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Metastable and unstable hydrodynamics in multiphase lattice Boltzmann
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Metastability in liquids is at the foundation of complex phase transformation dynamics such as nucleation
and cavitation. Intermolecular interaction details, beyond the equation of state, and thermal hydrodynamic
fluctuations play a crucial role. However, most numerical approaches suffer from a slow time and space
convergence, thus hindering the convergence to the hydrodynamic limit. This work shows that the Shan-Chen
lattice Boltzmann model has the unique capability of simulating the hydrodynamics of the metastable state. The
structure factor of density fluctuations is theoretically obtained and numerically verified to a high precision,
for all simulated wave vectors, reduced temperatures, and pressures, deep into the metastable region. Such
remarkable agreement between the theory and simulations leverages the exact implementation at the lattice
level of the mechanical equilibrium condition. The static structure factor is found to consistently diverge as the
temperature approaches the critical point or the density approaches the spinodal line at a subcritical temperature.
Theoretically predicted critical exponents are observed in both cases. Finally, the phase separation in the
unstable branch follows the same pattern, i.e., the generation of interfaces with different topology, as observed
in molecular dynamics simulations.
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I. INTRODUCTION

Metastability constitutes one of the basic mechanisms for
cavitation inception and nucleation in general [1,2] which
are of paramount importance in both fundamental science
and critical applications such as sono-luminescence, hydrogen
nucleation on the electrodes of electrolysis cells, flow around
underwater propeller blades, and jet break-up dynamics [3].
In contrast to spinodal decomposition where the initial state
is thermodynamically unstable and phase separation occurs
immediately in response to infinitesimal extensive perturba-
tions [1], nucleation is associated with the transition from a
metastable state to a more stable one which can be far apart
on the phase diagram. To phase-separate, a localized, finite-
amplitude perturbation is required to overcome the energy
barrier of forming a critical-size gas/liquid embryo. While
in the more common heterogeneous nucleation, initial inho-
mogeneities are present due to natural impurities such as gas
pockets and solid particles, in homogeneous nucleation [4]
the dynamics of nucleation is the result of the competition
between thermal fluctuations and the energy barrier which is
the characteristic of metastable states.

Several physical properties come into play influencing nu-
cleation and cavitation, namely, (i) hydrodynamic thermal
fluctuations, (ii) the surface tension between different phases,
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and (iii) the cost of formation of a critical size gas/liquid
embryo able to overcome the nucleation free-energy barrier.
These properties are typically addressed in (i) the stochas-
tic hydrodynamic approach [5], (ii) the thermodynamics of
multiphase interfaces [6], and (iii) classical nucleation theory
(CNT) [1,2]. Computer simulations of nucleation are com-
monly conducted using molecular dynamics (MD), which can
treat a limited number of particles, approaching the hydrody-
namic limit only at very high computational cost. Recently,
homogeneous and heterogeneous nucleation in the presence
of fluctuating hydrodynamics has been considered in the con-
text of finite-difference methods yielding interesting results
[7,8] that showcased the technical advantages of mesoscopic
models over MD approaches [8]. However, the characteristics
of metastability, i.e., a local equilibrium that can withstand
infinitesimal perturbation, can be addressed only near the crit-
ical point while bringing into the picture slow-relaxing modes
for small wave vectors, k ∼ 0 [7,8], i.e., a slow hydrodynamic
response to thermal fluctuations. The model has been shown
to be able to describe water under large tension [9]; however, a
study of the fluctuations across different length scales in such
a metastable regime is still missing.

Other mesoscopic approaches could be considered for
the modeling of a metastable hydrodynamic state, such as
dissipative particle dynamics (DPD) or density functional
theory (DFT). However, while enforcing momentum conser-
vation, DPD implements random forces in a very specific
way hindering its connection to the fluctuating hydrody-
namics stress tensor [5]. Finally, DFT has been extended
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to the description of dynamic phenomena close to equilib-
rium, i.e., diffusion and the recovery of Euler equation [10],
while the direction of stochastic hydrodynamics is yet to be
explored.

The mesoscopic lattice Boltzmann method (LBM) has
achieved significant success in hydrodynamic simulations
[11,12]. In this paper we demonstrate the ability of Shan-Chen
(SC) lattice Boltzmann model (LBM) [13,14] to correctly
capture metastable and unstable hydrodynamics through a
coherent inclusion of the stochastic stress tensor [5]. In the
unstable region of the phase diagram, immediate phase sep-
aration is observed for very small amplitude perturbations,
which follows the same pattern observed in molecular dynam-
ics simulations [15], i.e., reaching in the final stage interfaces
with different topology as a function of the initial density. In
the metastable region phase separation occurs on a timescale
that diverges as the noise amplitude goes to zero. The system
response to thermal fluctuations is studied by means of a
stochastic hydrodynamics approach [5,16,17]. The structure
factor (or form factor), S(k), which converges to the isother-
mal compressibility in the long-wavelength limit, is obtained
theoretically and verified numerically to a high precision: due
to the exact implementation of the mechanical equilibrium
condition on the lattice [18,19], an exact expression for S(k)
is obtained (see Appendix B 2). Two different scaling regimes
of S(k) are probed: (i) w.r.t. the temperature difference with
critical point along the equilibrium binodal curve, and (ii)
w.r.t. pressure difference with the spinodal values along an
isotherm in the metastable region. A very good convergence,
driven by the hydrodynamic response to thermal fluctuations,
is observed over four to five decades in both reduced temper-
ature and pressure. In both cases the compressibility is found
to diverge with exponent values in agreement with theoretical
predictions [1]. The paper is organized as follows: In Sec. II
we introduce the Shan-Chen multiphase model equation of
state in nondimensional form and derive the scaling properties
of the isothermal compressibility approaching the critical and
spinodal points; further, after the introduction of hydrody-
namic fluctuations, we derive the exact form of the static
density structure factor starting from the expression of the
lattice pressure tensor; next in. Sec. III we present the simula-
tions results for the scaling of the isothermal compressibility
near the critical and spinodal points for all accessible wave-
vectors as well as the sequence of final interfaces obtained
in the unstable region from a homogeneous initial condition;
discussions and conclusions follow in Sec. IV. All the numer-
ical results in this paper can be independently reproduced by
means of a GPU/CPU implementation, which can be found
on the GitHub repository of the “idea.deploy” framework
[20–27].

