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Klein-Gordon equation on a Lagrange mesh
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The Lagrange-mesh method is an approximate variational method which provides accurate solutions of
the Schrödinger equation for bound-state and scattering few-body problems. The stationary Klein-Gordon
equation depends quadratically on the energy. For a central potential, it is solved on a Lagrange-Laguerre mesh by
iteration. Results are tested with the Coulomb potential for which exact solutions are available. A high accuracy
is obtained with a rather small number of mesh points. For various potentials and levels, few iterations provide
accurate energies and mean values in short computer times. Analytical expressions of the wave functions are
available.
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I. INTRODUCTION

The Lagrange-mesh method [1–3] is very successful to
accurately solve the Schrödinger equation in a number of
problems in quantum mechanics. It gives highly accurate
results with rather few mesh points for bound and scatter-
ing properties of various two- and three-body systems (see
Ref. [3] and references therein). As it is economical in the
number of mesh points, it is particularly useful to reduce
computer times when the computation of matrix elements
is very heavy, such as in descriptions of nuclear collisions
and reactions [4–8]. High accuracies can be obtained for
three-body atoms, molecules, and exotic systems [9–12]. The
method is also efficient to solve the Dirac equation and use
its wave functions [13–16]. The numerical treatment of the
mesh equations in all these problems relies on standard linear
algebra.

The Lagrange-mesh method is an approximate variational
calculation involving a set of N functions associated with N
mesh points [1,3]. All matrix elements are calculated with the
Gauss quadrature associated with this mesh. The Lagrange
variational basis involves infinitely differentiable functions
vanishing at all points of the mesh, except one. The sim-
plicity of the method arises from the fact that the potential
is represented by the diagonal matrix of its values at mesh
points. The kinetic energy matrix is nondiagonal but sparse
when several variables occur. In spite of this simplicity, high
accuracies can be achieved with small numbers of mesh points
[3,17]. Remarkably, this method can give numerically exact
energies and mean values for a Coulomb potential in both the
Schrödinger and Dirac cases [3,13].

The aim of the present paper is to show that the Lagrange-
mesh method can also be used to solve the stationary
Klein-Gordon equation [18,19], where the energy appears
in quadratic form. The Klein-Gordon equation describes the
relativistic behavior of spin-zero particles such as pions. With
a central potential, it is solved on a Lagrange mesh based on
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zeros of Laguerre polynomials. The quadratic dependence on
the energy is treated with a simple iteration. The correspond-
ing Schrödinger equation is first solved on the same mesh to
provide information about optimal conditions for the calcula-
tion. Then, using the nonrelativistic eigenvalue as a starting
point, the Klein-Gordon equation is solved by iteration.

The Lagrange-mesh method is summarized in Sec. II. The
case of the Klein-Gordon equation is treated in Sec. III. Nu-
merical applications for the Coulomb potential and various
singular and nonsingular potentials are described in Sec. IV.
Concluding remarks are presented in Sec. V. An Appendix
summarizes exact analytical expressions in the Coulomb case.

II. LAGRANGE-MESH METHOD

The Lagrange-mesh method introduced in Ref. [1] has
been developed and extended over the years [2,17,20]. A
general presentation is given in Ref. [3].

In this section, the method is summarized in the one-
dimensional case. Let us consider Hamiltonian

H = − h̄2

2m

d2

dx2
+ V (x) (1)

for a particle of mass m in a potential V (x) defined over
interval [a, b]. An approximate variational calculation is per-
formed with a basis of N infinitely differentiable Lagrange
functions f j (x) associated with a set of N mesh points xi.
These mesh points correspond to a quadrature rule

∫ b

a
g(x) dx ≈

N∑
k=1

λkg(xk ), (2)

with weights λk . Expression (2) is hereafter named Gauss
quadrature even when it is a generalization of the standard
definition [21,22]. Functions f j verify the Lagrange property

f j (xi ) = λ
−1/2
i δi j, (3)

which is inspired by Lagrange interpolation, i.e., they vanish
at all mesh points but one. With the Gauss quadrature (2)
and property (3), the functions f j form an approximately
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orthonormal set over [a, b]:

〈 fi| f j〉 =
∫ b

a
fi(x) f j (x)dx ≈

N∑
k=1

λk fi(xk ) f j (xk ) = δi j . (4)

In particular cases, the orthonormality of the Lagrange func-
tions can be exact.

