the energy probability distribution g(E ), called
the density of states (DoS). Set the initial value of the ceiling
Ec(0) to the maximum energy in the ensemble of replicas, and
the initial value of the floor E f (0) to the minimum energy.

Elementary step i of the algorithm:
(1) Perform the ns[Ec(i)] (ns[E f (i)]) MCMC steps, thereby

creating new configurations R, which represent a pool of
configurations.

(2c) Ceiling step. Set the next value of the ceiling, Ec(i), to
the nearest lower-energy level in the pool configurations.

(2f) Floor step. Set the next value of the floor, E f (i), to the
nearest higher-energy level in the pool configurations.

(3) Count the number of replicas in the pool, R′, with
energy Ec(i) (E f (i)), and calculate the culling fraction
ε[Ec(i)]=R′/R or ε[E f (i)]=R′/R. Filter these R′ configura-
tions from the pool of configurations.

(5) Randomly select configurations from the pool until the
number of replicas equals R.

(6c) Go to step 1 until the lowest energy for the ceiling is
reached.

(6f) Go to step 1 until the highest energy for the floor is
reached.

D. Stitching the parts of entropy together

To estimate the extensive part of entropy [6], culling frac-
tions are used for the ceiling and floor,

Sc(E ) = ln[ε(E )] +
∑

E>Ec

ln[1 − ε(E ′)], (4)

S f (E ) = ln[ε(E )] +
∑

E<E f

ln[1 − ε(E ′)]. (5)

Entropy allows us to add arbitrary constants, which we denote
as Sc

0 and S f
0 , the entropy constants for the ceiling and floor,

respectively.
As can be seen from the simulation example in Fig. 2,

both cooling and heating only cover one wing of the entire
energy spectrum. The intersection spanned by both runs is
near the entropy maximum, where the random initial replicas
are probably located. We obtain entropy over the entire energy
range by stitching together the cooling and heating wings in
the overlapping region.

Stitching is a somewhat arbitrary procedure that is not
sensitive to selection details. We perform it as follows:

(i) Select the intersection area bounded by the outer red
vertical lines from the leftmost point of the floor wing to the
rightmost point of the ceiling wing; see Fig. 2.

(ii) The ends of the ceiling and floor wings are somewhat
scattered, so we cut off the outer thirds of the areas, leaving us
with the area bounded by the inner green vertical lines, which
we denote as Eleft and Eright.

FIG. 2. Example entropy estimate for Blume-Capel model with
D = 1.5 and linear system size L = 32. The orange points are calcu-
lated using the ceiling algorithm, the blue points are calculated using
the floor algorithm, the right red vertical line marks the rightmost
value of Sc(E ), and the left red vertical line marks the leftmost value
of S f (E ). The inner green vertical lines mark the stitching region.
Details are given in the text.

(iii) Calculate the mean difference,

�S(E ) =
∑

E∈[Eleft,Eright ]

Sc(E ) − S f (E )

Nstitch
,

where Nstitch is the number of levels in [Eleft, Eright], i.e., for
all energies within the green lines in Fig. 2, for energy lev-
els coming from Eleft and Eright. This allows us to write the
stitched S(E ) in the form

S(E ) = S0 +

⎧⎪⎨
⎪⎩

Sc(E ) if E < Eleft

S f (E ) + �S(E ) if E > Eright

Sc (E )+S f (E )+�S(E )
2 else.

(6)

(iv) The last free constant S0 can be fixed by counting the
number of all states in the system, which is 3L2

in our case of
the Blume-Capel model on a square lattice with L2 sites,∑

{E}
eS(E ) = 3L2

. (7)

It should be noted that step iii is necessary to stitch together
the left and right entropy wings since, in general, they should
not coincide. The last step iv consists in normalizing the DoS
by the number of possible states, which should lead to the
correct entropy values.

E. Estimation of the thermodynamic observables

An estimate of the canonical partition function is given as
a function of temperature T measured in energy units,

Z (T ) =
∑

E

e−E/T +S(E ), (8)

up to some constant multiplier. This multiplier canceled when
computing the estimates of the canonical averages, so for
simplicity we simply omit it and consider only the extensive
part of entropy.
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FIG. 3. Number of replicas with energy E : initial random config-
uration of 2D Ising model with square lattice size L = 20.