II. MODEL PROPERTIES

A. Scaling regimes

LBM originated from a lattice-gas fluid model [11,12] and
later reformulated as a special velocity-space discretization
of the Boltzmann equation. The single-particle distribution
function, f (x, ξ, t ), is simplified to its values on a small
set of discrete velocities while preserving the dynamics of

its moments, and hence the hydrodynamics [28,29]. The SC
non-ideal-gas model incorporates the interparticle interaction
through a mean-field Vlasov force

F(x) = Gψ (x)
NF∑

a=1

w(|ea|2)ψ (x + ea)ea, (1)

where G > 0 is an interaction strength, {ea : a = 1, . . . , NF }
the vectors pointing from x to its interacting neighbors on
the lattice, w(|ea|2) a set of weights, and ψ (x) the so-called
pseudo-potential encapsulating the details of interaction over
fixed distances. Together with the symmetry of the interacting
set, the carefully chosen weights, w(|ea|2), ensure macro-
scopic isotropy [19,30,31].

The interaction alters the equation of state (EoS) by adding
a non-ideal-gas contribution to the pressure, yielding the fol-
lowing non-ideal-gas EoS:

p(n, T ) = nkBT − G

2
ψ2(n), (2)

where n and T are respectively the number density and ab-
solute temperature. Although the original model [13] was
defined for an isothermal underlying LB model, the above EoS
can be easily verified in thermal models.

We first show that the iso-thermal compressibility, κT ≡
n−1∂n/∂ p, obtained from Eq. (2) diverges with the correct
exponents [1] as the system approaches from a stable con-
figuration to the critical point (T/Tc → 1), or the spinodal
curve (n → ns). In the present study, ψ is set to exp(−1/n)
[14]. Introducing two scaling constants, a and b, such that
ψ = a exp(−b/n), the EoS becomes

p = nkBT − Ga2

2
exp

(
−2b

n

)
. (3)

As a2 also regulates the interaction strength, G is omitted
hereinafter to remove the redundancy. Letting the critical den-
sity, temperature, and pressure be denoted by nc, Tc and pc

respectively and using the conditions ∂ p/∂n = ∂2 p/∂n2 = 0
at the critical point, we can solve a and b in terms of nc and Tc

as

a = e
√

kBTcnc and b = nc. (4)

ψ and the EoS are then expressed in critical quantities as

ψ (n) =
√

kBTcnc exp
(

1 − nc

n

)
, (5)

p = nkBT − nckBTc

2
exp

(
2 − 2nc

n

)
. (6)

The critical pressure is equal to pc ≡ p(nc, Tc) = nckBTc/2.
In terms of the reduced quantities: n̂ = n/nc, p̂ = p/pc, and
T̂ = T/Tc, the EoS becomes

p̂ = 2n̂T̂ − exp (2 − 2/n̂). (7)

It is useful also to redefine the pseduo-potential in the nondi-
mensional form as ψ (n) = exp(1 − n̂−1) so that the EoS can
be rewritten in the form p̂ = 2n̂T̂ − ψ2. This convention is
adopted for the equations below. The rescaled EoS, known as
the general EoS, has identical shape as the unscaled one but a
critical point at n̂ = p̂ = T̂ = 1. The phase diagram is shown
in Fig. 1.
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FIG. 1. Lower panel: Isotherms at the critical temperature
(T̂ = 1) and subcritical temperature of T̂ = 0.8. Dashed blue and
red (darker and lighter shades) lines are respectively the binodal
and spinodal curves, and the blue- and red-shaded areas (darker and
lighter shades) the metastable and unstable regions. The five points
on the unstable part of the isotherm (red solid line) correspond to
the initial densities which phase separate immediately with final
interface topologies of droplet (d), droplet-cylinder (dc), flat (f),
bubble-cylinder (bc), and bubble (b), all shown in the upper panel.

By taking the inverse of the derivative ∂/∂ n̂ of Eq. (7), we
have nondimensionalized compressibility

κ̂T = n̂

2

[
n̂2T̂ − exp

(
2 − 2

n̂

)]−1

. (8)

Since n̂ ∼= 1 near critical point, κ̂T ∼ (T̂ − 1)−1 as T̂ → 1.
Now consider a point, ( p̂s, n̂s), on the spinodal curve. Using
the fact that ∂ p̂/∂ n̂ = 0, the leading-order expansion in the
vicinity is

p̂ − p̂s
∼= 1

2

∂2 p̂

∂ n̂2

∣∣∣∣
n̂=n̂s,T̂

(n̂ − n̂s)2. (9)

Denoting A = ∂2 p̂/∂ n̂2|n̂=n̂s,T̂ for brevity, we have

κ̂T
∼= 1

An̂s
(n̂ − n̂s)−1 ∼= 1√

2An̂s

( p̂ − p̂s)−1/2. (10)

Equations (8) and (10) yield the critical and spinodal scaling
of κ̂T , respectively, which will be shown below to match the
correlation function of the density fluctuations in the long-
wavelength limit.

