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We develop a new methodology to contract tensor networks within the corner transfer matrix renormalization
group approach for a wide range of two-dimensional lattice geometries. We discuss contraction algorithms on the
example of triangular, kagome, honeycomb, square-octagon, star, ruby, square-hexagon-dodecahedron, and dice
lattices. As benchmark tests, we apply the developed method to the classical Ising model on different lattices and
observe a remarkable agreement of the results with the available from the literature. The approach also shows
the necessary potential to be applied to various quantum lattice models in a combination with the wave-function
variational optimization schemes.
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I. INTRODUCTION

Tensor-network (TN) methods are powerful nonpertur-
bative approaches to describe both classical and quantum
systems on the lattice. For the up-to-date reviews on this
topic, we direct the reader to Refs. [1–3]. The general idea
of the TN approach is to reformulate the problem of interest
(e.g., computation of the partition function or a search for
the ground state of the quantum many-body Hamiltonian) in
terms of a contraction of a large number of tensors connected
with each other through a certain lattice-network structure.
The problem is now reformulated as a contraction of these
networks of tensors. While one can perform contraction of
the one-dimensional network exactly, for the two-dimensional
(2D) and higher-dimensional tensor networks it is imperative
to employ approximate approaches.

The contraction of the 2D tensor networks can be realized
by means of the transfer matrix approaches [4,5] (see also
Refs. [6–10] for the three-dimensional analysis) or with vari-
ous tensor renormalization groups [11,12]. Another approach
is the corner transfer matrix renormalization group (CTMRG).

Corner transfer matrices (CTM) originally appeared as a
set of equations in Refs. [13,14] and also in the integrable
model context [15–17]. They were later adapted to the
efficient numerical renormalization group method—CTMRG
[18]. The applications of CTM and CTMRG approaches
include the computation of properties of infinite projected
entangled pair state (iPEPS) wave functions [19–21],
variational optimization of iPEPS wave functions and
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gradient summations [22], excited states on the top of the
iPEPS wave function [23], hybrid approaches of CTMRG and
tensor renormalization group [24], and series expansions [25].
The original approach was developed for the square-lattice
tensor network and was later generalized to the hyperbolic
lattices [26–32]. Recently, CTMRG was generalized and
applied to the honeycomb-lattice quantum and frustrated
classical systems [33,34].

In this study, we introduce a further generalization of the
CTMRG approach to other relevant lattice geometries. We
discuss details and perform the necessary benchmark tests of
the methodology for triangular, kagome, honeycomb (two-
site unit cell), square-octagon, star, ruby, square-hexagon-
dodecahedron, and dice lattices. The conceptual framework
employed to derive these CTMRG approaches is potentially
generalizable to many other lattice geometries, which are not
covered in this work, e.g., the Shastry-Sutherland, maple-leaf,
or square-kagome lattice.

In principle, one can deal with all the mentioned lattices
in the framework of CTMRG by using the coarse-graining
mapping to the square lattice with subsequent application of
the most general CTMRG scheme to the latter. This strategy
was followed previously in the studies of the iPEPS wave
functions on various lattices [35–37] and it is implemented in
the recent libraries for variational iPEPS optimization [38,39].
We believe that the majority of our results can be obtained
with this square-lattice-mapping methodology as well. How-
ever, the recent study [34] shows that the CTMRG approach
tailor-made for the lattice and its respective symmetries be-
comes more efficient in terms of the computational cost and
necessary CTM bond dimensions. Also, within our approach,
one can directly access relevant physical quantities, such as
the corner (entanglement) spectra, which are not easily ob-
tained in the mapping-based schemes. Finally, the variational
iPEPS optimization usually requires allocation of rather large
memory resources to track full CTMRG convergence. The
application of the minimal CTMRG algorithm can largely
reduce these memory requirements.
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FIG. 1. Overview of different lattices for which we construct
(generalize), discuss, and apply the CTMRG algorithms: (a) trian-
gular, (b) kagome, (c) honeycomb, (d) square-octagon, (e) star, (f)
square-hexagon-dodecahedron, (g) ruby, and (h) dice.

The paper is organized as follows. In Sec. II we discuss
essential details of CTMRG algorithms for each lattice ge-
ometry. The most essential parts here are the triangular and
kagome lattices. Other lattice geometries can be skipped dur-
ing the first reading. Section III is devoted to benchmark tests
of the developed approach on the classical Ising model on
different lattices. In Sec. IV we summarize our results and
discuss outlook.

II. ALGORITHMS

Before diving into specific details of each lattice geometry,
let us point out the general strategy to construct the CTMRG
environments and corresponding update rules. Briefly, the
method can be expressed as follows:

(i) define all unique boundary matrix-product states
(bMPS) on the lattice and find how the individual tensors
of the bMPS are updated during the absorption of the bulk
tensors into the bMPS;

(ii) define the corner matrices as intersections of different
bMPS;

(iii) find the updates of corners from the updates of bMPS
local tensors;

(iv) employ the corner tensors to define environments,
which enable finding optimal truncations for the local bMPS
tensors.

In the following subsections, we illustrate and explain how
this scheme can be applied to different lattice geometries. In
particular, we develop and apply the CTMRG approach on
triangular, kagome, honeycomb, square-octagon, star, square-
hexagon-dodecahedron, ruby, and dice lattices, which are
shown in Fig. 1.

(a)

(b)

(c)

P P

FIG. 2. Triangular lattice: (a) Construction of the transfer-matrix
network and notation of the bulk rank-6 tensor A (we omit its indices
for simplicity); (b) definition of the boundary MPS (bMPS); (c) iter-
ative update of the individual tensors holding within bMPS.

All the proposed CTMRG methods have the χ3 scaling
of the computational cost, where χ is the bond dimension
of the CTM environments. The precise dependence of the
cost on the bulk tensor network bond dimension D varies
from lattice to lattice (and also depends on the details of a
particular realization, e.g., the application of iterative schemes
as the randomized singular value decomposition or Lanczos
method).

A. Triangular lattice

In this subsection, we study the vertex model on the trian-
gular lattice. The rank-6 tensor A, which is symmetric under
rotations and arbitrary reflections, is placed on every lattice
site, as in Fig. 2(a). Our aim is to contract a tensor network
consisting of these tensors. We begin our discussion with the
boundary matrix product state and then arrive at the CTMRG
construction.

First, we assume that the leading eigenvector of the trans-
fer matrix can be approximated by a translationally invariant
matrix product state (MPS), which is shown in Fig. 2(b). The
boundary MPS (bMPS) consists of rank-3 tensors Oi jk , which
are not symmetric with respect to any of the three indices. This
form of the MPS can be deduced both from the translational
symmetry of the transfer matrix and from its reflection invari-
ance under mirror transformations. For the bMPS to be the
eigenvector of the transfer matrix we can assume that the local
condition shown in Fig. 2(c) must hold. Here, we introduce the
isometric projector P, which can be naturally obtained from
the corner matrices, as we discuss below.

Next, we determine the corner tensors. To this end, we
take two bMPS, which intersect as shown in Fig. 3(a). It is
natural to assume that on the intersection point of two bMPS,
there must be a corner matrix C̃3. From the symmetry of the
problem, it follows that the matrix C̃3 is symmetric in its
indices. Let us now absorb one layer of bulk tensors A into
the bMPS. Such absorption leads to the update rule for the
corner matrix C̃3, which is shown in Figs. 3(b) and 3(c). Note
that the update consists of two steps [Figs. 3(b) and 3(c)],
and leads to the definition of the second corner matrix C3.
The reason for the appearance of the two different matrices
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FIG. 3. Triangular lattice: (a) Definition of the corner matrix C̃3

on the intersection of two boundary MPS and its update; (b) update
procedure of the corner matrix C̃3, which results in the new corner
matrix C3; (c) the second update step, which transforms C3 back into
C̃3; (d) the projectors P can be chosen from the truncated eigende-
composition of the matrix C3. The matrix C3 can be assumed to be
always diagonal.

lies in the presence of two different triangles (pointing up
and down), while the bMPSs may intersect on both types of
triangles. We see that the projectors P naturally appear in
the update rule for the matrix C. Besides that, the density
matrix around the triangle is proportional to the third power
of C3: ρ ∝ C3

3 . This leads us to the suggestion to choose the
projectors P in the way to diagonalize the matrix C3 (note
that this matrix is also symmetric). This step of determin-
ing the projector from the eigendecomposition of the matrix
C3 is shown in Fig. 3(d). The eigendecomposition must be
truncated according to the spectrum of the corner matrix
back to the original bond dimension of the bMPS, which we
denote as χ .

The analysis of the corner matrices leads us to the natural
definition of the projectors P. Still, this is not sufficient to
complete the update of the bMPS tensor O, since the update
step of the tensor O shown in Fig. 2(c) contains not only a
projection step but also a factorization step. In principle, this
factorization can be performed by the eigendecomposition or
singular-value decomposition, but this procedure will be not
unique, and it is not guaranteed that the truncation with this
factorization remains optimal. The possible ambiguity in the
factorization step of the tensor R is shown in Fig. 4(a): We
can insert a pair of orthogonal matrices W in the factorized
index and reabsorb these orthogonal matrices back into the
definition of the bMPS tensor O. Note also that the exact
factorization leads to an increase of the factorized index bond
dimension. We should now fix the gauge freedom in the fac-
torization algorithm and also define the optimal truncation of
the factorized index. The gauge transformation of the tensor
O results in the change of the corner matrix C̃3, as shown
in Fig. 4(b). Besides, the density matrix for the factorized

(e)

(d)

(c)

(b)

(a)

eig.

FIG. 4. Triangular lattice: (a) Definition of the tensor R, which
is factorized into two tensors O, and the possible ambiguity (gauge
choice) in the factorization due to the arbitrary orthogonal matrix
W , which can be inserted in the factorized index. (b) Ambiguity in
the factorization leads to the transformation of the corner matrix C̃3.
We can fix the gauge by the condition, that the corner matrix C̃3 is
also diagonal. (c) The definition of the new tensor U , which can be
shown (from the point (b)) to be isometric. (d) We can define the
new tensor N as the tensor R weighted by the corner matrices. The
eigendecomposition of N results in both isometry U and the diagonal
corner matrix C̃3. (e) The original bMPS tensor O can be found from
the isometry U by the inverse transformation. This ends the update
step for the tensor O and simultaneously finds the updated corner
matrix C̃3.

index can be naturally cast in the form ρ f ∝ C̃3
3 . This leads

us to the natural fix of the gauge freedom and simultaneously
to the truncation choice: we should choose the matrix W to
diagonalize the corner matrix C̃3 and truncate the factorized
index according to the spectrum of the corner matrix.

Let us discuss how this factorization can be performed in
practice. We assume now that the matrices C3 and C̃3 are both
diagonal. Then, the connection between these matrices, which
is shown in Fig. 4(b), can be used to define the new tensor U
[shown in Fig. 4(c)], which is isometric. We can also define
the tensor N , as a tensor R (to be factorized), weighted by the
square roots of the corner matrices C3. Using the connection
between the bMPS tensor O and the isometry U we arrive
at the decomposition of the tensor N , which is shown in
Fig. 4(d). Due to the isometricity of the tensor U and the
diagonal C̃3, we can conclude that the decomposition of the
tensor N coincides with its eigendecomposition. The order of
this derivation may now be reversed: first, we calculate N from
R; then we make an eigendecomposition of N to find both U
and new corner matrix C̃3; finally, we can use the connection
between O and U,C3, C̃3 to define the new bMPS tensor O.
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(b) (c)

(a)

FIG. 5. Triangular lattice: (a) Definition of the corner tensor T ,
as the intersection of two bMPS with 2π/3 angle; (b) update rule for
the tensor T ; (c) environment of the bulk tensor A in terms of the
corner tensor T .