The estimates of average internal energy 〈E (T )〉 and spe-
cific heat 〈C(T )〉 at temperature T are calculated using the
following expressions:

〈E (T )〉 =
∑

E E e−E/T +S(E )

Z (T )
, (9)

〈E2(T )〉 =
∑

E E2 e−E/T +S(E )

Z (T )
, (10)

C(T ) = 〈E2(T )〉 − 〈E (T )〉2

T 2
. (11)

IV. ALGORITHM REALIZATION

The implementation of the algorithm is based on a modi-
fication [6] of the accelerated population annealing algorithm
for GPU [18]. The simulations were performed on an NVIDIA
V100 GPU with a typical replica number R = 217 = 131 072.

The number R of the initial and independent replicas of
the system (1) is generated with random spin configurations.
Thus, these will be the most probable configurations with the
most probable energies. We use the CURAND package [19]
with the Philox random number generator from the CUDA SL

package, which allows us to have independent sequences of
pseudorandom numbers. The largest linear lattice size in our
research is L = 96, and each ceiling or floor simulation in
one replica uses about 2 × 105 random numbers per algorithm
step. The total number of steps is equal to the number of
energy levels, which is about 106. The total number of random
numbers per run of one replica is about 240, which is less than
the length of Philox stream 264. This concludes the discussion
that parallel replica simulations are random and uncorrelated.

We validate our algorithm by computing the DoS of the 2D
Ising model and comparing them well with the corresponding
exact solution [20] using ns(E ) = 10 steps. Figure 3 shows the
distribution of the number of initial replicas of the 2D Ising
model with L = 20 as a function of energy, which is centered
around zero.

Figure 4 shows the culling factor calculated using the mi-
crocanonical population annealing algorithm, and the inset
shows the absolute difference between the calculated culling
factor and the exact one calculated using Beale’s approach
[20]. Note that the difference shown in the inset is multiplied

FIG. 4. Culling factor ε(E ) of a two-dimensional Ising model
with linear lattice size L = 40. Inset: Absolute difference between
the calculated and exact culling factor, multiplied by a factor of 1000.

by the factor 1000, and this difference does not exceed 10−3

and is not visible at the scale of the main figure.
We found no significant effect of the number of MCMC

steps ns(E ) on the results, comparing DoS calculated at values
of ns(E ) from 1 to 50. In contrast, the accuracy of DoS
strongly depends on the number of replicas, R. Figure 5 shows
the variation of the relative DoS error, calculated as the rela-
tive difference of the DoS estimate from the MCPA simulation
gMCPA(E ) from the exact g(E ) calculated with Beale’s solu-
tion [20] g(E ),

δg =
∑
{E}

|gMCPA(E )/g(E ) − 1|,

as the sum of modulus of the relative differences at each
energy level E , normalized by the number of energy levels.
Remarkably, δg behaves like R−1/2, reflecting the applicability
of the central limit theorem for the DoS estimation using
MCPA.

We further validated the algorithm by comparing our ap-
proach with Wang-Landau simulations using Potts models
with 10 and 20 components exhibiting a first-order phase
transition, and the results matched well [7].

The implementation of the Blume-Capel model algorithm
has significant differences from the Ising and Potts models.
In general, energy levels are not integers and care must be

FIG. 5. Variation of the relative DoS error δR on the number of
replicas, R. The dashed line shows the slop proportional to 1/R1/2.
2D square lattice Ising model with L = 20.
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FIG. 6. The entropy S(E ) is calculated for the ratios �/J = 0
and 1.5 in the top row and �/J = 1.966 and 1.99 in the bottom row.
The number of replicas is 217 and the system size is L = 64.

taken when handling them in the algorithm. The ceiling or
floor goes to the next energy level, and the energy gap de-
pends on the fractional value of D. Indeed, D is a finite
decimal number, and the last digit a in D is represented as
a10−n (e.g., D = 1.966 with a = 6 and n = 3). Since E =
integer number+D integer number, the minimum energy step
is dD = 10−n in the general case. Therefore, the ceiling or
floor modeling takes orders of magnitude longer as n in-
creases. For example, the number of levels for systems of size
L = 32 varies from 4085 at D = 0 to 40 589 at D = 1.9 to
383 528 at D = 1.966.