B. Fluctuating hydrodynamics and structure function

We now discuss the phase separation as a response to
thermal fluctuations. In the Landau hydrodynamic fluctuation
theory [5], thermal fluctuations are included into hydrody-
namics by the “outside” [5] Langevin-type noise stress, R,

∂t n + ∇ · (nu) = 0, (11a)

∂t (nu) + ∇ · (nuu) = −∇ · P + ∇ · σ + ∇ · R, (11b)

σ = μs

[
∇u + (∇u)T − 2

D
I∇ · u

]
+ μbI∇ · u. (11c)

where u is the fluid velocity, σ is the Newtonian deviatoric
stress, P the pressure tensor containing both the hydrostatic
term and the one due to intermolecular interaction which
vanishes in the ideal-gas limit, μs, μb are the shear/bulk
viscosity, respectively, and D the space dimensionality. R is a
spatially and temporally uncorrelated Gaussian random stress
with variance proportional to the hydrodynamic fluctuations
energy kBϑ where kB � 1.380649 × 10−23 (J/K) (for more
details see Appendix B 1). We are working in the isothermal
framework for which the background temperature is constant
and fluctuations enter only through the stress tensor [16,17].
It would be very interesting to extend the present approach
by including the heat current as already proposed in the
general theory. A framework for including thermal fluctuation
in LBM was developed by adding noise terms to the LBM
equation [16,17]

fi(x + ξi, t + 1) − fi(x, t ) = �i( fi ) + Fi + ηi, (12)

where � is the usual Bhatnagar-Gross-Krook (BGK) collision
term [11,12] giving rise to the Navier-Stokes hydrodynamics.
ηi is the Langevin-type noise with a covariance matrix diago-
nal in the moment space assuring the local conservation of the
hydrodynamic moments [16,17]. Fi is the forcing term [32]
used to implement Eq. (1). We now turn our attention to the
structure function S̄(k) = 〈|δn̄(k)|2〉, with the angle brackets
〈· · · 〉 indicating the steady state average. This is the Fourier
transform of the density correlation function connected to the
direct pair correlation function at the foundation of Ornstein-
Zernike theory [16,17]. The structure factor can be directly
measured in experiments and compared with simulations data
[33], hence a relevant quantity proportional to the isothermal
compressibility κT in the long-wavelength limit, S̄(0) ∼ κT

[34]. This allows us to assess the robustness of the simula-
tions by studying the two scaling limits discussed above, i.e.,
in temperature towards the critical and pressure towards the
spinodal points. To calculate S̄(k) we start from the Fourier
transform of the Navier-Stokes equations [16,17] linearized
around the quiescent homogeneous state 〈n〉 = n0 and u = δu,

∂tδn̄ = ın0kδū||,

∂tδū|| = ık

n0
(δP̄|| − R̂||) − ν||k2δū||, (13)

where u|| = u · k̂, ν|| = νb + 2(1 − 1/D)νs is the longitudi-
nal viscosity and R̄|| = R̄ : k̂k̂. The key quantity is δP̄|| =
δP̄ : k̂k̂ = c̄2

s (k)δn̄, defining the k-dependent speed of sound
[16,17] c̄2

s (k). For the SC model there exist a lattice ex-
pression for the pressure tensor which enjoys an important
property for flat interfaces: The normal component is constant
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to machine precision throughout the interface thus realizing
the mechanical equilibrium condition P̂N = P̂0 on the lattice
[19,30] (see Appendix B 2). One can notice that the variation
of the longitudinal component of the pressure tensor is actu-
ally proportional to P̂N given that k̂ is in the direction of the
density gradient, hence one can leverage the one-dimensional
expression

P̂N(x) = 2n̂(x)T̂ − 1
2ψ (x)[ψ (x + 1) + ψ (x − 1)]. (14)

As detailed in the Appendix B 2 one can take the variation
of (B10) as δP̂N = dP̂N/dn̂|n̂0δn̂, take its Taylor expansion in
real space and finally its Fourier transform. By virtue of the
definition of P̂N it is possible to sum the series in k and obtain
for the scale-dependent speed of sound

ĉ2
s (k) = ĉ2

s,0 − ψ0ψ
′
0[cos (k) − 1], (15)

where ĉ2
s,0 = d p̂/dn̂ = 2T̂ − 2ψ0ψ

′
0 (see Eq. (6)). This result

simply follows from the fact that Eq. (B10) is closely related
to the lattice Laplacian [35,36]. It is possible to combine the
two Eqs. (13) and obtain a second-order equation in time for
δn̂, which can be again Fourier transformed in the frequency
domain and yield an algebraic expression for δn̂(k, ω). Hence,
one defines the nondimensional dynamic structure factor as
Ŝ(k�x, ω�t ) = 〈|δn̂(k�x, ω�t )|2〉, where �x and �t are
some characteristic space and time lengths. The frequency
dependence can be integrated out by considering a complex
contour integral around the poles yielding the nondimension-
alized structure factor Ŝ(k�x) = 2n̂0ϑ̂/ncĉ2

s (k�x),

Ŝ(k�x) = 2n̂0ϑ̂

nc
{
ĉ2

s,0 − ψ0ψ
′
0[cos (k�x) − 1]

} , (16)

where ψ0 = ψ (n0), ψ ′ = dψ/dn and ϑ̂ = ϑ/Tc. We remark
that this expression is an exact identity valid for all values of
k and T̂ in contrast to the previous approaches [7,8,16,17],
which are limited to O(k2) and reliable only near the critical
point. Finally we remark on the similarity of Eq. (16) to the
momentum space propagator of the lattice Gaussian model
[36] (see Appendix B 2 for details).