To summarize, the full CTMRG loop runs as follows:
(1) Start from some initial tensor O and the diagonal ma-

trix C̃3.
(2) Determine the projector P and the corner matrix C3

from the tensors O, A, and C̃3, as shown in Fig. 3(d).
(3) Employ the projector P to obtain the tensor R, which

is defined in Fig. 4(a). Transform the tensor R into the tensor
N , as defined in Fig. 4(d), and compute its truncated eigen-
decomposition to find the isometry U and the new corner
matrix C̃3.

(4) Obtain the new bMPS tensor O from the tensors U , C3,
and C̃3.

(5) Return to the point 2 and repeat until convergence.
Convergence can be measured in terms of diagonal elements
of the corner matrices or in terms of some observables.

Note that these steps have some residual sign ambiguity in
the eigendecompositions, which we fix by additional sign rule
on the isometry elements. The eigendecompositions can also
be performed with iterative methods, e.g., the Lanczos algo-
rithm to reduce the computational cost. Finally, according to
our observations, the matrices C3 and C̃3 converge in practice
to almost identical values.

The CTMRG construction on the triangular lattice can
be augmented by the additional structure, in particular, by
the tensor T , which is shown in Fig. 5(a). This new tensor
naturally appears at the intersection of two bMPS at the angle
2π/3 and it is symmetric in its two bMPS indices. In Fig. 5(b)
we show the update rule for this tensor. This update rule can
be run in parallel to the CTMRG loop, since the tensor T does
not appear in the main CTMRG procedure. In Fig. 5(c) it is
shown how the corner tensor T can be used to define explicitly
the C6-symmetric environment for the bulk tensor A, which
can be used for the calculation of observables, such as the
magnetization.

B. Kagome lattice

After the triangular lattice, it is natural to construct the
CTMRG on other lattices by applying the analogous proce-
dure. Here, we extend the construction to the kagome lattice,
which consists of triangles and hexagons. Hence, we need two

(a)

(b) (c)

P3 P6

FIG. 6. Kagome lattice: (a) Definition of the boundary MPS on
the kagome lattice and the structure of the transfer matrix. (b) Local
conditions on the tensors of the bMPS, which guarantee approximate
holding of the above eigenvector condition. To fulfill this, we intro-
duce the (isometrical) projectors P3 and P6 and determine them later
from the corner matrices update rules. (c) The bulk tensor Akl

i j with
the dashed lines indicating to the reflection symmetry axes.

types of corners, which correspond to the corners of hexagons
and triangles. We assume the kagome lattice to be filled with
bulk tensors A placed in all its nodes. Since we study here the
isotropic CTMRG (and not its directional generalization), we
should choose the tensor A in the way that the tensor network
is rotationally invariant under the rotations of the hexagons
(which makes all hexagonal corners identical) and rotations
of triangles (which leads to identical triangular corners). To
ensure that these corner matrices are also symmetric, we
also assume the reflection invariance of tensors both upon
reflections in the hexagons and triangles. This leads to the fol-
lowing conditions on the tensor Akl

i j = Aji
lk = Ai j

kl = Alk
ji . These

symmetries are illustrated in Fig. 6(c), where the reflection
symmetry axes are shown by the dashed lines.

Let us now describe the CTMRG algorithm on this lattice.
First, we introduce the boundary MPS as the leading eigenvec-
tor of the transfer matrix on the kagome lattice. This bMPS is
shown in Fig. 6(a) together with the transfer matrix structure.
The bMPS has the same form as in the case of the triangular
lattice, but the transformation procedure is different. This is
evident from the update rules of the local bMPS tensors O,
which are shown in Fig. 6(b). This update procedure consists
of two steps: the first one involves factorization of the rank-4
tensor, while the second one uses two projectors P3 and P6.
The first factorization step is performed analogously to the
factorization in the triangular lattice case, while the projectors
are determined according to the update rules of the hexagonal
and triangular corner matrices.

Next, we define the corner matrices. The first corner matrix
C6 is shown in Fig. 7(a) as an intersection of two boundary
bMPS. From the update rules of the bMPS tensors it can be
found that the C6 matrix transforms according to the update
rule in Fig. 7(b). We can now choose the isometry P6 to diag-
onalize the new C6 matrix and truncate it back to its original
bond dimension. One can perform truncation according to
the spectrum magnitude. The definition of the second corner

045305-4



CORNER TRANSFER MATRIX RENORMALIZATION GROUP … PHYSICAL REVIEW E 109, 045305 (2024)

(a) (b)

(c)

(f)

(h)

(d)

(e)

(g)

FIG. 7. Kagome lattice: (a) Definition of the corner matrix C6

as an intersection of two bMPS with the angle 2π/3 between them.
(b) The update rule for the matrix C6; the isometrical projector P6

can be chosen in the way that the updated matrix C6 will be diagonal.
(c) The definition of the corner matrix C3 as an intersection point
between two bMPS with the angle π/3; (d) the matrix C3 can be
expressed as the square of the matrix C6; (e) still, the matrix C3 has
a different update rule: here, we define the new corner matrix C′

3 (in
green) from the matrix C3; (f) yet another corner matrix C′′

3 (gray)
can be obtained from C′

3. The diagonalization of this matrix leads
to the projector P3. (g) One can arrive back to the C3 matrix from
C′′

3 . (h) The illustration of the equality in the point (d) between the
matrices C3 and C2

6 . It is always possible to change the crossing of
two bMPS with the angle π/3 into two crossings with an additional
bMPS, where the new crossings are at the angle 2π/3.

matrix C3 is shown in Fig. 7(c). This matrix is obtained as
an intersection of the two bMPS with the angle π/3 between
them. But such an intersection may be obtained in two dif-
ferent ways: We can either intersect two bMPS directly or we
can intersect both bMPS with a third one (with angle 2π/3),
which results in the product of two C6 matrices, as is shown
in Fig. 7(h). For the consistency between these two definitions
of the intersection, we must conclude that C3 = C2

6 (at least at
the converged state of the CTMRG).

In spite of the given connection between the two matrices,
they have rather different update rules. The update rules for
the C3 matrix are shown in Figs. 7(e)–7(g). Here, we addition-
ally introduce the matrices C′

3 and C′′
3 . The reason for three

different corners lies in the fact that the bMPS can intersect

(a)

(b)

(c)

eig.

FIG. 8. Kagome lattice: (a) Definition of the new rank-4 tensor R
to be factorized and the update rule of the matrix C′

3. (b) The tensor N
as a weighted tensor R and its eigendecomposition (eig.) from which
we define the new matrix C′

3 and the isometry U . (c) The reverse
transformation between the bMPS local tensor and the isometry U .

with the angle π/3 in hexagons and in both types of triangles
(pointing up and down). We can obtain the isometrical pro-
jector P3 from the diagonalization of the matrix C′′

3 , while C′
3

can be used for the proper factorization, as shown in Fig. 6(b).
The details of this factorization are the same as in the case of
triangular lattice and shown in Fig. 8.

We can now discuss the full CTMRG iteration loop. There
is a certain ambiguity in the updates of the tensors. In par-
ticular, should the condition C3 = C2

6 be enforced in every
iteration, or should it only hold in the converged state? Below,
we describe one of options to update the tensors, which we
find rather fast and stable. The scheme is as follows:

(1) Initialize the bMPS tensor O and matrix C6. Determine
the matrix C3 = C2

6 .
(2) Find the rank-4 tensor R, as shown in Fig. 8(a). Factor-

ize it according to Figs. 8(b) and 8(c) and obtain the matrix C′
3

and the updated bMPS tensor.
(3) Determine P3 from the eigendecomposition of C′′

3 .
(4) Update C6 and find the new projector P6.
(5) Use the projectors P3 and P6 to update the bMPS tensor

according to Fig. 6(b).
(6) Determine the new matrix C3 = C2

6 .
(7) Return to the point 2 and repeat until convergence.
Point 6 is the most controversial, since the matrix C3 can

also be obtained from C′′
3 [see Fig. 7(g)]. But the update rule

in Fig. 7(g) does not necessarily lead to the diagonal matrix
C3 and does not enforce the connection between the matrices
C3 and C6. We choose to employ the update rule in Fig. 7(g)
as a convergence check instead. For the converged CTMs, we
observe that the two different ways to obtain C3 agree. Note
also that operating with C6 leads to a higher precision.

C. Remarks on the honeycomb lattice

In the previous work, we studied the variational iPEPS
optimization on the honeycomb lattice [33]. In Ref. [34], an
alternative formulation of the honeycomb lattice CTMRG was
proposed. In this subsection, we discuss the derivation of both
approaches and the consistency between them. We also show
how the method can be naturally generalized to the two-site
unit cells.

First, we assume that the tensor network consists of identi-
cal rank-3 tensors A with rotational and reflection invariance.
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FIG. 9. Honeycomb lattice: (a) Definition of the transverse ma-
trix and boundary MPS. (b) The update procedure for the bMPS
tensors. (c) The definition of the tensor C6. (d) The update procedure
for the tensor C6. (e) Definition and update for the corner matrix C3.
(g) Consistency condition for the corner matrices C3 and C6.

In Fig. 9(a) we show the transfer matrix and boundary MPS
for this tensor network. The update for the local bMPS tensors
is shown in Fig. 9(b). Here, we introduce the isometrical
projectors P, which we define from the updates of the corner
matrices.

Next, let us study the intersection of two bMPS at the angle
π/3. As in the case of the kagome lattice, we can define the
corner matrix C6 on the intersection point of two bMPS [see
Fig. 9(c)]. The update for the corner matrix C6 is shown in
Fig. 9(d). As in the case of kagome lattice, it is also possible
to define the corner matrices C3 (on the intersection point of
two bMPS with the angle 2π/3) with the update rule shown in
Fig. 9(e). For consistency of the observables calculation, the
condition C3 = C2

6 [shown in Fig. 9(g)] must hold.
There are now two different ways to define the projectors

P: we can choose them to either diagonalize the corner ma-
trices C6 or C3. The iterations from the two methods can be
different, but the final result should be independent of the
scheme due to the consistency condition C3 = C2

6 . According
to our observations, if we define the matrix C3 from the condi-
tion C3 = C2

6 for the converged C6 tensor, then the C3 matrix
is the fixed point of the update in Fig. 9(e), and the updates for
different corner matrices are consistent.

Next, let us generalize this construction to the larger unit
cell. We assume that the tensor network on the bipartite honey-
comb lattice consists of two different tensors A and B, which
are placed on two different sublattices. We additionally set
that these tensors are invariant under rotations and reflections.
Then, the boundary MPS consists of two types of tensors,
as shown in Fig. 10(a). The update rules for the boundary
MPS tensors are shown in Fig. 10(b). The key difference
from the case with a one-site unit cell is that there are two

(a)

(b)

(c)

(d)

A

B A

B

A

B A

B

QR

QR

SVD

A A

AB A

B

B

B

FIG. 10. Honeycomb lattice: (a) Definition of the two-site bMPS
and transfer matrix for the case of two-site unit cell. (b) The update
procedure for the bMPS tensors, where we insert the projectors PL

and PR (PLPR = 1). (c) The updates of the corner matrices C6,A and
C6,B. (d) Biorthogonalization procedure (involving QR decomposi-
tion and SVD), which allows to define the projectors PL and PR from
the corner matrices.

different projection tensors PL and PR, which are no longer
isometric, but just biorthogonal, PLPR = 1. There are also two
different corner matrices C6, which are updated according to
Fig. 10(c) (projectors are not shown here, since the enlarged
corner matrices will be used to construct projectors).