As a result, we implement automatic detection of energy
levels in the pool and change the ceiling or floor value
to the next energy level instead of changing it by dD. To
avoid the error in comparing floating point numbers, we cal-
culate the energies multiplied by a factor of 10n and use
integer arithmetic for them. This is a technical trick, but a very
important one, and it should be noted that in the paper, we give
the energies in J units, so the 10n factor drops out everywhere.

V. SIMULATION RESULTS

Figure 6 shows examples of entropy estimates for lat-
tices with linear size L = 64 and for several values of the
anisotropy parameter �/J . It actually displays ln g(E ), where
g(E ) is the density of states. For �/J = 0, it is a symmetric
function, as expected, and with increasing values of �/J , the
maximum shifts to lower energies.

A. Specific heat analysis

The specific heat is calculated using the expressions (9)–
(11). We analyze the finite-size scaling of the height of the
specific heat maximum Cmax and its position T C

L . It is well
known 2 that the phase diagram of the Blume-Capel model,
given by Eq. (1), in the (T − �) plane consists of the lines of
the second-order and first-order phase transitions terminated
at the tricritical point. Thus, there are three classes of finite-
size behavior as well as the crossover behavior around the
tricritical point. We summarize some estimates of the phase

2The most recent and detailed analysis is provided by Butera and
Pernici in the article [5].

TABLE I. Estimates of the critical temperature T ∗
c from the

position of the specific heat maximum Cmax, the critical amplitude
C0 of the logarithmic behavior of the specific heat maximum and
correction to scaling C1, and the estimate of the critical temperature
T b

c from a Binder cumulant analysis. Ising model universality sector.
Linear systems of size L from 16 to 64 were used.

D/J T ∗
c C0 C1 T b

c

0 1.694(4) 0.79(2) 0.35(7) 1.697(1)
0.5 1.5686(4) 0.74(2) 0.35(8)
1 1.401(1) 0.70(1) 0.14(7) 1.400(1)
1.5 1.155(1) 0.59(1) 0.23(7) 1.155(2)
1.6 1.085(1) 0.53(1) 0.40(7) 1.087(1)
1.7 1.006(1) 0.52(2) 0.33(13) 1.007(1)
1.75 0.961(1) 0.453(8) 0.70(7) 0.9587(4)
1.87 0.8203(8) 0.41(2) 1.26(19) 0.8155(5)
1.9 0.7731(7) 0.44(1) 1.29(14) 0.7700(7)
1.92 0.7338(6) 0.60(2) 0.52(10) 0.731(3)
1.94 0.6891(4) 1.00(1) −0.45(3) 0.688(1)
1.95 0.6613(4) 1.79(6) −1.30(7) 0.6593(4)

diagram obtained by various methods, as indicated in the
caption of Fig. 1.

The expected finite-size scaling of the specific heat near
the second-order line is in the universality class of the 2D
Ising model. Accordingly, the two main terms in the finite-size
dependence of the specific heat of the Ising model at the
critical point behave [21] as

C = C0(ln L + C1) + · · · , (12)

and a detailed calculation of the terms can be found in
[21–24] for a two-dimensional model on the torus, with C0 =
8/π (J/Tc)2 ≈ 0.494. The logarithmic behavior is universal,
but the coefficient C0 is not universal and depends on the
details of the Hamiltonian. The fit to the expression (12) is
given in the second and third columns in Table I. The fit is rea-
sonable up to the value of anisotropy parameter �/J = 1.95.

It was observed in the paper [25] that the dependence of
the coefficient C0 along the critical line on the anisotropy
parameter D can be reasonably consistent with the power law
C0 ∝ (D − Dtr )ω with a reasonable estimate Dtr = 1.96(1).
We checked our data against this observation and plot the
C0 coefficient from Table I along with the fit to the min-
imum C0 value at D = 1.87; see Fig. 7. Estimating the fit
with ω = 0.227(31) gives Dtr = 1.965(53), which agrees
very well with the widely accepted value of tricritical point
estimates [5].

The most typical dependence of the specific heat maximum
on the lattice size is shown in Fig. 8. For the value 0 � D �
1.95 corresponding to Table I, the dependence is logarithmic,
as expected for the universality class of the Ising model.