With this Lagrange basis, an approximate variational cal-
culation is performed for H where all matrix elements are
computed with the Gauss quadrature (2) as indicated by a
label G. The wave function is expanded as

ψ (x) =
N∑

j=1

c j f j (x). (5)

The obtained equations take the meshlike form

N∑
j=1

(
h̄2

2m
T G

i j + V (xi )δi j

)
c j = Eci. (6)

The kinetic energy matrix involves the simple expression

T G
i j = 〈 fi| − d2/dx2| f j〉G = −λ

1/2
i f ′′

j (xi ). (7)

When this approximation is not symmetrical like the exact Ti j ,
one can also use the slightly more complicated

T G
i j =

N∑
k=1

λk f ′
i (xk ) f ′

j (xk ). (8)

The crucial advantage of the method is that the potential
energy matrix is diagonal with the Lagrange property (3),

〈 fi|V (x)| f j〉G = V (xi )δi j, (9)

and very simple. The calculation is thus reduced to a standard
problem of linear algebra.

In spite of its simplicity, the Lagrange-mesh method can
be extremely accurate. The most striking property is that the
accuracy on a number among the lowest energies can be
orders of magnitude better than the accuracy of individual
matrix elements [17]. In fact, various examples of comparison
with the standard variational method using the same Lagrange
basis, i.e., with exact calculations of all matrix elements, have
shown that the Gauss quadrature approximation does not cost
any significant loss of accuracy for the lowest eigenvalues
[3,17]. Nevertheless, the validity of the method depends on
the accuracy of the Gauss rule. This means that discontinuities
or singularities in the potential or some of its first derivatives
may destroy the interest of the method.

The above simple presentation emphasizes the spirit of the
Lagrange-mesh method. The method is, in fact, much more
general. It has been extended to many types of applications:
studies of continuum and collisions, coupled channels re-
actions, three-body atoms and molecules, confined systems,
Dirac equation, etc. To this end, various generalizations in-
volving changes of variables and extensions of basis functions
had to be introduced. The most important one is the regular-
ization technique explained below in a particular case.

Most applications of the Lagrange-mesh method involve
Lagrange functions based on classical orthogonal polynomi-
als [21]. Other types, however, exist based on nonclassical

polynomials or on periodic functions. The choice of Lagrange
mesh depends on the interval on which the potential is defined
and on the behavior of this potential at the extremities of this
interval. In some cases, the Lagrange-mesh equations present
similarities with or are even equivalent to those in other
meshlike methods such as the discrete-variable representation
[23] also based on classical polynomials or the quadrature
discretization method [24] based on nonclassical polynomials
(see Ref. [3] for details).

The Lagrange-mesh method is of particular interest for
infinite or semi-infinite intervals since convenient Lagrange
bases are available on such intervals. Let me now take the
example of interval [0,∞], which is of interest for the next
sections. The corresponding classical orthogonal polynomials
are the Laguerre polynomials Lα

N (x). The N mesh points xi are
defined by

Lα
N (xi ) = 0. (10)

They depend on the choice for α. The Lagrange-Laguerre
functions are

f j (x) = (−1) jx1/2
j

(
hα

N

)−1/2 Lα
N (x)

x − x j
xα/2e−x/2. (11)

They vanish at all xi �= x j . Factor xα/2e−x/2 is the square root
of the weight function related to the Laguerre polynomials and
hα

N = �(N + α + 1)/N! is the squared norm of Lα
N [21]. These

functions are exactly orthonormal over [0,∞]. The Gauss
quadrature in Eq. (4) is exact in this case, as the integrand is
the product of the weight function by a polynomial of degree
strictly smaller than 2N [22]. Parameter α is selected so the
factor xα/2 fits the expected behavior of the wave function near
the origin.

These Lagrange functions have the drawback that the
Gauss-Laguerre quadrature is inaccurate for matrix elements
of operators presenting a singularity at the origin such
as the centrifugal term h̄2l (l + 1)/2mr2 or the Coulomb
potential −e2/r [1]. This problem can be solved with a
regularization [2,3,17].