Now, we discuss the procedure to find biorthogonal pro-
jectors PL and PR from the enlarged corner matrices. In case
one tries to use the density matrix, then it becomes clear
that the latter is no longer symmetric. In principle, one can
use the singular-value decomposition (SVD) of the density
matrix to define a projector in the isometrical form (accord-
ing to the directional update), but, in practice, we observe
that such a definition of projectors leads to the breaking of
some consistency relations between the converged tensors. We
choose instead to employ the biorthogonalization procedure,
which was proposed in the context of CTMRG in Ref. [20].
The biorthogonalization procedure is shown in Fig. 10(d),
and defines two biorthogonal projectors PL and PR. Note that
the authors of Ref. [20] applied biorthogonalization to larger
environments, but noted that the corners themselves can be
used as a reduced form of the environment. The enlarged
corner matrices C6,A → PLC6,APT

L and C6,B → PRC6,BPT
R are

then projected back to the original bond dimension with the
obtained projectors. We observe that these reduced corner
environments work well far from criticality, but at the vicinity
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FIG. 11. Square-octagon lattice: (a) Definition of the first trans-
fer matrix and the respective bMPS. (b) The local updates of bMPS
tensors for the first type of transfer matrix. (c) The second type of
transfer matrix on the square-octagon lattice and the corresponding
bMPS. (d) The local update rules for the bMPS local tensors of the
second type.

of the phase transition, it may be necessary to use larger
environments (with two or even three corner matrices) to find
the proper projectors.

D. Square-octagon lattice

Square-octagon and star lattices can be reduced to square
and honeycomb lattices. Still, it is interesting if the structure
of these lattices allows for a more natural formulation of
CTMRG. In this and the following subsections we show that
this is indeed the case.

First, we assume that the tensor network consists of iden-
tical rank-3 tensors Ai jk placed in the rotationally invariant
manner on the nodes of the square-octagon lattice. We also
set the tensors A to be symmetric under the reflection of two
last indices Ai jk = Aik j , which correspond to the indices con-
necting tensors inside squares on the square-octagon lattice.
We can now define the boundary MPS for this tensor network.
In contrast to the previously discussed lattice geometries, the
square-octagon lattice possesses two different kinds of bMPS,
which are shown in Figs. 11(a) and 11(c), respectively. These
bMPS can intersect at the angle π/4. The local updates for the
corresponding local bMPS tensors are shown in Figs. 11(b)
and 11(d). Here, we introduce three different isometrical pro-
jectors U , W , and V , and also a factorization step in Fig. 11(d).

Similarly to other lattice geometries, we now introduce
the corner matrices, which allow us to find the projectors V ,
U , and W . Let us take the intersection of the two bMPS of

FIG. 12. Square-octagon lattice: (a) Intersection point of two
bMPS of the first kind defines the corner tensor T (symmetric upon
reflections). (b) The update rule for the corner tensor T and the
corner matrix C4. The isometry W can be chosen to diagonalize
the corner matrix C4. (c) The corner matrix C8 must be inserted at
the intersection point of two different types of bMPS. (d) The update
step of the corner matrix C8 enlarges its dimensions, which can be
then truncated back with the SVD decomposition, which also defines
the projectors U and V . (e) The factorization step of the update for
the second bMPS. The factorization is performed in the same way as
for the kagome lattice.

the first kind, which is shown in Fig. 12(a) and results in
the reflection-symmetric corner tensor T . In Fig. 12(b) we
show the update steps for this tensor T , which is transformed
into the corner matrix C4. The latter matrix is internal to the
squares of the square-octagon lattice and the density matrix
for the square link can be defined as ρsq = C4

4 . Hence, we
choose the isometry W to diagonalize the matrix C4 and trun-
cate the index according to the magnitude of its eigenvalue
spectrum. In Fig. 12(b) we also show how the corner tensor T
can be obtained back from the corner matrix C4.

Next, let us discuss the intersection point of two bMPS of
different types. This type of intersection is shown in Fig. 12(c)
and corresponds to the C8 corner matrix (this is the corner
matrix of the octagon angles). The update step of this matrix
is shown in Fig. 12(d). Note that after the update step, the
corner matrix C8 is not necessarily symmetric, hence, the sim-
ple eigendecomposition does not work. This is rather natural,
since the corners of octagons in the square-octagon lattice are
not symmetric under reflections.

Let us specify how the density matrices connected by the
internal links of octagons can be defined in terms of the ma-
trices C8. We have two types of links: those, which are shared
between two octagons, and the links between an octagon and
a neighbor square. These links correspond to two types of the
density matrix. For the octagon-octagon link, the density ma-
trix has a form ρo−o = (C8CT

8 )4, while for the octagon-square
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links it is ρo−s = (CT
8 C8)4. Both these matrices are symmetric

and can be simultaneously diagonalized by the SVD of C8,
which is shown in Fig. 12(d). This SVD naturally defines the
isometric projectors U and V , which are used in the bMPS
tensor updates.

Finally, we discuss the factorization step. It can be per-
formed in nearly the same way, as in the case of the kagome
lattice. The details of the factorization are shown in Fig. 12(e).
The matrix R to be factorized is transformed into the matrix
N with two corner matrices C8. The new matrix N then natu-
rally corresponds to the density matrix internal to the square
ρ ∝ N4, and can be diagonalized and truncated according to
its spectrum magnitude. In the final step, we apply the inverse
of the diagonal matrix C8.

As a final remark, let us note the following. First, in princi-
ple, we can perform only the iteration steps, which correspond
to the bMPS of the first kind, since all the necessary projectors
can be obtained from the tensors of the first bMPS. The second
bMPS is auxiliary, but it can be used to compute certain ob-
servables more naturally. A situation with the auxiliary bMPS,
which is not necessary for the performance of the algorithm, is
a common trait of several lattices studied below. Note that the
auxiliary bMPS may be not necessary for the simplest case
of completely symmetric minimal unit cell discussed in this
study; the larger unit cells will make it completely necessary
to use both bMPS. Second, the factorization step here does not
necessarily need the absorption of the eigenvalue spectrum S
into the bMPS tensors. This allows the method to work even
when the matrix S is not positive definite. Hence, the CTMRG
on the square-octagon lattice is not plagued by the problems
connected with positivity and can be applied to arbitrary bulk
tensors A, which respect the symmetry conditions.

E. Star lattice

The star lattice also has two different bMPS, as is the case
for the square-octagon lattice. It is interesting that both bMPS
can be converged independently from each other, but the sim-
plest algorithm still couples them. First, we describe the main
bMPS update, which is original for the star lattice, and then
add the second bMPS (analogously to the honeycomb lattice)
at the end of the subsection.

The structure of the transfer matrix and the corresponding
bMPS are shown in Fig. 13(a). The transfer matrix is con-
siderably larger than the previously discussed cases. Hence,
the local bMPS tensors have a larger number of update steps,
which are illustrated in Fig. 13(b). Here, we have a factoriza-
tion step and two different isometric projectors U and V . As
in the previous cases, these projectors can be obtained from
the corner matrices.

In principle, we can already introduce the corner matrix
C12, which appears at the intersection of two different types of
bMPS. Still, if we restrict ourselves to the update of only one
type of bMPS, then it is more natural to introduce only C6 and
various corner matrices C3. The corner matrix C6 appears at
the intersection point of two bMPS with the angle π/3, as in
Fig. 14(a). The update rule for the corner matrix C6 is shown
in Fig. 14(b). This step defines the isometrical projectors U ,
which can be chosen to diagonalize and truncate the new
corner matrix C6.

(a)

(b)

A

A A

A A

A

A

A

A

A A

A

A

A

A

A

FIG. 13. Star lattice: (a) Definition of the first transfer matrix on
the star lattice and the respective bMPS. (b) The local updates of
bMPS tensors of the first type of the transfer matrix.

Next, we introduce the corner matrix C3, which is shown
in Fig. 14(c). Its update rules are very similar to the kagome
lattice. First, as in the case of the kagome lattice, the con-
sistency condition between the matrices C6 and C3 inside
the dodecahedrons must hold. This consistency condition is
illustrated in Fig. 14(d). This natural decomposition of the
corner matrix C3 allows us to perform the factorization step
in the same way, as for the kagome lattice: we show this in
Fig. 14(e). The factorization also results in the new corner
matrix C′

3, which corresponds to the down-directed triangles.
The following update steps are shown in Figs. 14(f) and

14(g) and result in the additional corner matrix C′′
3 , which cor-

responds to the up-directed triangles. The diagonalization and
truncation according to the eigenvalue spectrum magnitude of
this matrix give us the last isometric projector W . One can also
note an additional update step, which maps the matrix C′′

3 back
into the matrix C3. However, we do not perform this step in
the algorithm, since it can break the consistency condition in
Fig. 14(d) during the algorithm convergence. Instead, we use
this mapping as a consistency check between the converged
values of the tensors.

Let us now discuss the second bMPS. Its boundary MPS
is shown in Fig. 15(a). Note that these transfer matrices and
bMPS largely mimic the analogous quantities on the honey-
comb lattice. We show the update rule for bMPS in Fig. 15(b)
and note that it is the same as the one for the honeycomb lat-
tice. It should be mentioned that we absorb here all three ten-
sors A within a single operation, since it is more computation-
ally efficient to first contract these three tensors together and
then apply the resulting contraction to the boundary tensor.

Here, we also introduce the isometric projector K . To find
this projector, we can introduce the corner matrix C12, which
must be placed on the intersections of the two different kinds
of bMPS. The previously defined C6 corner matrix was its
square. To find the update rule for the new corner matrix C12,
we modify the rule in Fig. 13(b) and replace the eigenvalue
decomposition with SVD, which now results in the two iso-
metric projectors U and K simultaneously.
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(a)

(c)

(d)

(e)

(f) (g)

A
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A
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A
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(b)

A

A

eig.

A

FIG. 14. Star lattice: (a) Definition of the corner matrix C6 as
an intersection point between two bMPS with the angle π/3. The
density matrix on the dodecahedrons can be cast in the form ρd = C6

6 .
(b) The update step of the corner matrix C6. (c) The definition of
the corner matrix C3 as an intersection point between two bMPS
with the angle 2π/3. (d) The consistency condition between the
corner matrices C6 and C3, similar to the kagome lattice. (e) The
factorization step in the bMPS tensors update determining the matrix
C′

3, which describes the internal correlations inside the triangles. (f)
The update step for the matrix C′

3. (g) The final step of the update of
C′

3, which results in the corner matrix C′′
3 . The isometrical projector

W is chosen to diagonalize the new corner matrix.

We should also mention the following. One can just use
the second bMPS, while the projector can be equivalently
determined from the update rule on the honeycomb lattice.
This can be beneficial in some situations, since the second
bMPS does not contain factorization steps, thus it can be
employed without any positivity restrictions.

F. 4-6-12 lattice

The square-hexagon-dodecahedron (SHD) or 4-6-12 lattice
is more complex than the previously studied lattices. It con-
sists of three different polygons, which, in principle, require
their own corner matrices. It also has two different types of
bMPS. Additionally, the main branch of the bMPS update
requires a nonsymmetric factorization step, which we discuss
below in detail. However, many other lattices can be viewed
as the limiting cases of the 4-6-12 lattice. For example, the
CTMRG algorithm on the ruby lattice, to be described in the

(a)

(c)
(d)

(b)

A

A

A

A

A

A

A

A

A

A

A

A

A

FIG. 15. Star lattice: (a) Definition of the second bMPS. (b) Up-
date rule for the boundary tensor, which requires the new isometric
projector K . (c) The projector can be determined from the new corner
matrix C12, which is a square root of the previously introduced corner
matrix C6. Its update rule can be viewed as a modification of the rule
in Fig. 13(b), but results here in two different isometries by using
SVD of the enlarged matrix C12.

next subsection, is naturally obtained from the CTMRG on the
4-6-12 lattice with a few modifications.