III. RESULTS

To include hydrodynamic fluctuations in simulation, we
extended [16,17] to three dimensions (3D). Key to the im-
plementation is a proper choice of the covariance matrix for
the noise populations ηi. As observed in [17], one needs to
consider only a diagonal correlation matrix in the space of
the noise hydrodynamic moments Na which are obtained by
some specific linear combinations of the noise populations,
i.e., Na = ∑

i maiηi, hence �ab = 〈NaNb〉 ∝ kBϑδab with a >

3. The covariance of the first four moments, a = 0, 1, 2, 3, are
set to zero to ensure mass and momentum conservation.

We performed two kinds of simulations in periodic 3D
domains of linear size L with homogeneous density n0 as
initial condition: (i) n0 is chosen along the isotherm T̂ =
0.8 in the unstable region with the fluctuations energy set
to kBϑ = 10−10 (lbu) [37], and (ii) n0 belongs to either the
liquid or the gas phases along (a) the isotherm T̂ = 0.8 in
the metastable region approaching the spinodal points or (b)
along the binodal approaching the critical point while keeping

FIG. 2. Density structure factor S(k) as a function of k at varying
pressure along the T̂ = 0.8 isotherm (top row) and at varying tem-
perature along the binodal (bottom row). The left and right columns
show the cases starting from the gas and liquid phase respectively.
The color scale, from green to orange (lighter to darker shade),
indicates the distance in pressure from the spinodal line or in tem-
perature from the critical point, with the values reported near the
corresponding curve. In dashed lines we report Eq. (16) truncated
at O(k2).

kBϑ = 10−13 (lbu) in order to avoid nucleation. In the upper
panels of Fig. 1 we report the final density configurations
in the unstable region: Our simulations display qualitative
the same sequence of interface shapes as in [38]. Indeed,
the MD simulations and the present LBM approach share
the main symmetry feature of exact mass conservation. This
results can be used to estimate the curvature dependence of
the surface tension [38]: The connection with the recently
proposed SC lattice Boltzmann approach for the estimation
of the Tolman length [39,40] will be the subject of a future
work.

Shown in Figs. 2 and 3 are the numerically measured
structure factor together with the values of Eq. (16). We note
that the finite simulation domains of L = 128 and L = 512
impose an artificial minimum wave number of approximately
10−3. A number of interesting aspects are to be seen. First,
in contrast to previous results [17], numerical measurements
are in excellent agreement with the exact expression across
several decades of wave length and distance from the critical
and spinodal line. For comparison, Eq. (16) truncated to O(k2)
is also shown as the thin dashed lines: the agreement worsens
for k � π/2. Second, the scaling at both π̂s = P̂/P̂s → 1 and
T̂ → 1 in Figs. 2 and 3 indicate the diverging trends of κT

as k → 0, since S(0) ∼ κT [34]. Third, as can be read off
the graphs in Fig. 3, the structure factor exhibits the correct
critical exponents as the system approaches either the spinodal
curve or the critical point. Finally, by suitably choosing the
forcing weights (see Appendix A), it is possible to obtain the
same results in one and two dimensions thus facilitating
the validation of the theoretical analysis.
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FIG. 3. S(k) as functions of the relative pressure from the spin-
odal line |1 − π̂s| (top), and relative distance from the critical point
1 − T̂ (bottom). Solid lines indicate the analytical prediction, while
the dashed lines the truncation to O(k2). The color scale goes from
k�x = 0 in red to k�x = π in blue (lighter to darker shade). Upon
approaching the spinodal line or the critical point the large scale
(k → 0 in dot-dashed red) converges to a power-law behavior (in
dashed black).

IV. DISCUSSION AND CONCLUSIONS

All mesoscopic approaches based on a square-gradient free
energy [7,8,16] share the same qualitative behavior of S(k)
as shown in Fig. 2, i.e., a monotonous decreasing behavior
in k which, however, differs from that of liquids at low tem-
peratures [41,42]. The multi-range extension of the SC model
[19,31,43,44] may provide a solution: For larger stencils (see
Appendix B 3) the denominator of S(k) acquires higher-order
contributions, i.e., cos(nk), providing a Fourier basis to ap-
proximate realistic substances. This approach could allow
one to continuously change the scale, from the mesoscopic
towards the molecular one.

In summary, we studied in this work the metastable and un-
stable characteristics of the stochastic pseudo-potential lattice
Boltzmann model in response to thermal fluctuation. Using a
previously obtained pressure tensor, the structure factor is the-
oretically obtained and numerically verified to high precision.
The metastable state is numerically confirmed as stable to
small perturbations. Theoretically and numerically, the long-
wave-length limit of the structure factor corresponding to the
isothermal compressibility is found to diverge with the correct
exponents as the system approaches to the spinodal curve or
critical point. With the metastable and unstable characteris-
tics quantitatively obtained, the present study paved the way
for the pseudo-potential LB model to be used in modeling
nucleation taking into hydrodynamic influences as well as a
valuable tool in the study of the effects of thermal fluctuations
in turbulence [45–47].

All simulations have been run on an architecture-
independent GPU/CPU implementation which can be found
on the GitHub repository of the “idea.deploy” framework
[20–27].
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APPENDIX A: SHAN-CHEN LATTICE
BOLTZMANN MODEL

In this Appendix we review the fundamental aspects of
the lattice Boltzmann model (LBM) in its usual notation and
provide a link to the rescaled notation used in the main text.
All LBM equations should be understood as expressed in the
so-called lattice units [11]. The LBM equation for a system
with a local force and stochastic fluctuations can be written as
[11,12]

fi(x + ξi, t + 1) − fi(x, t )

= �
(BGK)
i (x, t ) + Fi(x, t ) + ηi(x, t ). (A1)

The collision operator �
(BGK)
i can be written as

�
(BGK)
i (x, t ) = − 1

τ

[
fi(x, t ) − f (eq)

i (x, t )
]
, (A2)

where τ is the relaxation time and the equilibrium populations
f (eq)
i (x, t ) are defined from a second-order approximation of

the Maxwell-Boltzmann distribution function

f (eq)
i (x, t ) = win

[
1 + ξα

i u(eq)
α

c2
s

+
(
ξα

i u(eq)
α

)2

2c4
s

− u(eq)
α u(eq)

α

2c2
s

]
,

(A3)

where c2
s = 1/3 is the square of the sound speed related to

the D3Q19 stencil used for the simulations. The equilibrium
velocity uα

(eq) is suitably defined to take into account the force
term Fα as

uα
(eq)(x, t ) = 1

n(x, t )

Np−1∑
i=0

ξα
i fi(x, t ) + 1

2n(x, t )
Fα (x, t ),

(A4)
which needs to be paired with the population forcing term [32]