Regularized Lagrange functions are defined as

f̂ j (x) = x

x j
f j (x). (12)

These functions still satisfy the Lagrange conditions (3). They
are not orthogonal but are still orthonormal at the Gauss-
Laguerre quadrature approximation. Strikingly, treating them
as if they were orthonormal does not induce additional in-
accuracy [3,17]. With the regularization, matrix elements of
operators presenting a singularity at most x−2 at the origin are
now accurate with the Gauss quadrature. Matrix elements of
the kinetic energy operator −d2/dx2 are obtained from Eq. (7)
by a double differentiation of f̂ j (x) as [3,20]

T̂ G
i j = (−1)i− j xi + x j√

xix j (xi − x j )2
(13)

for i �= j and

T̂ G
ii = − 1

12x2
i

[
x2

i − 2(2N + α + 1)xi + α2 − 4
]

(14)

for i = j. With these simple expressions, approximate en-
ergies and wave functions of the Schrödinger equation are
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obtained by solving system (6). In practice, it is important to
introduce a scale factor in the Lagrange functions to optimize
the mesh as explained in the next section.

III. EXTENSION TO THE KLEIN-GORDON EQUATION

The time-independent Klein-Gordon equation for a particle
with energy E in a potential V is given in relativistic units
h̄ = c = m = 1, where m is the particle mass, by [19]

[−� − (E − V )2 + 1]ψ (r) = 0. (15)

For a central potential V (r), with ψlm(r) = Ylm(θ, ϕ)r−1ul (r),
the radial Klein-Gordon equation for a given value of the
orbital momentum l reads{

− d2

dr2
+ l (l + 1)

r2
− [E − V (r)]2 + 1

}
ul (r) = 0. (16)

The energy appears in quadratic form and requires an exten-
sion of the treatment of Schrödinger equations.

At the origin, the solutions behave as

ul (r) →
r → 0 rγ . (17)

For central potentials regular at the origin, V (r) →
r→0

v0 + O(r),

one has γ = l + 1. For potentials with a singularity of type
V (r) →

r→0
v−1r−1 + v0 + O(r), γ is given by the real expression

γ = 1
2 +

√(
l + 1

2

)2 − (v−1)2 (18)

provided that |v−1| < l + 1/2. In particular, for the attractive
Coulomb potential

V (r) = −Zα

r
, (19)

where α is the fine structure constant, it is given by

γ = 1
2 +

√(
l + 1

2

)2 − (Zα)2 (20)

with the condition Zα < l + 1/2. At large r, the bound-state
radial functions decrease exponentially when the potential
vanishes at infinity and decrease faster than exponentially for
confining potentials.

To numerically determine bound-state energies, an iterative
method is used on a Lagrange mesh. First, Eq. (16) is rewritten
as{

−1

2

d2

dr2
+ l (l + 1)

2r2
+ V (r) − 1

2
[E − 1 − V (r)]2

}
ul (r)

= (E − 1)ul (r). (21)

The eigenvalue is the energy E − 1 without mass en-
ergy. Without the quadratic term, Eq. (21) reduces to the
Schrödinger equation.

The radial wave function of bound states is expanded over
the regularized basis (12) as

ul (r) = h−1/2
N∑

j=1

cl j f̂ j (r/h), (22)

where a scale parameter h is introduced to allow an opti-
mization of the mesh. Radial function ul is normed at the
Gauss-Laguerre approximation if

∑
j c2

l j = 1. The N zeros x j

of polynomial Lα′
N (x) define the Lagrange mesh points hx j ,

depending on h and α′. To ensure a fast convergence, α′ must
be chosen so as to mimic the appropriate behavior (17) at the
origin. This is achieved with

α′ = 2(γ − 1). (23)

A similar choice was proven convenient in the Lagrange-
mesh treatment of the Dirac equation, especially in the case
of a singular potential [13]. Parameter h will be selected by
searching a plateau of stationary energies. For a first guess,
this search can be performed on the Schrödinger equation.
Choosing a nearly optimal h can lead to a significant reduction
of the number N of mesh points.

Using the Lagrange-Laguerre basis as a variational basis
together with the associated Gauss approximation, one obtains
the system

N∑
j=1

{
1

2h2
T̂ G

i j +
[

l (l + 1)

2(hxi )2
+ V (hxi )

− 1

2
[E − 1 − V (hxi )]

2

]
δi j

}
cl j = (E − 1)cli. (24)

The simplicity of Eq. (24) comes from the fact that the approx-
imations of the centrifugal term and powers of the potential
are diagonal and simple. In fact, the matrix elements of the
centrifugal term and of a Coulomb potential and its square
are exact.

If the potential is small with respect to the mass energy,
the quadratic term in Eq. (24) is small with respect to unity.
Let E0 − 1 be the nonrelativistic eigenvalue obtained with
the Schrödinger equation corresponding to this potential, i.e.,
with Eq. (24) without quadratic term. The small nonlinear
term 1

2 [E − 1 − V (hxi )]2 is replaced by 1
2 [E0 − 1 − V (hxi )]2.