We show the transfer matrix for the 4-6-12 lattice and
the corresponding bMPS in Fig. 16(a). The transfer matrix
is much more complex than the previously studied cases. The
local update rules are shown in Fig. 16(b). These updated rules
require four different isometric projectors and a nonsymmetric

(a)

(b)

A

A

A

A

A A

A

A

A

A A

A

A A

A

A

A A

A

A

A

A

A

A

A

U

M

W

A
V

FIG. 16. SHD lattice: (a) Definition of the first transfer matrix on
the 4-6-12 lattice and the respective bMPS. (b) The local updates of
bMPS tensors for the first type of the transfer matrix.
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(e)

(f) (g) (h)

(b)
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SVD
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A SVD A
SVD
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FIG. 17. SHD lattice: (a) Definition of the corner matrix C6 as an intersection point between two bMPS with the angle π/3. (b) We use a
representation of the corner matrix C6 as a square of the corner matrix C12, which can be defined as an intersection of two different types of
bMPS. Here, we use C12 as a conventional tool in the calculations. We also define the corner matrix C3 as a square of the corner matrix C6.
(c) The illustration of the role of the corner matrix C3 as an intersection of two bMPS. (d) We do not work with the matrix C3 explicitly, but
use its implicit representation in terms of the matrices C6. This allows us to find the first isometric projector U and the updated corner matrix
C′

6 through SVD of the enlarged matrix C6. Note that the isometry K in SVD is auxiliary in this version of the algorithm; we do not employ
it hereafter, as all other isometries K . (e) The illustration of the nonsymmetric factorization step. First, we can express full lattice in terms of
corner matrices and bMPS tensors. Then, we can use exact factorization of the rank-4 tensor, where we do not perform any truncation. The
enlarged index is shown with two lines. We express this density matrix, which represents the full lattice as a product of two matrices CL and
CR. To obtain the projectors, we apply the biorthogonalization procedure to the tensors CL and CR. The obtained projectors are then applied to
truncate the enlarged factorized indices. We can also update the matrices C12 and C′

6. The update is carried out with QR decompositions. Note
that the new matrices C′′

6 and C′
12 are not symmetric or diagonal. (f) Another step of the matrix C′′

6 update, which results in the second isometry
V and another corner matrix C′′′

3 . (g) Analogous update step for the matrix C′
12 gives back the matrix C12 and also the isometrical projector M.

(h) To obtain the final projector W , we construct the corner matrix C4 of the squares in the 4-6-12 lattice from the bMPS tensors and the third
power of the matrix C12. The SVD of this enlarged corner allows us to obtain the last projector W and also the matrix C4, which corresponds
to correlations internal to the squares.

factorization step. The “nonsymmetric” means that the rank-4
tensor is factorized into the product of two different rank-3
tensors. This factorization can be performed exactly at the cost
of the enlargement of the factorized index dimension. Another
option is to truncate this factorized index by means of a certain
projector. We discuss the truncation procedure below.

In Fig. 17(a) we determine the first necessary element
of CTMRG: the corner matrices C6, which are internal

to dodecahedrons. Below, we also obtain the matrices C6,
which are internal to two types of hexagons and to squares.
We can define the second type of bMPS for the 4-6-12
lattice. This second bMPS will have the angle π/6 with
the first type of bMPS. On their intersection, it is possible
to define the corner matrices C12. We do not describe
the update iterations for the second type of bMPS in this
subsection, but we introduce the corner matrix C12 as a
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convenient tool. Its connection to the matrix C6 is shown
in Fig. 17(b).

In Fig. 17(b) we also introduce the corner matrix C3 = C2
6 .

Its geometrical meaning is explained in Fig. 17(c). Next, we
derive the projectors. The first step is to update the matrix
C6, as shown in Fig. 17(d). After the dimension increase of
the matrix C6, we perform SVD to truncate it and obtain
the matrix C′

6 and also the first isometric projector U . To
understand why SVD is the appropriate procedure for the
truncation, we note that the enlarged matrix C′

6 corresponds
to the nonsymmetric angles of the first kind of hexagons. Its
truncation must be performed along the same lines, as we
described for the square-octagon lattice.

Next, let us perform the nonsymmetric factorization. First,
we can employ the arbitrary factorization method to factorize
the rank-4 tensor into the product of two rank-3 tensors. In this
exact factorization, a new factorized index emerges, which
has, in general, rather large bond dimension. We can deal
with this large dimension in two different ways. If the tensor
network to be contracted has a small internal index dimension
(e.g., for the Ising models D = 2), then we can use arbitrary
exact factorization and proceed without a truncation, since the
factorized index dimension does not grow too much (and it is
truncated back later using the projectors). The arbitrariness of
the decomposition is only a gauge freedom in this factorized
index, which does not influence the succeeding calculations.
In this case, we can just proceed to the final update steps for
the corner matrices at the end of Fig. 17(e).

We can now describe how to perform the truncation of
the factorized index. To this end, we write the full lattice
contraction in terms of the corner matrices and factorized
rank-3 tensors, as shown in Fig. 17(e). This construction
can be cast in the form of multiplication of two matrices
CLCR, which together can be viewed as a density matrix.
Unfortunately, this matrix is not symmetric, hence, we cannot
truncate it using simple eigenvalues. We choose instead to use
the biorthogonalization procedure from Ref. [20]. Biorthogo-
nalization steps applied to CL and CR are also illustrated in
Fig. 17(e). Biorthogonalization results in projectors PL and
PR, which can be used to truncate the factorized index. After
the truncation, we can use the truncated rank-3 tensors to
update the matrices C12 and C′

6. Note that the update uses QR
decomposition and results in nonsymmetric new matrices C′

12
and C′′

6 . These matrices represent the correlations inside the
squares of the 4-6-12 lattice. By updating the matrices C′

12
and C′′

6 , as shown in Figs. 17(f) and 17(g), we obtain another
two isometric projectors V and M and also arrive back at
the dodecahedron corner matrix C12. In this process, we also
obtain the corner matrix C′′′

6 , which represents correlations in
the second type of hexagons.

Finally, we determine the last isometrical projector W . This
projector corresponds to the squares of the 4-6-12 lattice. In
this sense, one naturally obtains it from the update rule of the
corner matrix C4, which appears at the intersection of two
types of bMPS. Since we describe here the algorithm with
only one type of bMPS, the matrix C4 does not naturally
appear in our calculations. To obtain the projector, we use
a trick and represent C4 inside the dodecahedron as its self-
consistency condition C4 = C3

12 (note that all corner matrices
inside the dodecahedron can be self-consistently constructed
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FIG. 18. Ruby lattice: (a) Definition of the first transfer matrix
and the respective bMPS. (b) The local updates of bMPS tensors for
the first type of transfer matrix. Note the similarity of the updates and
conventions with Fig. 16.

from the matrix C12). As we show in Fig. 17(h), one can
write an update step for the matrix C4 and truncate it using
SVD (SVD must be applied, since the angles of the squares in
the 4-6-12 lattice are not symmetric under reflections). SVD
results in the new diagonal matrix C4 (internal to the squares,
but not to the dodecahedrons) and also in two isometries.
The first isometry is precisely the projector W . The second
one is not employed in our version of the algorithm, but it is
necessary for the update of the second type bMPS, if included
in the iteration.

G. Ruby lattice

In this subsection, we discuss the tensor network contrac-
tion on the ruby (also, bounce or 3-4-6) lattice with rank-4
tensor A placed on all the nodes of the lattice. We require
from the tensor A only one reflection symmetry. As we show
below, the tensor A also needs to be positive with respect to
factorization across the reflection axis.

The ruby lattice can be obtained from the 4-6-12 lattice
by contracting certain edges of hexagons. As a result, the
CTMRG on the ruby lattice is similar to the 4-6-12 lattice. To
highlight the similarity of the two algorithms, we use the same
conventions on the figures of analogous tensors or update
steps. Note that we can explicitly map the algorithm on the
ruby lattice to the 4-6-12 lattice CTMRG by employing the
symmetric factorization of the rank-4 tensor A on the ruby
lattice.

The ruby-lattice transfer matrix is shown in Fig. 18(a).
The corresponding local update steps are shown in Fig. 18(b).
Compared to the 4-6-12 lattice, we find that a pair of project-
ing steps turn into factorization steps, and now one needs only
two different isometric projectors U and W . We also observe
that the nonsymmetric factorization step remains a part of the
calculation.

Let us now discuss the calculation of projectors and factor-
izations. To this end, we introduce the corner matrices. The
corner matrices for the different intersections of the bMPS are
shown in Figs. 19(a) and 19(b), and the consistency condition
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FIG. 19. Ruby lattice: (a) Definition of the corner matrix C6 inside the hexagon as an intersection point between two bMPS with the angle
π/3. (b) The definition of the corner matrix C3 inside the hexagon as an intersection point between two bMPS with the angle 2π/3. (c) The
consistency condition between the corner matrices C3 and C6. (d) The first update step of the corner matrix C3 allows us to find the first isometric
projector U and the updated corner matrix C′

3. (e) The illustration of the nonsymmetric factorization step. First, we can express the lattice in
terms of the corner matrices and bMPS tensors. Then, we employ the exact factorization of the rank-4 tensor, where we do not perform any
truncation. The enlarged index is shown with two lines. Next, we write this density matrix, which represents the lattice as a product of two
matrices CL and CR. To obtain the projectors we apply the biorthogonalization procedure to the tensors CL and CR. The obtained projectors are
then applied to truncate the enlarged factorized indices. We can also update the matrices C6 and C′

3. Note that the new matrices C′′
3 and C′

6 are
not diagonal. (f) The first factorization step is performed in a similar way to factorizations on different lattices. The main difference is that the
matrix C′′

3 is no longer diagonal. To proceed further, we factorize this matrix with the Cholesky decomposition. This decomposition works only
for the positive matrices, which is a major limitation for this type of algorithm. After the decomposition, we can perform a factorization step.
(g) Another factorization step, which is performed analogously to the previous point. The only difference is that we obtain a new C6 matrix as
a byproduct of factorization. (h) The final projector can be found from the SVD of the effective corner matrix C4. This decomposition requires
C3/2

6 , thus sets an additional positivity condition.

between them is shown in Fig. 19(c). Figure 19(d) illustrates
the update step for the C3 corner matrix, which results in the
corner matrix C′

3, representing the correlations inside the tri-
angles. The isometry U is chosen to diagonalize and truncate
the corner matrix C′

3. Note that the positivity of C′
3 depends on

the positivity of the tensor A across the reflection line.
Next, we perform the nonsymmetric factorization step, as

in Fig. 19(d). The procedure is the same as for the 4-6-12
lattice, thus we do not discuss it here in detail. The main

difference is only the update of the corner matrices, which
results in the new matrices C′

6 and C′′
3 , which are symmetric,

but generally not diagonal, and possibly not positive. For the
positive matrices we can perform their Cholesky decompo-
sition, as in Figs. 19(f) and 19(g), and to use blocks from
the Cholesky decomposition in the factorization steps. The
factorization steps also result in the new corner matrix C6.

The final step is to determine the second isometric pro-
jector W from the update of the effective matrix C4, which
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(b)
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FIG. 20. Dice lattice: (a) Definition of the transfer matrix on the
dice lattice and the respective bMPS. (b) The local updates of bMPS
tensors.

is partially mimicked by the power 3/2 of the matrix C6.
This power can be computed only for the positive ma-
trix C6, hence, its positivity becomes a necessary condition.
The process of the update for the matrix C4 is shown
in Fig. 19(h).