Fi =
(

1 − 1

2τ

)
wi

[
1

c2
s

ξα
i + 1

c4
s

(
ξα

i ξ
β
i − c2

s δ
αβ

)
u(eq)

β

]
Fα,

(A5)
allowing the model to consistently recover all relevant
thermodynamic properties [11,12,19]. The density gradients
implementing phase separation are triggered by the Shan-
Chen (SC) force term [13,14]

Fμ(x, t ) = −Gc2
s ψ (x, t )

18∑
a=1

W (|ea|2)ψ (x + ea, t )eμ
a , (A6)

with W (1) = 1/6 and W (2) = 1/12 and ea = ξa for a =
1, . . . , 18. For multiphase and multicomponent systems the
SC model features also a lattice pressure tensor (LPT)
[18,19,30,48] that for the three-dimensional model in use
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reads

Pμν (x, t ) = n(x, t )c2
s δ

μν + Gc2
s

2
ψ (x, t )

×
18∑

a=1

W (|ea|2)ψ (x + ea, t )eμ
a eν

a. (A7)

As observed in the main text, given that the structure factor
S(k) depends only on the normal component of the pres-
sure tensor, simulations in one and two dimensions yield
the same results when the weights are chosen to be W (1) =
1/2 (d = 1) and W (1) = 1/3, W (2) = 1/12 (d = 2), respec-
tively. Finally, the random variables {ηi} are obtained as linear
combinations of Gaussian random variables implicitly defined
in moment space as Na = ∑

i maiηi, i.e., ηi = ∑
a(m−1)iaNa.

The details for mai are provided in Appendix D.
The link with the notation used in the main text is the fol-

lowing: (i) redefine the coupling constant as −Gc2
s → G > 0,

(ii) substitute the ideal term as nc2
s → n, then (iii) normalize

the pressure by G−1 = kBT in order to get Eq. (6).

APPENDIX B: HYDRODYNAMIC FLUCTUATIONS AND
MULTIPHASE SC-LBM STRUCTURE FUNCTION

1. General formulation

In this section we provide some details about the frame-
work of fluctuating hydrodynamics. More details can be found
in [16,17]. The variance for the random stress tensor Rαβ is
given in terms of the hydrodynamic fluctuations energy kBϑ

by

〈Rαβ (x, t )Rμν (x′, t ′)〉

= 2n0kBϑ

[
νs(δ

αμδβν + δανδβμ) +
(

νb − 2

d
νs

)
δαβδμν

]

× δ(3)(x − x′)δ(t − t ′), (B1)

where νs and νb are the shear and bulk kinematic viscosities,
respectively [49,50]. In the present case of single relaxation
time LBM, Eq. (B1) further simplifies given that the two vis-
cosities are related by νb = 2νs/d . The Fourier transform of
the linearized Navier-Stokes equations for u(x, t ) = δu(x, t )
and n(x, t ) = n0 + δn(x, t ), read

∂tδn̄(k, t ) − ın0kαδūα (k, t ) = 0, (B2)

∂tδūα (k, t ) = ıkβ

n0
[δP̄αβ (k, t ) − R̄αβ (k, t )]

− νs[k
αkβδūβ (k, t ) + |k|2δû(k, t )α]

−
(

νb − 2

d
νs

)
kαkγ δūγ (k, t ). (B3)

The normalized wave vector k̂α = kα/|k| can be used to
project vectors and tensors along the direction parallel to k̂α

(indicated by the || subscript) and the orthogonal one (indi-
cated by ⊥). For a generic vector Aμ or rank-two symmetric
tensor T αβ one can leverage the projector along the orthogonal
direction to k̂α , i.e., qαβ = δαβ − k̂α k̂β , and write

A|| = Aμk̂μ, Aμ

⊥ = Aαqαμ,

T|| = k̂α k̂βT αβ, T α
⊥ = T βγ k̂βqα

γ . (B4)

We notice that the continuity equation Eq. (B2) is already
projected onto the longitudinal velocity while for Eq. (B3) the
same projection reads

∂tδūα
|| (k, t ) = ık

n0
[δP̄||(k, t ) − R̄||(k, t )] − ν||k2δū||(k, t )

(B5)

with ν|| = νb + 2(1 − 1/d )νs. Now, we focus on the longitu-
dinal projection of the variation of the Fourier-transformed
pressure tensor δP̄. We define the scale-dependent speed of
sound c̄2

s through the relation δP̄||(k, t ) = δP̄μν (k, t )k̂μk̂ν =
c̄2

s (k)δn̄(k, t ). One can make use of Eq. (B2) and solve for the
longitudinal velocity as δū||(k, t ) = −ı∂tδn̄(k, t )/n0k, which
can be plugged into Eq. (B5), thus yielding a second-order
equation in time for δn̂,[

∂2
t + ν||k2∂t + k2c̄2

s (k)
]
δn̄(k, t ) = −k2R̄||(k, t ), (B6)

which, after a Fourier transform in the time domain, can be
used to express δn̄(ω, k) as

δn̄(k, ω) = k2R̄||(k, ω)

ω2 − k2c̄2
s (k) + ıν||k2ω

, (B7)

thus yielding the dynamic structure factor as S(k, ω) =
〈|δn̂(k, ω)|2〉. Considering that 〈|R̄||(k, t )|2〉 = 2n0kBϑν||, one
can perform a contour integration over complex values of ω

and obtain the general expression for the static structure factor

S̄(k) = n0kBϑ

c̄2
s (k)

. (B8)

The specific expression of c̄2
s (k) depends on the underlying

model used for phase separation.