The resulting linear system then provides an energy E1. Pro-
ceeding similarly with E1 replacing E gives E2 and so on.
After i iterations, an accurate converged eigenvalue E = Ei is
obtained when |(Ei − Ei−1)/(Ei − 1)| is smaller than a given
ε > 0. After roughly optimizing the scale parameter h, the
calculation can be performed with rather small numbers N of
mesh points and is thus fast.

The method is valid when the potential is not too
strong with respect to the mass energy mc2. It was veri-
fied numerically that iterations do not converge for some
strong potentials. Nevertheless, examples below show that the
method is valid even in cases where relativistic corrections can
be important.

When a chosen accuracy of the energy is reached, radial
wave functions are obtained in analytical form with Eq. (22).
The quality of this wave function can be tested on mean
values. The average of operators O(r) depending on the radial
coordinate are obtained with the Gauss quadrature as

〈O(r)〉 =
N∑

j=1

c2
l jO(hx j ), (25)

where the cl j are the coefficients in expansion (22). As shown
below, their accuracy is not far from the accuracy of the
energy.
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TABLE I. Binding energies Enr l − 1 in scaled atomic units (n/Z )2Eh for the Coulomb potential obtained with N mesh points and h = n/2Z
after i iterations compared with exact values for Z = 1, 50, and 100.

Enr l − 1 in units (n/Z )2Eh

Z nr l i N = 10 N = 20 Exact

1 0 0 4 −0.500033285818945 −0.500033285818945 −0.500033285818947
1 0 3 −0.500021635367954 −0.500021635367952 −0.500021635367954
0 1 3 −0.500003882960090 −0.500003882960091 −0.500003882960089
9 0 3 −0.5000102 −0.500005125764849 −0.500005125764849
0 9 3 −0.500000080577731 −0.500000080577731 −0.500000080577731

50 0 0 14 −0.619462444705755 −0.619462444705763 −0.619462444705754
1 0 9 −0.572738939702176 −0.572738939702173 −0.572738939702176
0 1 9 −0.510024493439603 −0.510024493439598 −0.510024493439604
9 0 5 −0.528 −0.515665188121745 −0.515665188121744
0 9 5 −0.500201593871028 −0.500201593871027 −0.500201593871029

100 0 1 13 −0.544604007143506 −0.544604007143500 −0.544604007143506
8 1 6 −0.51742 −0.517353686579109 −0.517353686579107
0 9 6 −0.500808177370508 −0.500808177370508 −0.500808177370508

IV. APPLICATIONS

A. Coulomb potential

A first application is for the Coulomb potential (19). As
exact results are available, it provides accurate tests of the
method.

The Lagrange-Laguerre functions (12) are optimal in this
case as analytical wave functions can be exactly represented
with expansion (22) as well in the Schrödinger case [2,3] as
in the Dirac [3,13] and Klein-Gordon cases [see Eq. (A3)].
Parameter α′ in the Laguerre polynomial is given by Eqs. (23)
and (20). This value is not optimal for the calculation of the
initial value E0 as the nonrelativistic wave functions behave as
rl+1 near the origin. Nevertheless, this nonoptimal E0 does not
cost additional iterations in practice. A fair value for the scale
parameter h is suggested by the exponential term exp(−Zr/n)
of the nonrelativistic exact solution, i.e., h = n/2Z , where n =
nr + l + 1 is the principal quantum number.

Typical binding energies Enr l − 1 of various levels with
radial quantum number nr and orbital momentum l are dis-
played in Table I for N = 10 and 20 and compared with their
exact value (A6). In units of scaled Hartrees (n/Z )2Eh, they
can also be easily compared with their common nonrelativistic
value −0.5. For the fine structure constant, the CODATA

2020 value 1/α = 137.035999084 is used [25]. One observes
that excellent results with an accuracy better than 10−14 are
obtained with N = 10 as well for the 1s, 2s, and 2p levels, as
for the l = 9 level of the n = 10 shell, i.e., when the number
nr of nodes in the wave function is small. Not surprisingly,
N = 10 is too small when the radial function has nine nodes
as in the 10s state but the result with N = 20 is accurate.
In the absence of known exact results, the accuracy can be
established by a comparison of successive N values.