The algorithm described above depends substantially on
the positivity of the matrices C6, C′

6, and C′′
3 . The positivity

is preserved by the majority of the update steps. The only
exceptions are the update in Fig. 19(d) and the factorization in
Fig. 19(g). If the tensor A is positive with respect to symmetric
factorization, then these two steps are also guaranteed

to preserve positivity, and the method works. We also
discuss the positivity issues in more detail in Sec. III and in
Appendix A.

H. Dice lattice

The dice lattice is an example of a non-Archimedean lat-
tice, which has two different types of vertices. We construct
a tensor network consisting of rank-6 rotationally symmetric
tensors A and rank-3 rotationally symmetric tensors B placed
on the respective nodes of the dice lattice. The algorithm
requires changes with respect to previously discussed lattices,
but the main idea remains the same.

First, in Fig. 20(a) we show the transfer matrix and the
respective bMPS on the dice lattice. Note that the bMPS
consists of two different types of tensors. This is necessary
due to two different types of bulk tensors A and B. The updates
of the local tensors are shown in Fig. 20(b). For the update, we
need biorthogonal (not isometric) projectors PL and PR with
PLPR = 1, and also to perform one symmetric factorization
step. To define the projectors we introduce the corner matrices
and the respective updates.

The corner matrices C6 and C3 are shown in Figs. 21(a) and
21(b). We do not have consistency relations between these
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A B
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A BB B
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B

A
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FIG. 21. Dice lattice: (a) Definition of the corner matrix C3. (b) Definition of the corner matrix C6. (c) The growth step for the corner matrix
C3. (d) The update steps for the corner matrix C6, which result in the new matrix C6 with a larger dimension. (e) The contracted tensor network
in terms of the larger matrices C3 and C6, which can be written as a product of the matrices CL and CR. We apply the biorthogonalization to
CL and CR to obtain the projectors PL and PR. (f) The symmetric factorization step. Initially, we perform a factorization without truncating the
factorized index (indicated with two lines). We can write a contracted tensor network in terms of factorized tensors and corner matrices. The
index can be truncated using the isometry obtained from the eigendecomposition of the density matrix (or its half denoted as K).
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matrices, sine the dice lattice does not consist of symmetric
polygons. We introduce two separate updates for these matri-
ces, which are shown in Figs. 21(c) and 21(d). As a result
of these updates, we obtain the enlarged corner matrices,
which we truncate by means of biorthogonal projectors. To
determine these projectors, we express the contracted tensor
network in terms of these corner matrices C3 and C6, as shown
in Fig. 21(e). Equivalently, this contraction can be written as a
product of two matrices CL and CR. To find the projectors, we
biorthogonalize the matrices CL and CR. Finally, we perform
the symmetric factorization. In Fig. 21(f) we first perform an
exact factorization without the truncation. The enlarged fac-
torized index is depicted with two lines. We can now rewrite
the whole tensor network in terms of these factorized tensors,
corner matrices, and bulk tensors B. Using this representation,
we take the density matrix for the enlarged factorized index
and truncate the index according to its spectrum. Equivalently,
one can diagonalize half of the density matrix, as is shown
in Fig. 21(f). This diagonalization results in the isometry W ,
which can be used to truncate the factorized index.

I. Remarks on the positivity and other lattices

In the introduced CTMRG approaches, many times we
faced the necessity for the symmetric factorization step. Un-
fortunately, not every symmetric tensor can be decomposed
symmetrically. The necessary condition for this decompo-
sition relies on the positivity of the tensors. In particular,
its eigenvalues around the symmetric bipartition must be
all positive. For positive bulk tensors, which usually ap-
pear in classical statistical mechanics applications, these
conditions hold automatically. For more general tensors,
which appear, e.g., in the iPEPS calculations, the bulk ten-
sors can be both positive and negative, thus the simple
versions of the described algorithms can face convergence
issues. Note that the CTMRG algorithms on honeycomb,
square-octagon, 4-6-12, and square lattices do not contain
symmetric factorizations, hence, these can be straightfor-
wardly applied to arbitrary bulk tensors without any positivity
restrictions.

For nonpositive bulk tensors and lattices with symmetric
factorizations, one can introduce certain algorithmic modifi-
cations. First, we should not assume that the bMPS consists
of one type of symmetric tensor. Instead, we can assume now
that the bMPS contains several different types of tensors. In
this case, the symmetric factorizations turn into nonsymmetric
factorizations, which can be performed in the same way, as
we described for the 4-6-12 lattice. We discuss these gener-
alizations to nonpositive bulk tensors by taking example of
triangular lattice in Appendix A.

In this section, we studied the dice lattice and various
Archimedean lattices. Still, there are three Archimedean lat-
tices with the coordination number z = 5, which we have not
covered: maple-leaf, Shastry-Sutherland, and trellis lattices.
We believe that the CTMRG approach can be extended to
these lattices as well, but their natural anisotropy makes it
difficult to devise a simple truncation procedure. In fact, the
density matrices on these lattices are generally not symmetric,
thus one needs to apply biorthogonalizations and nonsymmet-
ric factorizations all the time.

III. BENCHMARKS AND RESULTS

A. Classical lattice models and tensor networks

Infinite tensor networks on various lattices can ap-
pear in different problems, e.g., in calculations with the
wave-function variational ansatzes as iPEPS, calculations of
contractions of infinite circuits, or in certain models of clas-
sical statistical mechanics on the lattice. In this section, we
focus on the latter and study certain well-known statistical
mechanics models on different lattices. First, we describe
these models, their physics and observables, and their map-
pings into the tensor network problems. This mapping is not
unique, since one can map the statistical mechanics model
into the tensor networks on different lattices. It is useful to
briefly discuss the possible transformations between certain
lattices, because this allows us to study the same problem with
different CTMRG algorithms and cross-check the results.

Our main focus of interest is the classical Ising model
[40–43]. This model is formulated on the general lattice as
follows: we place a “spin” variable σi on every site i of the
lattice. This variable is classical and can take only two values:
σi = +1 or σi = −1. We can now define the energy of the
system as follows:

E = −J
∑

〈i j〉
σiσ j − B

∑

i

σi, (1)

where 〈i j〉 denotes all the nearest-neighbor pairs of sites on
the lattice and the second sum is taken over all lattice sites.
We set the coupling J to +1 or to −1 for the ferromagnetic or
antiferromagnetic Ising model, respectively. The quantity B
corresponds to the amplitude of the external (magnetic) field,
which is generally set to zero, but for certain lattices we also
study characteristics in the nonzero field.

Now, we can express the partition function Z (β ) =∑
σi

exp [−βE (σ )], where β = 1/T is the inverse tempera-
ture in units of kB = 1, as well as the magnetization 〈σi〉 =∑

σ σi exp [−βE (σ )]/Z (β ). At low temperature, the system
described by the ferromagnetic Ising model undergoes phase
transition to the state with a nonzero spontaneous magnetiza-
tion, which corresponds to the nonzero value of 〈σi〉, while
at higher temperature the system is in the disordered phase
with 〈σi〉 = 0. In the antiferromagnetic models, one can also
observe a phase transition between the antiferromagnetic and
paramagnetic phases driven by thermal fluctuations and the
external field.

The partition function can be written as follows:

Z (β ) =
∑

σi

∏

i

exp(βBσi )
∏

〈i j〉
Wσiσ j , (2)

where Wσiσ j = exp(βJσiσ j ) ≡ Wi j is the bond matrix. We can
now introduce the tensor xi j...n = exp(βBσi )δi j...n, where the
rank of the tensor is equal to the connectivity z of the lattice
(if the lattice contains sites with different connectivities, then
one must introduce several different tensors x for each type of
sites), each individual index i, j, ..., n takes two magnetization
values ±1, and δi j...n is a type of the Kronecker δ tensor, with
the component equal to one, if all indices have the same value
(σi = σ j = ... = σn), and zero otherwise.

Let us add more comments on the tensor x. First, in the
absence of the external magnetic field B, it reduces to the
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δ tensor. Second, this tensor depends on the single value
exp(−2βB). Below, we denote these values somewhat loosely
as x = exp(−2βB), which can be restricted to the interval
0 < x < 1. We assume that it is usually clear from the context,
if we mean the tensor or the corresponding constant. Besides
that, we also introduce the constant a = exp(−2β ).

With the introduced tensors, we can define the tensor net-
work for the partition function Z (β ) by placing the tensors x
on all lattice sites and the matrices Wi j on the corresponding
links. This network is illustrated in Fig. 22(a) for the trian-
gular lattice in the absence of the external field (i.e., we can
use δ tensors instead of x tensors) and in Fig. 22(c) for the
honeycomb-lattice Ising model in the external field.

The introduced form of tensor network does not match
exactly the ones discussed in the previous section, since it
contains additional matrices Wi j on the links of the lattice. It
looks possible to generalize the CTMRG approach directly to
these models, similar to the bond-type statistical mechanics
models on the square lattice. However, we are interested in
mapping the tensor network directly into one the forms from
the previous section.

Let us first discuss the ferromagnetic case. For the fer-
romagnetic model, the matrix W is positive and symmetric,
thus one can define the positive symmetric square root q =√

W . This allows for the decomposition, which is shown in
Fig. 22(b), and the square roots can be absorbed into the
tensors x (or δ without external field), transforming to the
new tensor A. This construction is also related to the Fisher
superexchange Ising model [44] with additional spins on the
bonds of the original lattice. In this representation, the indices
of the tensor A take values in these bond spins, while

√
W

is a new bond matrix with the redefined β. The new tensor
network consists of identical tensors A on all lattice sites,
where we can directly apply the algorithms from the previous
section.

For the antiferromagnetic model, we cannot define the
positive square root q, thus we introduce an arbitrary non-
symmetric decomposition W = L × R, which is shown in
Fig. 22(d). This decomposition can be obtained, e.g., from
SVD. Then, we absorb the matrices L and R into different
tensors x, as in Fig. 22(d). Note that this construction works
only on the bipartite lattices, as the honeycomb one, where we
obtain the two-site unit cell tensor network with two different
tensors on different sublattices of the original lattice. For other
not bipartite frustrated lattices (e.g., triangular or kagome),
the more complex tensor network encoding is required, as is
discussed in Refs. [45–49].

Finally, let us briefly discuss different mappings of the
models into the tensor networks. It is possible to map tensor
networks on different lattices into each other, as we show
in Figs. 22(e) and 22(f) for the cases of ruby, SHD and
kagome lattices. These mappings allow cross-checking differ-
ent CTMRG algorithms, since they can be applied to the same
lattice model.

B. Triangular lattice

We begin the benchmark analysis from the ferromagnetic
Ising model on the triangular lattice. This model is inte-
grable and its transition temperature is exactly known. The
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FIG. 22. (a) The general construction of the tensor network on
the lattice (here, triangular) by placing tensors δ on the sites and
matrices W on the bonds. (b) For the ferromagnetic models we can
find the unique positive symmetric square root of the bond matrix
W . These square roots can be absorbed into the tensors δ, forming
the tensor network of identical rotationally and reflection-symmetric
tensors A. (c) For the bipartite antiferromagnetic model in the exter-
nal field, the partition function can be determined by placing identical
tensors x on the lattice sites and bond matrices W on the links. (d) For
the antiferromagnetic model we do not have a unique symmetric
decomposition of the matrix W , but we can choose an arbitrary one
(e.g., based on SVD) and then absorb the resulting matrices L and
R into different site tensors, forming the tensor network with two-
site unit cell. (e) Example of the transformation mapping the ruby
lattice into the SHD one. Note that here we assume the symmetric
factorization of the tensor A on the ruby lattice. If this factorization
is not available, then one can employ a nonsymmetric factorization,
but the mapping results in the two-site unit cell on the SHD lattice.
(g) The mapping from the SHD to kagome lattice.

model can be represented as a tensor network contraction on
the triangular lattice, with the tensors being both completely
symmetric and positive. In this subsection, we analyze sev-
eral observables to determine the transition temperature and
compare it with the exact values. We consider the following
observables: the onsite magnetization 〈σ 〉, which appears in
the low-temperature ferromagnetic phase, and various corner
Hamiltonian characteristics. Up to multiplicative normaliza-
tion, the corner (or entanglement) Hamiltonian is defined as
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follows:

Hc = − log(C3). (3)

In integrable models, these corner Hamiltonians have re-
markable properties: they can be connected to the boost
operators of the integrable spin chains, which are obtained in
the extreme anisotropic limit of the integrable model [50–54].
These boost operators, in turn, generate integrals of motion of
the integrable chain and they are the basis of the recent ap-
proaches to finding the new integrable models [55]. The boost
operator in integrable models also has integer eigenvalues.
It means that the spectrum of Hc has a form: E = E0 + �n,
where E0 is a normalization-dependent factor, n is integer, and
� is an entanglement gap (or a Schmidt gap).