2. Multiphase Shan-Chen model

We begin by rewriting the lattice pressure tensor [19,30,31]

Pμν (x, t ) = n(x, t )kBT δμν − 1

2
ψ (x, t )

×
18∑

i=0

W (|ξi|2)ψ (x + ξi, t )ξμ
i ξν

i . (B9)

When taking the spatial Fourier transform, the unit vector k̂μ

lies along the direction of the density gradient ∂μδn, so that
when we consider the variation of the longitudinal projection
of the pressure tensor, i.e., δP̂|| = δP̂μν k̂μk̂ν , one is actually
selecting the normal component of the pressure tensor PN

with respect to the gradient of the local density fluctuations.
Without loss of generality, one can assume k̂ = x̂, so that
PN = Pxx which from Eq. (B9) follows as

PN(x) = n(x)kBT − 1
4ψ (x)[ψ (x + 1) + ψ (x − 1)]. (B10)

As shown in Fig. 4, the expression above enjoys the funda-
mental property of yielding a constant value, up to machine
precision, when evaluated across a flat interface [19,31], i.e.,
PN = P0. This represents an exact implementation on the
discrete lattice of the mechanic equilibrium condition [51],
i.e., any normal pressure gradient, even through the interface,
would cause the latter to move. It is possible to show that
the finite difference [PN(x + 1) − PN(x − 1)]/2 = 0 coincides
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FIG. 4. (a) Flat interface bulk pressure profile Pb = n(x)T −
ψ2(x)/2, the bulk pressure value P0 is consistently obtained in both
phases away from the interface. (b) Lattice pressure tensor normal
component, displaying fluctuations of the order of 10−13, i.e., con-
stant to machine precision. Results are expressed in lattice units [11].

with a linear combination of the forced lattice Boltzmann
equations at stationarity [52]. We can equivalently express
Eq. (B10) in terms of its Taylor expansion as

PN(x) =
[

n(x)kBT − 1

2
ψ2(x)

]
− 1

2
ψ (x)

+∞∑
n=1

1

(2n)!

d2n

dx2n
ψ (x),

of which we can take the variation with respect to the density
fluctuations as

δPN(x) = [kBT − ψ0ψ
′
0]δn(x) − 1

2
ψ0ψ

′
0

+∞∑
n=1

1

(2n)!

d2n

dx2n
δn(x).

Finally, by taking the Fourier transform of the equation, and
defining c̄2

s,0 = kBT − ψ0ψ
′
0, we obtain

δP̄N(k) =
[

c̄2
s,0 − 1

2
ψ0ψ

′
0

+∞∑
n=1

(−)n

(2n)!
k2n

]
δn̄(k). (B11)

Now, we wish to compute the adimensional form of this ex-
pression. In this respect, we normalize the pressure variation
by the critical pressure Pc = nckBTc/2 and multiply k by the
lattice spacing �x thus yielding

δP̂N(k�x) =
[

2c̄2
s,0

kBTc
− 1

kBTc
ψ0ψ

′
0

+∞∑
n=1

(−)n

(2n)!
(k�x)2n

]
δn̂(k).

(B12)
For the pseudo-potential we are considering ψ = exp(−1/n)
one has that kBTc = e−2. Hence, we redefine eψ → ψ so that

we write

δP̂N(k�x) =
[

ĉ2
s,0 − ψ0ψ

′
0

+∞∑
n=1

(−)n

(2n)!
(k�x)2n

]
δn̂(k) (B13)

with ĉ2
s,0 = 2T̂ − 2ψ0ψ

′
0. We notice that the series can be

summed finally yielding the exact expression

ĉ2
s (k�x) = ĉ2

s,0 − ψ0ψ
′
0[cos (k�x) − 1]. (B14)

We can relate the above expression to its dimensionalized
form as c̄2

s = kBTcĉ2
s /2, and notice that in order to recast

Eq. (B8) in nondimensional form one can normalize it by n2
c ,

hence one gets

Ŝ(k�x) = 1

n2
c

2n0kBϑ

kBTcĉ2
s (k�x)

= 2n̂0ϑ̂

ncĉ2
s (k�x)

(B15)

from which one can compute the full expression for the SC
multiphase model as

Ŝ(k�x) = 2n̂0ϑ̂/nc
{
ĉ2

s,0 − ψ0ψ
′
0[cos (k�x) − 1]

}
. (B16)

In [16] a free-energy model was adopted and the results were
later extended to the Shan-Chen model in [17] where c̄2

s (k)
was approximated up to O(k2). A mismatch (�15%) between
the numerical values of the structure factor S(k) and its the-
oretical expression were reported in [17]. The latter may be
due to (i) the low approximation order and (ii) the use of an
approximate expression for the pressure tensor derived from
the Taylor expansion of the force in Eq. (A6) rather than the
lattice version Eq. (A7).

As discussed in the main text, it is possible to rearrange the
terms and obtain a direct mapping onto the functional form of
the momentum-space propagator of the Gaussian Ising model
[36]. For the expression in lattice units [11] one obtains

G0(k) = S(k)

n0kBϑ

(
c2

s + 1

2
ψ0ψ

′
0

)
= 1

1 − 2β cos (k)
, (B17)

with the inverse temperature defined as

2β = ψ0ψ
′
0/2

T + ψ0ψ
′
0/2

= 1

1 + 2/(ψ0ψ
′
0)

> 0. (B18)

3. Multibelt extension

The extension of the Shen-Chen interaction potential to
stencils including points farther away than those considered
in Eq. (A6) has been thoroughly analyzed in a series of works
[19,29,31,44,53–55]. The main feature is that of the introduc-
tion of new vectors subgroups related to new forcing stencil
weights W which in turn can be used to implement higher
order isotropy conditions or to tune physical properties such as
surface tension independently. Given that the structure factor
S(k) entirely depends on the form of the normal component of
the pressure tensor Eq. (B10), one can use the expression of
the 12th-order isotropic stencil [Eqs. (D4) and (D5) in [19]]
and find the normalized structure factor to be

S̄(k�x) = S(k�x)

kBϑ
c2

s = 1

1 + 2Gψ0ψ
′
0

[∑4
n=0 cn cos (nk�x)

] ,

(B19)
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where the coefficients cn are defined, following the notation
for the pressure tensor coefficients in [19], as

c0 = a(N )
[−1,0,1] + a(N )

[−2,0,2] + a(N )
[−3,0,3] + a(N )

[−4,0,4]

c1 = a(N )
[−1,0,1] + b(N )

[1,1] + b(N )
[1,2] + b(N )

[1,3]

c2 = a(N )
[−2,0,2] + b(N )

[1,2] + b(N )
[2,2]

c3 = a(N )
[−3,0,3] + b(N )

[1,3]

c4 = a(N )
[−4,0,4]. (B20)

One can prove that c0 − c1 + c2 − c3 + c4 = 0, hence the
large-k limit of S̄(k) is unity as expected:

S̄(k�x)|k�x=π = 1

1 + 2Gψ0ψ
′
0[c0 − c1 + c2 − c3 + c4]

= 1.