We observe crossover behavior at a value �/J = 1.96, at
which the specific heat fits well in a straight line, i.e., with
the effective exponent μeff close to 1, as shown in Fig. 8. At
large values of �/J , the divergence of the specific heat grows
faster—the results of fitting the power law to the data of the
form

C = m1Lμeff + · · · (13)
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1.1

C0

D=Δ/J

FIG. 7. Change of coefficient C0, expression (12), with
anisotropy parameter D. The solid line is the heuristic fitting de-
scribed in the text.

are given in Table II. Interestingly, the value of the effective
exponent, μeff ≈ 1.6, for �/J = 1.966 is very close to those
expected for the dependence of the specific heat at the tricrit-
ical point [5]. Indeed, most estimates of the position of the
tricritical point coincide with the point (�/J = 1.966, Tc =
0.608), which agrees well with our observations. Surprisingly,
the value of μeff ≈ 1.6 was obtained without noticeable cor-
rections to scaling.

Qualitatively, this behavior is similar to the results of the
analysis of the phase diagram of the tricritical point based on
Landau theory and developed by Bausch [26]. Figure 4 from
his paper illustrates the prediction that there is a very wide
crossover region around the first-order critical line, a narrower
one around the second-order critical line, and a crossover
region that disappears around the tricritical point. We do not
claim this explanation, but simply draw the reader’s attention
to the coincidence since we found a very strong crossover

0 20 40 60 80 100
0

5

10

15

20

Cmax

L

FIG. 8. Maximum value of the specific heat of the Blume-Capel
model. Red circles: �/J = 1.95; black squares: �/J = 1.96; purple
stars: �/J = 1.962; magenta circles: �/J = 1.966.

TABLE II. Estimates of the critical temperature T ∗
c from the

position of the specific heat maximum Cmax, the critical amplitude
m1 of the power-law behavior of the specific heat maximum and
the effective critical amplitude μeff , and an estimate of the critical
temperature T b

c from Binder’s cumulant analysis.

D/J T ∗
c m1 μeff T b

c

1.96 0.6321(4) 0.18(1) 0.95(1) 0.6281(3)
1.962 0.6219(2) 0.098(9) 1.14(2) 0.6207(5)
1.964 0.6156(1) 0.053(6) 1.34(3) 0.6145(2)
1.965 0.6121(5) 0.029(2) 1.51(2) 0.6110(1)
1.966 0.6089(2) 0.020(2) 1.61(2) 0.6077(1)
1.967 0.6057(1) 0.011(3) 1.78(6)
1.97 0.601(1) 0.0110(9) 1.83(2) 0.5927(1)
1.98 0.549(1) 0.0062(5) 1.98(2)

effect around the first-order critical line. Indeed, the effective
exponent μeff converges very slowly to the expected value of 2
for the first-order phase transition, as can be seen from Table II
and Fig. 9.

B. Estimation of critical temperature

We estimate the critical point from the position of the
maximum of the specific heat and the position of the minimum
of the Binder cumulant [11,27], that is, from the pseudocritical
temperatures, which we denote T ∗

C (L) and T b
C (L), respectively,

and taking the thermodynamic limit L → ∞. Figures 10 and
11 illustrate how the specific heat and Binder cumulant behave
differently in the critical region depending on the linear lattice
size L. The Binder cumulant calculated using the second and
fourth moments of energy is

BE (T ) = 1 − 〈E4(T )〉
3〈E2(T )〉2

. (14)

It is known [11,21,24] that the pseudocritical temperatures’
shift depends on the correlation length exponent ν as

T ∗
C (L) = T ∗

C + a

L1/ν
, T b

C (L) = T b
C + a

L1/ν
, (15)

1.960 1.965 1.970 1.975 1.980
0.8

1.0

1.2

1.4

1.6

1.8

2.0

μeff

Δ/J

FIG. 9. Variation in the effective exponent of the specific heat
maximum.
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FIG. 10. Specific heat in the critical region. �/J = 1.965.

where T ∗
C and T b

C are estimates of the critical temperature. The
results of the fit (15) are given in Table I and Table II as the
first and last columns.

We found a difference in the estimates (see Table II) of the
critical temperatures T ∗

C (L) and T b
C (L) from the shift of the

heat capacity maximum and the local minimum of the Binder
cumulant, a difference growing downward along a first-order
line. We attribute this to strong crossover, and more extensive
analysis is needed to accurately estimate the first-order critical
line. In contrast, there is no difference in the Table I estimates
of the critical temperature T ∗

c and T b
c from the displacement

of the specific heat maximum and the local minimum of the
Binder cumulant along the line of second-order transitions.
Apparently, the influence of the crossover is much weaker in
this case. It should be noted that the estimates of the critical
temperature in the last column of Table II from the Binder
cumulant are closer to Butera and Pernici’s estimates of the
critical temperature from series expansion [5] than our esti-
mates of the critical temperature from the specific heat.