Note that the Hamiltonian spectrum is degenerate, and
generally there are many eigenstates that correspond to the
same n. We can characterize the Hamiltonian with its gap �

and its degeneracies d (n). Since d (n) are integer numbers,
they cannot change without phase transition, where the gap �

vanishes. As a result, we can study the phase transitions in in-
tegrable models by analyzing the gap � [56] and characterize
the phases with their respective degeneracies d (n). For certain
models, it was found that the degeneracies are related to the
representation theory of the quantum deformed Kac-Moody
algebras [57–59], but we do not pursue this characterization
here. For the Ising model on the square or triangular lattices,
the spectra are known exactly. These have free fermionic
form: E = ∑

l εl nl , where nl = 0, 1, and εl can be obtained
according to the following rule [51]:

εl = (2l + 1)�, (4)

for the disordered phase, where l = 0, 1, 2, 3, . . ., and for the
ordered phase

εl = l�, (5)

where l = 1, 2, 3, . . .. From these spectra, we can find the
degeneracies by computing the partition function of the en-
tanglement spectrum in terms of q = exp(−�), which in the
disordered phase has a form

Z =
∞∏

l=0

(1 + q2l+1) = 1 + q + q3 + q4 + q5 + q6 + q7

+ 2q8 + 2q9 + 2q10 + 2q11 + 3q12 + . . . . (6)

This formula defines the degeneracies in the disordered phase
d = {1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, . . .}.

In turn, in the ordered phase

Z =
∞∏

l=1

(1 + ql ) = 1 + q + q2 + 2q3 + 2q4 + 3q5

+ 4q6 + 5q7 + . . . . (7)

This corresponds to the degeneracy pattern d =
{1, 1, 1, 2, 2, 3, 4, 5, . . .}. Below, we observe that exactly
this spectrum appears in the Ising models on triangular,
kagome, square-octagon, star, and dice lattices, while
for other lattices they appear in the vicinity of the phase
transition, which is always governed by the Ising conformal
field theory (see Ref. [60] for the spectra universality near

Eigenvalue index

FIG. 23. Triangular lattice: The corner matrix spectrum in the
ordered phase of the Ising model, normalized by the gap � between
the first and second eigenvalues. The bond dimension of the corner
matrix χ = 120 and the inverse temperature β = 0.28.

the phase transition). We also observe that on ruby and SHD
lattices, where we do not observe the exact degeneracies, the
spectra are still free fermionic, which still leads to a large
number of nontrivial relations between different entanglement
eigenvalues.

In general, we analyze the following observables as a check
of our CTMRG scheme: we measure the magnetization and
entanglement gap to determine the transition temperature, and
we explore the closeness of the entanglement spectrum to the
degenerate integer values as an additional check. It should be
mentioned that for integrable models it is possible to develop a
“logarithmic” CTMRG, which works directly with the corner
Hamiltonian [61].

We show the corner spectrum in the ordered phase (β =
0.28) in Fig. 23, where we normalize the eigenvalues by
the gap �. It is clear that with this normalization the eigen-
values form degenerate multiplets with integer eigenvalues.
The degeneracies form a sequence d = {1, 1, 1, 2, 2, 3, 4, ...}.
This sequence is independent of the precise value of β inside
the ordered phase. For the first eigenvalues, the closeness to
the integer holds within a precision 10−11. For the higher
eigenvalues, we notice distortions of the spectrum from the
integer values and from the exact degeneracy. These devia-
tions originate from the finite values of the bond dimension
χ and one can systematically improve the accuracy by the
increase of χ . Note that the corner eigenvalues E are loga-
rithmic quantities, thus their closeness to integers is still very
impressive. The figure proves that our CTMRG algorithm
captures the main properties of the corner spectra in integrable
models.

In Fig. 24 we show the dependence of the magnetization
and entanglement gap � on the inverse temperature β. The be-
havior of the magnetization indicates the second-order phase
transition with the estimated βc ≈ 0.2746. This agrees well
with the exact critical value β (ex)

c = ln (3)/4 ≈ 0.274653. The
behavior of the gap � agrees with the magnetization, indicat-
ing a clear minimum in the vicinity of the phase transition. In
principle, the gap must vanish at the transition point. However,
the convergence in the critical region is slow and to show this
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FIG. 24. Triangular lattice: Dependence of the magnetization σ

and entanglement gap � on the inverse temperature β at χ = 200.

explicitly, one needs to further increase χ , since the corner
spectrum becomes continuous at the transition point.

C. Kagome lattice

Next, we study the same ferromagnetic Ising model on
the kagome lattice. Analogously to the triangular lattice, we
analyze the onsite magnetization and entanglement (corner)
spectrum, which we now define as the eigenvalues of the
logarithm of corner matrix C6 (this is just a normalization
convention). We also define the entanglement gap � as a
difference between the first and second multiplets of the en-
tanglement spectrum. The model is integrable, and we obtain
the same integer-level spacings with the nearly exact degen-
eracies. In Fig. 25 we show the spectrum in the disordered
phase on the kagome lattice. It is clear that the levels are
integer-valued and form a degeneracy pattern in the disordered
phase of the form d = {1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, . . .}.

It is also interesting to analyze the corner matrix C′
3, which

is defined inside the triangles (see also Fig. 7) and its entan-
glement spectrum. We note that generally this spectrum is not

Eigenvalue index

FIG. 25. Kagome lattice: The corner matrix spectrum in the dis-
ordered phase of the Ising model, normalized by the gap � between
the first and second eigenvalues. The bond dimension χ = 90 and the
inverse temperature β = 0.45, which is close to the transition point.

FIG. 26. Kagome lattice: Dependence of the magnetization σ

and entanglement gap � on the inverse temperature β at χ = 200.
The exact critical value βc = 0.46657, while our estimate is βc =
0.4666(1).

integer-valued and is not exactly degenerate, but the spectra
follow the free fermionic pattern and become integers only in
the vicinity of the phase transition. This is a common trait for
many corner matrices of different Ising models. For a majority
of models, we observe that only one of the corner matrices
exhibits the integer spectrum, while other corner matrices are
only free fermionic. For certain lattices, e.g., the ruby or SHD,
we find that all corner matrices are only free fermionic.

In Fig. 26 we show the dependence of the magnetization
and entanglement gap on the inverse temperature β. The ex-
act critical value β (ex)

c = ln(3 + 2
√

3)/4 ≈ 0.466566, which
agrees with our result βc = 0.4666(1). Note that this result
is obtained purely from the computation of CTMRG on a
mesh with spacing �β = 0.0001, which defines the accuracy
of the estimates. In principle, one can improve accuracy by
additional fitting and finer mesh in the vicinity of the phase
transition.

Finally, as we specified in Sec. II B, the corner matrix C3

inside the hexagons can be obtained in two different ways.
In the converged state, these two definitions must be iden-
tical. Hence, the agreement must indicate the convergence
and self-consistency of the approach. In Fig. 27 we show the
logarithm of the norm of the difference between two defini-
tions of the matrix C3. It is clear that the difference vanishes
(up to machine precision errors) after a sufficient number of
iteration steps. This confirms the consistency of the proposed
scheme and also proves that various procedures to converge
the CTMRG environments ultimately lead to the same results.

D. Square-octagon lattice

The square-octagon lattice does not introduce any ad-
ditional difficulties compared to the previous lattices. We
observe the same integer entanglement spectrum and the de-
pendence of the magnetization and entanglement gap is also
analogous to the previous results.

The possible difference from the previously discussed
cases is the presence of two different bMPS, which are rotated
by the angle π/4. Note that the quantities as the magnetization
can be computed with both types of bMPS. We computed
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Iteration

FIG. 27. Kagome lattice: The logarithm of the Frobenious norm
of the difference between two matrices C3 and C2

6 (preliminary nor-
malized). The parameters are χ = 90 and β = 0.45.

the magnetizations with both types of bMPS and observed
that the results agree up to machine-level precision (of the
order of 10−13).

Another possible check of consistency does not employ
two different bMPS, but operates in the same bMPS algorith-
mic loop (see Fig. 12), where we also introduce the symmetric
tensor T . At the same time, we can always replace the tensor
T with the first boundary MPS tensor O [shown in yellow
in Fig. 11(a)] and two corner matrices C8, which account for
the remaining angle π/2 in the tensor T . For the consistency
of all calculations, these two ways to represent the corner
in any computation of observables must agree. Hence, the
consistency condition can be written as Ti jk = C2

8,iOi jk . We
show the convergence of the Frobenious norm of the tensor
difference in Fig. 28.

We show the entanglement spectrum in the disordered
phase in Fig. 29. This spectrum is obtained from the logarithm
of the corner matrix C8. Note that the spectral degeneracies
are identical to the ones of the kagome lattice with the cor-
responding degeneracy patterns. In turn, the results for the

Iteration

FIG. 28. Square-octagon lattice: Convergence of the norm of the
difference between the tensors T and C2

8,iOi jk (preliminarily normal-
ized). The parameters are χ = 100 and β = 0.69. The norm of the
difference converges to the value around 10−8.

Eigenvalue index

FIG. 29. Square-octagon lattice: The corner matrix spectrum in
the disordered phase of the Ising model, normalized by the gap �

between the first and second eigenvalues. The parameters are χ =
100 and β = 0.69.

magnetization and for the entanglement gap are shown in
Fig. 30. The critical inverse temperature estimated in our
analysis βc = 0.6950(1) agrees well with the exact result,

β (ex)
c = ln(1 + √

2/2 +
√

10 + 8
√

2/2)/2 ≈ 0.6950741. The
entanglement gap is calculated from the matrix logC8.

E. Star lattice

The star lattice has a lot in common with the kagome
lattice. In fact, the kagome lattice can be obtained from the
star lattice with a contraction of one of the indices, hence, the
CTMRG algorithms on both lattices are very similar. Here,
we analyze the same quantities as for the kagome lattice. In
particular, we compute the same consistency condition, which
corresponds to the difference between two different ways how
the matrix C3 inside the dodecahedrons can be defined. We
show the convergence of the difference between two matrices
in Fig. 31. The difference converges almost to the machine
precision.

FIG. 30. Square-octagon lattice: Dependence of the magnetiza-
tion σ and entanglement gap � on the inverse temperature β at
χ = 200. The estimated critical value βc = 0.6950(1).
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Iteration

FIG. 31. Star lattice: Convergence of the norm of the difference
between two definitions of the matrix C3 (preliminarily normalized).
The parameters are χ = 120 and β = 0.78.

Next, we discuss the entanglement spectrum and
observables on the star lattice. These are shown in Figs. 32 and
33, respectively. The entanglement spectrum is the same as
for the square-octagon and kagome lattices, while the critical
temperature also agrees well with the exact result, β (ex)

c =
ln (3/2 + √

3/2 +
√

12 + 10
√

3/2)/2 ≈ 0.8120101. Note
that here we obtain the entanglement spectrum and the
entanglement gap from the corner matrix C12.