(B21)
In order to obtain S̄(k) with real substances features one can
impose the value of S̄(0) < 1 as

S̄(k�x)|k=0 = 1

1 + 2Gψ0ψ
′
0[c0 + c1 + c2 + c3 + c4]

< 1,

(B22)
and the derivative at k = 0 to be positive,[

dS̄(k�x)

dk

]
k�0

∝ 2Gψ0ψ
′
0(c1 + 4c2 + 9c3 + 16c4)k > 0.

(B23)

These conditions need to be set with a specific choice of the
pseudo-potential, i.e., of an equation of state allowing one to
satisfy both Eqs (B22) and (B23). This can be obtained with
the Carnahan-Starling equation of state [56]

p = nRT

[
1 + bn/4 + (bn/4)2 − (bn/4)3

(1 − bn/4)3

]
− an2, (B24)

where one can fix the parameters in terms of the critical
parameters [57]

a � 1.38 286 523 464 159RTc

nc
,

b � 0.521 775 536 769 816

nc
, (B25)

and we select the critical parameters as nc = log(2) and Pc �
0.358 956 205 778 117RTcnc with Pc = nc(1 − 1/2 log 2)/3,
thus matching the values that are obtained for the choice ψ =
1 − exp(−n). It is possible to choose the parameter values
(see Table I) for the stencil such that the conditions (B22)
and (B23) are satisfied in a reasonably large temperature
range. The results reported in Fig. 5 display the characteristic
features, oscillations and their amplitude as a function of
temperature, observed in both real and ideal systems [41,58].

APPENDIX C: ISOTHERMAL ASSUMPTION
AND HEAT DISSIPATION

In order to assess the validity of the isothermal assumption
in the present treatment, it is interesting to compute the energy

TABLE I. Weights for the stencil yielding the oscillatory behav-
ior of the structure factor using the Carnahan-Starling equation of
state [56] reported in Fig. 5.

W (1) −52 397 848 003/162 108 928 800
W (2) 2 269 960 703/10 131 808 050
W (4) 107 580 263/890 708 400
W (5) −7 645 065 671/64 843 571 520
W (8) 285 804 161/4 156 639 200
W (9) −1 098 810 131/162 108 928 800
W (10) 57 890 947/1 621 089 288
W (13) −378 977 623/108 072 619 200
W (16) 109 121 669/81 054 464 400
W (17) −298 631 969/162 108 928 800

provided by the stress tensor and dissipated by the system. We
can write the stress tensor and the pressure tensor as

σαβ (x, t ) = c2
s

(
τ − 1

2

)
n0[∂αδuβ (x, t ) + ∂βδuα (x, t )]

+ Rαβ (x, t ),

Pαβ = c2
s [n0 + δn(x, t )]δαβ + δPαβ

I (x, t ). (C1)

The work per unit time done by the fluctuations can be written
as

w = W

�
�

〈∫
dDx

[−c2
s [n0 + δn(x)]δαβ − δPαβ

I (x)

+ σαβ (x)
]
∂αδuβ (x)

〉
, (C2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kΔx

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

S
(k

Δ
x
)c

2 s
/k

B
ϑ

T̂

T̂ = 0.84

T̂ = 0.82

T̂ = 0.8

T̂ = 0.77

FIG. 5. Normalized static density structure function S(k) for the
Carnahan-Starling equation of state implemented with the Shan-
Chen multiphase approach. The forcing stencil has been tuned in
such a way that at low temperature S(k) displays similar features
to that of realistic fluids: (1) S̄(0) < 1, (2) dS̄/dk|k=0 > 0, and (3)
oscillations around 1 as the limit k → π is approached. The peak of
the decreases as the temperature increases as indicated by the arrow.
This procedure can be understood as the result of the coarse graining
of the molecular properties of a liquid at a given scale. Results are
expressed in lattice units [11].

045304-8



METASTABLE AND UNSTABLE HYDRODYNAMICS IN … PHYSICAL REVIEW E 109, 045304 (2024)

TABLE II. The set of polynomials mai used for the projection onto moment space, obtained from the Gram-Schmidt procedure applied
onto a set of Hermite polynomials, the respective weighted norm Mai, and the stencil weights wi and the associated stencil vector ξi.

(a, i) mai Ma wi ξi

0 1 1 1/3 (0, 0, 0)
1 ξ x

i 1/3 1/18 (1, 0, 0)
2 ξ

y
i 1/3 1/18 (0, 1, 0)

3 ξ z
i 1/3 1/18 (−1, 0, 0)

4
(
ξ x

i

)2 − 1
3 2/9 1/18 (0,−1, 0)

5 ξ x
i ξ

y
i 1/9 1/18 (0, 0, 1)

6 ξ x
i ξ z

i 1/9 1/18 (0, 0, −1)

7
(
ξ

y
i

)2 − 1
3 2/9 1/36 (1, 1, 0)

8 ξ
y
i ξ z

i 1/9 1/36 (−1, 1, 0)

9
(
ξ z

i

)2 − 1
3 2/9 1/36 (−1, −1, 0)

10 ξ
y
i

((
ξ x

i

)2 − 1
3

)
2/27 1/36 (1,−1, 0)