Figure 12 shows the entropy change in the critical region
for lattice size L = 48 for different values of the disorder
parameter �/J in the tricritical point region. This dependence
is similar to that presented in Fig. 5 of Ref. [29], obtained
using the transition matrix method. Estimates of the critical
temperature from the intersection of the entropy densities
for various values of the linear size are consistent with esti-
mates calculated from the specific heat and Binder cumulant
behavior.

FIG. 11. Binder cumulant in the critical region. �/J = 1.965.

FIG. 12. Entropy density for several values of D = �/J .

VI. DISCUSSION

We used a modified multicanonical population annealing
algorithm [6] to analyze the two-dimensional Blume-Capel
model. We analyze the finite-size behavior of specific heat and
Binder cumulant and observe the evolution from the second-
order Ising behavior through the tricritical point to first-order
behavior. Our results are in agreement with previous numer-
ical analyses performed by different methods—Monte Carlo
renormalization group [28], transfer-matrix methods [29,30],
real-space renormalization group [35], Monte Carlo method
[31], Wang-Landau method [32,36,37], microcanonical algo-
rithm [34], high- and low-temperature expansions [5], and
many others.

In Table III, we combined some data from the literature for
the critical temperature estimation [5,25,30] and place, in the
last column, our data for the critical temperature estimation
from the position of the specific heat maximum also presented
in the first column of Table I. We cannot compare first-order
line estimates because the published data contain four or five
digits of the disorder parameter D, and our simulation would
take a long time if we simulated the system with such a value
of D. We have to note that the estimations of critical temper-
ature from the Binder cumulant, shown in the last column of
Table I, become even closer to the estimations from the series
expansion published by Butera and Pernici [5] for large values
of anisotropy parameter D/J .

TABLE III. Estimates of the critical temperature Tc/J obtained
by different methods: transfer matrix [30], Wang-Landau [25],
high-energy and low-energy expansions [5], and microcanonical
population annealing (MCPA, our data).

D/J Ref. [30] Ref. [25] Ref. [5] MCPA

0 1.695 1.693(3) 1.69378(4) 1.694(4)
0.5 1.567 1.564(3) 1.5664(1) 1.5686(4)
1 1.398 1.398(2) 1.3986(1) 1.401(1)
1.5 1.150 1.151(1) 1.1467(1) 1.155(1)
1.75 0.958(1) 0.961(1)
1.87 0.800 0.812(1) 0.8203(8)
1.9 0.769(1) 0.766(1) 0.7731(7)
1.92 0.700 0.7289(2) 0.7338(6)
1.95 0.650 0.659(2) 0.656(4) 0.6613(4)
1.962 0.620 0.6219(2)
1.966 0.610 0.6089(2)
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Our algorithm differs from another class of microcanoni-
cal algorithms, such as the microcanonical replica exchange
algorithm [38]. The main difference is that in MCPA, the
temperature is not used in the simulation and, therefore, a
critical slowdown in the usual sense does not occur. At the
same time, the evaporation and condensation of droplets in the
vicinity of the first-order phase transition are still determined
by the energy barrier associated with surface tension and
depend exponentially on the surface length. It is likely that
microcanonical simulations are less sensitive to this than the
canonical simulations [6,39]. More research is needed to make
this claim more certain.

The accuracy of the data is weakly dependent on the num-
ber of MCMC steps, as shown in Fig. 5. Instead, the accuracy
depends on the number of replicas, R, in the pool and follows
a R−1/2 behavior. Thus, the main feature of the MCPA is to
anneal the population in energy space and estimate the DoS
from the averages over a large number of replicas. Therefore,

this algorithm is very well suited for massively parallel simu-
lations using a hybrid Message Passing Interface and Graphics
Processing Units approach. The multicanonical population
annealing algorithm is another good approach for modeling
critical phenomena. We found a strong effect of crossover and
finite size near the first-order line, which needs to be explored
with more intensive analysis.
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