F. Ruby lattice

On the ruby lattice, it is necessary to apply nonsymmet-
ric factorizations. These require a long procedure of finding
projectors PL and PR, which is illustrated in Fig. 19. This pro-
cedure employs the inversion of the square root of the matrix
S, with S requiring the contraction of all corner matrices. It
means that S ∝ C6

6 , where the proportionality means the order
of magnitude estimate. Now, imagine the system is far from
criticality, where the eigenvalues of the matrix C6 quickly
decrease to zero. For these corner matrices, the eigenvalues

Eigenvalue index

FIG. 32. Star lattice: The corner matrix spectrum in the disor-
dered phase of the Ising model, normalized by the gap � between
the first and second eigenvalues. The parameters are χ = 120 and
β = 0.78.

FIG. 33. Star lattice: Dependence of the magnetization σ and
entanglement gap � on the inverse temperature β at χ = 200. The
estimated critical value βc = 0.8120(1).

of S decrease much faster. This can lead to machine-precision
errors since the eigenvalues of S can become smaller than
10−16. In this case, the intermediate steps in the calculation
of S seem inaccurate, and the resulting projectors PL and PR

can be wrong. This leads to a possible algorithm instability,
which appears only at high values of χ .

In this study, we choose the following scheme to miti-
gate the potential numerical instability: We start the CTMRG
scheme with a small χ and then gradually increase it step by
step, with convergence ensured at each step. We stop increas-
ing χ if it has reached the maximal value or if the eigenvalues
of S become lower than the predefined threshold, e.g., 10−14.
It is possible that this problem can be solved with the intro-
duction of more precise schemes for finding projectors, which
were proposed on the square lattice in Ref. [62]. Note that in
the vicinity of the critical point, the instability appears at much
higher values of χ than our typical maximal values.

We can now describe certain consistency checks on the
ruby lattice. Note that the ruby lattice contains two types of
hexagons with the corresponding corner matrices C′

6 and C′′′
6 .

These two matrices appear on the different stages of the algo-
rithmic loop, hence, in principle, they are not connected. But
from the geometrical arguments, we can make a statement that
these matrices must be the same. Indeed, this also corresponds
to our numerical observations. The first three eigenvalues
converge to the precision of about 10−10, while the smallest
eigenvalues can have larger differences up to 10−7. In Fig. 34
we show the convergence of the maximal difference between
the ten largest eigenvalues of the respective matrices.

Next, we describe the entanglement spectrum on the ruby
lattice. Unfortunately, the spectra (for all types of corner ma-
trices) do not exhibit a clear integer degeneracy pattern. Still,
these spectra remain free fermionic. In particular, we are able
to reorganize the first two dozen eigenvalues in the form of
the free fermionic Hamiltonian. Another clear sign of the free
fermionic nature of the spectra is that all eigenvalues can be
grouped in pairs of the form {E , E + �}, which we also ob-
serve in all cases. We believe that the free fermionic nature of
the spectra is due to the possibility of the exact fermionization
of the Ising models on the planar lattices, which is a basis
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FIG. 34. Ruby lattice: Convergence of the maximal difference
between the ten largest eigenvalues of the corner matrices C′

6 and
C′′′

6 (preliminary normalized). The parameters are χ = 40 and β =
0.46. The fluctuations on the plot correspond to the consecutive
increases of χ .

of the Pfaffian method of the Ising model solution [43,63,64]
(see also Ref. [65] for a tensor network introduction to the
duality).

The exact integer degeneracy appears only in the vicinity
of the phase transition due to universality [60]. For all other
values of the inverse temperature β, the spectra deviate from
the exactly degenerate integer form. To check this property,
we mapped the tensor network on the ruby lattice to another
tensor network on the kagome lattice, where we applied the
kagome-lattice CTMRG and obtained identical not-exactly
integer spectra. We show the spectrum in the vicinity of the
critical point in Fig. 35. The first eigenvalues are nearly integer
(with a difference of the order of 10−3) and nearly degenerate,
but the higher eigenvalues show disordered behavior.

Finally, we analyze the magnetization and entanglement
gap on the ruby lattice. The exact result for the critical temper-
ature is given by β (ex)

c = ln (3 + 2
√

3)/4 ≈ 0.466566. This

Eigenvalue index

FIG. 35. Ruby lattice: The corner matrix spectrum in the disor-
dered phase of the Ising model, normalized by the gap � between
the first and second eigenvalues. The parameters are χ = 90 and
β = 0.466, which is close to the critical point.

FIG. 36. Ruby lattice: Dependence of the magnetization σ and
entanglement gap � on the inverse temperature β at χmax = 90. The
estimated critical value is βc = 0.4666(1).

agrees well with our estimates in Fig. 36, where we show the
dependence of the magnetization and entanglement gap on the
inverse temperature β.

G. SHD lattice

The case of SHD lattice is completely analogous to the
ruby lattice in its algorithmic realization with all the corre-
sponding discussions. In particular, there exists the potential
numerical instability at high χ . As a check of convergence of
the CTMRG scheme on the SHD lattice, we analyze the dif-
ference between the spectra of two different hexagon corner
matrices shown in Fig. 37. The results are somewhat worse
than for the ruby lattice, which is a general observation for the
SHD lattice.

The entanglement spectra on the SHD lattice are also not
exactly integer, though they converge to the integer values
near the phase transition. To confirm this result, we also

Iteration
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FIG. 37. SHD lattice: Convergence of the maximal difference
between the ten largest eigenvalues of the corner matrices C′

6 and C′′′
6

(preliminary normalized). The parameters are χ = 40 and β = 0.71.
The fluctuations on the plot correspond to the consecutive increases
of χ .
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Eigenvalue index

FIG. 38. SHD lattice: The corner matrix spectrum in the disor-
dered phase of the Ising model, normalized by the gap � between
the first and second eigenvalues. The parameters are χ = 105 and
β = 0.719.

mapped the tensor network to the kagome lattice, where
we applied the kagome-lattice CTMRG. The results of the
kagome-lattice CTMRG are in agreement with the SHD-
lattice calculations. The behavior of the spectrum near the
critical point (in the disordered phase) is shown in Fig. 38.
The eigenvalues are close to the ones obtained for the square-
octagon or star lattices, but this holds only in the vicinity of
the phase transition.

Finally, we analyze the magnetization and the entangle-
ment gap defined from log (C6), where C6 is the corner matrix
inside the dodecahedrons. The corresponding observables and
the estimate of the critical temperature are shown in Fig. 39.

H. Dice lattice

The dice-lattice CTMRG has similar peculiarities as the
ruby and SHD lattices, since the corresponding algorithm
includes the nonsymmetric factorization. Due to this, all com-
ments regarding possible numerical instabilities at large χ

FIG. 39. SHD lattice: Dependence of the magnetization σ and
entanglement gap � on the inverse temperature β at χmax = 90. The
exact value of the inverse critical temperature β (ex)

c ≈ 0.71951019,
while according to our estimates βc = 0.7195(1).

FIG. 40. Dice lattice: Dependence of the local magnetizations
σA,B on two types of lattice sites A, B and entanglement gap � on the
inverse temperature β at χmax = 200. The estimated critical value of
the inverse temperature is βc = 0.4157(1).

hold here as well. To proceed, we also introduce the maximal
value of χ for this lattice, which depends on the spectrum of
S in the nonsymmetric factorization.

Note that we also have additional differences in the case
of dice lattice. First, it does not contain a single type of
diagonal corner matrix with the eigenvalues related to the
entanglement spectrum. In contrast, we have two different
corner matrices C6 and C3, which are symmetric. In general,
these two matrices cannot be simultaneously diagonalized.
Still, the behavior of their eigenvalues contains information
on the criticality of the system. In particular, we define the
entanglement gap � as the difference of logarithms of the
second and first eigenvalues of the matrix C3. We employ this
as a definition of the entanglement gap for the dice-lattice
Ising model. Second, the dice lattice has two types of sites:
trivalent (type B) and six-valent ones (type A), which can have
different onsite magnetizations. The entanglement gap and the
magnetizations on two types of sites are shown in Fig. 40. The
critical temperature for the dice lattice can be obtained from
its duality to the kagome lattice, thus β (ex)

c ≈ 0.415721472.
Our result for the critical temperature is close to the specified
exact value, in particular, βc = 0.4157(1).

As we stated, the spectra of the corner matrices C3 and C6

cannot be defined simultaneously and do not give us useful
information, in particular, the integer spectrum with exact
degeneracies. To obtain these, we employ the duality with
the kagome lattice as a guiding principle. According to the
calculations on the kagome lattice, we know that the kagome-
lattice Ising model exhibits integer and exactly degenerate
corner spectra on the hexagons. Surely, the CTMRG approach
to the dual-lattice Ising model (which is exactly equivalent
to the original one up to some redefinitions of the inverse
temperature) must also contain these integer degenerate levels
but in a more complex way.

The original kagome-lattice corner matrices correspond to
the corners of the hexagons, which are dual to the six-valent
vertices of the dice lattice. The six-valent tensors are now
surrounded by six tensors T1i jk (see also Fig. 21). We also take
the matrices q (defined as square roots of the bond matrices

045305-21



I. V. LUKIN AND A. G. SOTNIKOV PHYSICAL REVIEW E 109, 045305 (2024)

Eigenvalue index

FIG. 41. Dice lattice: The T ′-tensor spectrum in the ordered
phase of the Ising model, normalized by the gap � between the first
and second eigenvalues. The parameters are χ = 45 and β = 0.417.

of the Ising model, q = √
W ) and reabsorb them into the

tensors T1 as follows: T ′σ
ik = T1i jkqσ

j , where σ = {+1,−1}.
With these new tensors, the partition function is proportional
to

∑
σ Tr[(T ′σ )6

i j], where we take T ′σ
i j as matrices (rank-2

tensors) in indices i and j for the fixed σ , perform expo-
nentiation of these matrices to the sixth power for each σ ,
and then take a trace with respect to the indices i, j and sum
over σ .

We define the entanglement spectrum as logarithms of the
eigenvalues of T ′σ

i j for both σ . We find that this spectrum
is integer-valued and contains the same degeneracies as the
kagome-lattice corner spectrum. The differences are in the
reverse role of the phases: the disordered phase on dice lattice
corresponds to the ordered phase on kagome lattice and vice
versa. We also have additional degeneracy in the disordered
phase of the dice lattice, since the spectra for σ = ±1 are the
same in this phase. We show the eigenvalue pattern of the ten-
sor T ′ in the ordered phase in Fig. 41. The degeneracy pattern
is d = {1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, . . .}, which
is identical to the spectral degeneracies of kagome, triangular,
square-octagon, and star lattices in the disordered phase. Note
that here we combine the spectra of both σ . This is the reason
for the number of depicted eigenvalues exceeding the chosen
maximal χ .

The spectrum of the matrix T ′ in the disordered phase of
the dice-lattice Ising model is shown in Fig. 42 (with σ = +1,
since σ = −1 results in the identical spectrum). The degen-
eracy pattern is now d = {1, 1, 1, 2, 2, 3, 4, 5, 6, ...}, which
coincides with the degeneracy pattern of the triangular- and
kagome-lattice Ising models in the ordered phase.

I. Honeycomb lattice

Finally, let us discuss certain aspects of the honeycomb-
lattice CTMRG. The CTMRG approach on the honeycomb
lattice was introduced and successfully applied in two sep-
arate studies [33,34]. In this subsection, we aim to show
that our extension of the honeycomb-lattice CTMRG to the
two-site unit cell indeed converges, obeys certain consistency
checks, and agrees with the scheme proposed in Ref. [34].