11 ξ z
i

((
ξ x

i

)2 − 1
3

)
2/27 1/36 (1, 0, 1)

12 ξ x
i

((
ξ

y
i

)2 − 1
3

)
2/27 1/36 (−1, 0, 1)

13 1
2 ξ x

i

((
ξ

y
i

)2 + 2
(
ξ z

i

)2 − 1
)

1/18 1/36 (−1, 0, −1)

14 1
2 ξ z

i

((
ξ x

i

)2 + 2
(
ξ

y
i

)2 − 1
)

1/18 1/36 (1, 0, −1)

15 1
2 ξ

y
i

((
ξ x

i

)2 + 2
(
ξ z

i

)2 − 1
)

1/18 1/36 (0, 1, 1)

16
(
ξ x

i

)2(
ξ

y
i

)2 − 1
3

(
ξ x

i

)2 − 1
3

(
ξ

y
i

)2 + 1
6

(
ξ z

i

)2 + 1
18 7/162 1/36 (0,−1, 1)

17 2
7

(
ξ x

i

)2(
ξ

y
i

)2 + (
ξ x

i

)2(
ξ z

i

)2 − 3
7

(
ξ x

i

)2 + 1
14

(
ξ

y
i

)2 − 2
7

(
ξ z

i

)2 + 1
14 5/126 1/36 (0, −1, −1)

18 2
5

(
ξ x

i y)2
(
ξ

y
i

)2 + 2
5

(
ξ x

i

)2(
ξ z

i

)2 − 1
10

(
ξ x

i

)2 + (
ξ

y
i

)2(
ξ z

i

)2 − 2
5

(
ξ

y
i

)2 − 2
5

(
ξ z

i

)2 + 1
10 1/30 1/36 (0, 1, −1)

where � is the duration of the time interval. We write now this
quantity in Fourier space

w = W

�
�

〈∫
dDk

(2π )D

[−c2
s [n0 + δn̂(k)]δαβ − δP̂αβ

I (k)

+ σ̂ αβ (k)
]

(ıkα )δûβ (−k)

〉

= c2
s

(
τ − 1

2

)
n0

∫
dDk

(2π )D [k2〈|δû‖(k)|2〉+Dk2〈|δû(k)|2〉].

(C3)

Here we considered that for a homogeneous quiescent
state one has 〈δu〉 = 0, which in turn implies 〈∂δu〉 =
0. Further, it is possible to show that 〈δn(k)δu(−k)〉 =

1
2π

∫
dω〈δn(k, ω)δu(−k,−ω)〉 = 0 so that also the terms

proportional to 〈δP̂I∂δu〉 vanish, given that δP̂I ∝ δn̂. Finally,
we make use of the nonanticipating character of all the hy-
drodynamic fluctuations with respect to the noise and set
〈R∂δu〉 = 0. Hence, after considering the velocity structure
factor to be 〈|ûα (k)|2〉 = 〈|û‖(k)|2〉 = kBϑ/n0 we write

w = W

�
� c2

s

(
τ − 1

2

)
kBϑ (1 + D)

∫
dDk

(2π )D k2. (C4)

The above expression for w is always of order O(kBϑ ) so that,
if normalized by the volume V (�) would yield a vanishing re-
sult in the thermodynamic limit, i.e., any local nonequilibrium
δT would be very small. This result is in agreement with the
observations reported in [35].

APPENDIX D: LBM SIMULATIONS

1. Population noise variance

As detailed in [17] one needs only to specify the variance of
the noise moments Na = ∑

i maiηi, where ηi is the population
noise appearing in the stochastic LB equation (A2). In order to
guarantee exact conservation of density and momentum, one
needs to set the variance of the related stochastic moments to
zero, i.e., ordering the moments as reported in Table II one
can write a diagonal covariance matrix as follows:

�ab = 〈NaNb〉

= n0kBϑ

c2
s

1

τ

(
2 − 1

τ

)
diag[0, 0, 0, 0, M4, . . . , M18], (D1)

where Ma = ∑
i wim2

ai represents the norm of the moments
over the weighted scalar product in the population space.
Equation (D1) implies that all the stochastic moments are
simply uncorrelated Gaussian random numbers that can be
independently computed via a Box-Müller transform [59]
starting from two uniformly distributed pseudo-random num-
bers. The most important property of the moments mai is
their orthogonality with respect to the weighted scalar product
in population space, i.e., δab = ∑

i wimaimbi. While for the
two-dimensional case it is enough to consider a basis given
by Hermite polynomials, in three dimensions this is no longer
possible because of the nonhydrodynamic higher-order ghost
moments [11,12]. Hence, we resorted to the Gram-Schmidt
orthogonalization over some set of three-dimensional Hermite
polynomial yielding the results reported in Table II.
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2. Data analysis

The discrete Fourier transform are performed in a straight-
forward way as described in the definition of the Fourier
transform for the spin-glass susceptibility in [60]. Given that
S(k) depends only on the norm of k and that it is given by
the complex norm of δn(k) then one can average the results
obtained along the three directions,

kx = (k, 0, 0), ky = (0, k, 0), kz = (0, 0, k), (D2)

and simply compute the squared norm as

|δn̂x(k, t )|2 = 1

L

∑
x

{[δnyz(x) cos(kx)]2

+ [δnyz(x) sin(kx)]2}, (D3)

where we defined the plane average as

δnyz(x) = 1

L2

∑
y,z

δn(x, y, z). (D4)

One can repeat the computation for the three different direc-
tion for a sequence of time values t = 1, . . . , T and obtain the
steady-state average as

〈|δn̂(k)|2〉 = 1

T

T∑
t=1

1

3
[|δnx(k, t )|2

+ |δny(k, t )|2 + |δnz(k, t )|2]. (D5)

The values for cos(kx) and sin(kx) can be stored in look-up
tables for each value of k = 2πnk/L with nk = 1, . . . , �L/2�,
thus computing them only once.
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