Eigenvalue index

FIG. 42. Dice lattice: The T ′-tensor spectrum in the disordered
phase of the Ising model, normalized by the gap � between the first
and second eigenvalues. The parameters are χ = 75 and β = 0.415.

To check the two-site algorithm convergence on the hon-
eycomb lattice, we need a simple model with a two-site unit
cell. A natural suggestion is the honeycomb-lattice antiferro-
magnetic Ising model in the external field. This model is not
exactly solvable, but there are numerical results for the criti-
cal point [66,67]. As suggested above, we use the parameter
x = exp(−2βB) to characterize the strength of the external
field and the parameter a = exp(−2β ) to characterize the
temperature. For the comparison, we choose x = 0.5, where
the published numerical results suggest a critical point ac =
0.260013 [66]. Our results in Fig. 43 are in good agreement
and suggest the critical point ac = 0.26005(5).

Let us comment on the convergence of the algorithm. In
Sec. II C, we suggested that it is sufficient to employ only one
corner matrix C6 to obtain the projectors. In our numerical
analysis, we confirm this suggestion, if the system is far from
criticality. In the vicinity of the phase transition, it is some-
times necessary to employ two or all three corner matrices
to obtain the environments QL and QR for the corresponding
projectors (these are defined analogously to the dice-lattice
algorithm shown in Fig. 21).

FIG. 43. Honeycomb lattice: Dependence of the local magne-
tizations σA and σB on the inverse temperature β at x = 0.5 and
χmax = 120.
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Iteration

FIG. 44. Honeycomb lattice: Convergence of the maximal differ-
ence between C3 = (RARB )(C6,AC6,B) and C6,AC6,B. Both products are
preliminary normalized by their respective maximal elements. The
parameters are χ = 56 and a = 0.255.

Next, we turn to the consistency checks. The first check
concerns the matrix C3, which was used in Ref. [34]. As we
suggested in Sec. II C [see Figs. 9(e) and 9(g)], the matrix
C3 must be identical to C2

6 or, in the case of the two-site
unit cell, it must be equal to the corresponding matrix prod-
uct C6,AC6,B. For the latter, the equation in Fig. 9(e) must
be viewed as a consistency condition on the tensors C6,A,
C6,B, RA, and RB [note that in Fig. 9(e) additional projec-
tors and bulk tensors A appear, but they can be grouped
into just two tensors RA and RB]. We show the convergence
of this equation in Fig. 44. It is important to note that the
converged values of the order of 10−7 is the maximal dif-
ference, which usually occurs for the last eigenvalues, while
the differences in the first matrix elements are identical to
the machine precision. We conclude that the equation in
Fig. 9(e) holds for our converged environments. Hence, the
corner environments of Ref. [34] can be obtained from
ours, and the algorithms are equivalent up to the choice of
projectors.

We can now discuss the second consistency check. The
rank-3 tensor RBC6,B must be symmetric in its first and last
auxiliary indices. We show the evolution of the maximal ab-
solute value of the antisymmetrization of RBC6,B in Fig. 45.
As in the previous consistency check, the maximal difference
corresponds to the smallest eigenvalues of the corner matrices,
while the first tensor elements after antisymmetrization vanish
up to machine precision. We also probed the same consistency
test with several types of directional update method to obtain
the projectors and usually observed much poorer convergence
of the consistency checks.

It should be mentioned that we also briefly studied the fer-
romagnetic Ising model on the honeycomb lattice without an
external field. In this case, we used the simplest isotropic and
homogeneous CTMRG ansatz, with projectors determined ei-
ther from the corner matrices C6 or C3. We observed that the
converged results are generally independent of the scheme and
that C3 computed from the converged corner matrix C6 is the
same as the converged matrix C3 from the C3-based CTMRG
up to machine precision.

Iteration

FIG. 45. Honeycomb lattice: Convergence of the maximal abso-
lute value of the antisymmetrization of the tensor RBC6,B (both RB

and C6,B are normalized by their respective norms). The parameters
are χ = 56 and a = 0.255.

IV. CONCLUSIONS AND OUTLOOK

In this study, we developed the CTMRG algorithms on
triangular, kagome, square-octagon, ruby, SHD, star, and dice
lattices. The procedure to construct the CTMRG loop is rather
general and can be summarized as follows: (i) define all
unique bMPS on the lattice and find how the individual ten-
sors of the bMPS are updated during the absorption of the
bulk tensors into the bMPS; (ii) define the corner matrices
as intersections of different bMPS; (iii) find the updates of
corners from the updates of bMPS local tensors; (iv) em-
ploy the corner tensors to define environments, which allow
finding optimal truncations for the local bMPS tensors. All
together, this forms the self-consistent scheme, which al-
lows us to find the CTM environments on many different
lattices.

We conclude that the procedure is general and can be
extended to the lattices not covered in this study, includ-
ing the Shastry-Sutherland, maple-leaf, trellis, square-kagome
lattice, etc. It can also be extended to anisotropic tensor
networks or the ones with the enlarged unit cells. Another
potential direction is to dualize these algorithms to define
CTMRG for the interaction-round-a-face models on the dual
lattice. The interaction-round-a-face models can also be stud-
ied with the CTMRG methods [14] (see, e.g., Refs. [27–32]
for the corresponding discussion on triangular and hyperbolic
lattices).

Other relevant research directions include the completely
variational formulation of the proposed algorithms [68], its
comparison with VUMPS [69], and the development of
the modified convergence schemes in line with Ref. [62].
Potential practical applications encompass the variational op-
timization of the iPEPS wave function with the proposed
CTMRG approaches as a method to compute correlation func-
tions [33,70], studies of the frustrated lattice models [34,49],
as well as quantum thermal systems [71]. Currently, we are
also investigating possible consistency conditions between
the CTM environment tensors and projectors (to some ex-
tent, in line with Ref. [62]) with the aim of employment of
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(a) (b) (c)

(d)

QR

QR

SVD

FIG. 46. Triangular lattice: (a) Transfer matrix for the nonpositive bulk tensor and the corresponding bMPS, which consists of two different
boundary tensors. (b) The update rule for the boundary tensors, which mimics the steps shown in Fig. 2. The difference is that the factorization
is nonsymmetric and projectors are not isometric. (c) The modified update step for the corner matrix C3 (which is also no longer symmetric).
The projectors PL and PR can be obtained, e.g., from the biorthogonalization of the environments with enlarged C3. (d) The nonsymmetric
factorization step. First, as in the positive case, we define the tensor R. Then, we perform an arbitrary factorization of this tensor into two
rank-3 tensors L and R. We do not perform truncation in this step, which is illustrated with the double-line links for the enlarged not-truncated
factorization index. The tensors L and R are then absorbed into the corner matrix. The new corner matrix has an enlarged bond dimension,
which is truncated back with the projectors P′

L and P′
R, which we also obtain from biorthogonalization. The same projectors can be also used

to truncate the factorization index in L and R back to the bMPS bond dimension.

additional structure appearing in projectors for the computa-
tion of arbitrary two- and three-point long-range correlation
functions.
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APPENDIX A: THE CTMRG ON THE TRIANGULAR
LATTICE WITH NONPOSITIVE BULK TENSORS

By taking an example of triangular lattice, let us discuss
how to generalize the algorithms to the nonpositive bulk ten-
sors, which inevitably appear, e.g., in the iPEPS calculations.
First, according to Fig. 2(c), we see that the positivity of the
bulk tensor guarantees the existence of symmetric factoriza-
tion of the tensor in the left part of the equation in Fig. 2(c).
If the bulk tensor is not positive, then we conclude that the
factorization can be nonsymmetric. This leads us to introduce
the more general nonsymmetric bMPS ansatz, which is shown
in Fig. 46(a).

This new ansatz consists of two different boundary tensors.
The update rule for these tensors is illustrated in Fig. 46(b).
This is a trivial generalization of the update rule from
Fig. 2(c), though we employ the nonsymmetric factorization
instead of symmetric one, and we also replace the isometric

projector P with a more general biorthogonal projectors PL

and PR. The corner matrix C̃3 is defined in the same way as in
Fig. 3(a), but the update also includes biorthogonal projectors,
as we show in Fig. 46(c). Note that the new corner matrix is no
longer symmetric or diagonal. Still, we can find the projectors
from it by applying biorthogonalization of the environments
built from this enlarged matrix C3 (or, alternatively, with some
form of the directional update).

Next, let us discuss the factorization step. We define the
rank-4 tensor R to be factorized, as shown in Fig. 46(d). We
factorize it into two rank-3 tensors L and R, where the factor-
ization is performed without truncation. We employ SVD for
this factorization and absorb the tensors L and R into C3 to
obtain the matrix C̃3, but with the enlarged bond dimensions.
To truncate it back to the original bond dimension, we find the
new biorthogonal projectors P′

L and P′
R. These projectors can

be obtained again from the biorthogonalization, but this time
of the environments built from the matrix C̃3. The projectors
are applied to truncate the matrix C̃3 and also to obtain the
new bMPS tensors from L and R.

We tested the method on random symmetric (but nonpos-
itive) bulk tensors, finding the quickly convergent CTMRG
environments, which also obey the simplest consistency
checks on various tensors of CTM. To define these consis-
tency checks, we used combinations of the matrices C3, onsite
tensors O, and corner tensor T , which can also be general to
the nonpositive case.

Note that the method can be extended to triangular lattices
with partly or fully broken rotational or reflection symmetries.
It is also interesting that all the steps in this nonpositive algo-
rithm have already appeared in various CTMRG algorithms in
the main text.
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(a)

(b)

(c)

FIG. 47. Dependence of the magnetization σ and entanglement
gap � on the inverse temperature β for the q-Potts model on triangu-
lar lattice. The parameters and exact values of the inverse critical
temperature are: (a) isotropic case with J1 = J2 = J3 = 1, q = 4,
χ = 100, and βc ≈ 0.6931; (b) isotropic case with J1 = J2 = J3 =
1, q = 6, χ = 100, and βc ≈ 0.7866 (note that the transition is of
the first order for q > 4); (c) anisotropic case with q = 4, χ = 50,
J1 = 1, J2 = 2, J3 = 3, and βc ≈ 0.3535.

APPENDIX B: ADDITIONAL TESTS
ON THE q-POTTS MODEL

To confirm a high potential and universality of the devel-
oped approach, we also performed a few additional tests of
the method on the models with the larger bond dimension D
of the tensor network. For this purpose, we take the q-Potts
model [72,73], which has the following Hamiltonian:

H = −
∑

〈i j〉r

Jrδsis j , (B1)

where the sum is taken over nearest neighbours 〈i j〉r with
the direction r and si takes values in a set of q-roots of
the identity exp [i2πk/q]. Jr are coefficients for different
directions of bonds r = {1, 2, 3}. Hence, the model can be
anisotropic.

The tensor network for this model is constructed in a
complete analogy with the simplest Ising model (which cor-
responds to q = 2) and has the bond dimension D = q. On
the triangular lattice, the transition point is exactly known for
q > 3 and is defined as a root of the equation [73,74]

x1x2x3 + x1x2 + x2x3 + x1x3 − q = 0, (B2)

where xr = exp [Jrβ] − 1. We perform calculations with q =
4 and q = 6 in the vicinity of the phase transition and show
the results in Fig. 47 (the inverse temperature β on the x axis
is shifted according to the theoretical value of the transition
point βc). The method allows us to estimate the transition
point with the accuracy within the mesh size. The results are
shown for both isotropic and anisotropic cases. Note that for
the simulation of the anisotropic case, we employ the modifi-
cation of the algorithm above with three different bMPS and
corner matrices. All other details of the update are completely
analogous.
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