These comments are valid for both Z = 1 and Z = 50.
The main difference lies in the number of iterations which
is larger for Z = 50. For Z = 50, one observes a decrease of
this number with n, consistent with the decrease of relativistic
effects with increasing n. Interestingly, the same comments
apply for Z = 100 with l > 0 given that Eq. (16) with l = 0
is not valid for Z > 68.

The accuracy of the wave functions is analyzed for the
ground state in Table II on scaled mean values 〈rk〉 of var-
ious powers k of the radial coordinate in scaled Bohr radii
a0/Z . The nonrelativistic values corresponding to k = −2,
−1, 1, and 2 are 2, 1, 3/2, and 3, respectively. The compar-
ison between results obtained with N = 10 and 20 as well
as the comparison with exact results indicate an accuracy
better than 10−13 for both Z values. Relativistic corrections

TABLE II. Mean values in scaled Bohr radii a0/Z of the 1s ground state obtained with N mesh points and i iterations compared with exact
values [Eqs. (A7)–(A10)] for Z = 1 and 50.

Z i 〈rk〉 N = 10 N = 20 Exact

1 4 〈r−2〉 2.00042609592427 2.00042609592424 2.00042609592428
〈r−1〉 1.00007988660364 1.00007988660363 1.00007988660364
〈r〉 1.49990680605283 1.49990680605282 1.49990680605283
〈r2〉 2.99965386052346 2.99965386052342 2.99965386052345

50 14 〈r−2〉 4.12724897476497 4.12724897476482 4.12724897476496
〈r−1〉 1.29460235128804 1.29460235128802 1.29460235128804
〈r〉 1.23120394276805 1.23120394276804 1.23120394276805
〈r2〉 2.08069763475680 2.08069763475678 2.08069763475681
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TABLE III. Binding energy for the Yukawa potential − exp(−r/4)/4r as a function of N and i with h = 2.7 in relativistic units. A
nonrelativistic result is displayed as NR.

N i E00 − 1 〈1/r〉 〈r〉
10 8 −0.001292029 0.14712 12.995
20 8 −0.0012920485675 0.1470917926 13.0082342
30 8 −0.001292048566705 0.14709179167273 13.00823500274
40 8 −0.001292048566704 0.14709179167267 13.008235002767
50 8 −0.001292048566705 0.14709179167270 13.008235002763
50 NR −0.000642861874375 0.11455274906335 17.466819322455

are important for Z = 50. Similar comments apply for other
states.

B. Yukawa potential

The next applications are singular and nonsingular cases
where exact solutions are not available. The first step consists
of choosing α′ and the scale parameter h. A preliminary search
of an optimal domain for this parameter can be performed
with the Schrödinger equation. Such a domain may depend
on the accuracy requested on the eigenvalues. This does not
mean that h is optimal for the Klein-Gordon equation but
it is often close to optimal and can be used as such or as
a starting point. When E is roughly known, a first guess of
h may also be given by comparing the exponential asymp-
totic behavior exp(−√

1 − E2 r) of solutions of the Klein-
Gordon equation with the exponential exp(−r/2h) in the
Lagrange functions. From now on, relativistic units are used
throughout.

The Yukawa potential

V (r) = −e−r/4

4r
(26)

is another example of singular potential. Here the coeffi-
cient of the singularity is v−1 = −1/4. For l = 0, parameter
α′ is equal to 1

2

√
3 − 1 ≈ −0.134 according to Eqs. (23)

and (18). The absolute accuracy of the lowest eigenvalue
reaches 10−7 for h in interval [2.7,2.8] with N = 10, 10−11

for h ∈ [2.5, 2.8] with N = 20, and 10−15 for h ∈ [2.4, 2.9]
with N = 30.

Binding energies E00 − 1 are presented for h = 2.7
in Table III for various N values. They are obtained
after eight iterations. The accuracy of the wave func-
tions is similar. The number of stable significant digits
can be checked on 〈1/r〉 and 〈r〉. For this h value,
an accuracy 10−15 on these mean values is obtained
with N � 40.

The corresponding nonrelativistic energy is given in
Table III for N = 50. This binding energy is underestimated
by a factor of 2 with respect to the relativistic result. The mean
values indicate that the relativistic increase of binding energy
corresponds to a more compact wave function. The relativistic
and nonrelativistic wave functions u00 are shown in Fig. 1.
One observes that the Klein-Gordon solution is indeed con-
centrated at smaller distances. Another difference not visible
on the figure is that the full relativistic wave function ψ00(r)
is singular at the origin.

No other bound state was found.

C. Gaussian potential

Let us proceed with the Gaussian potential

V (r) = −e−r2/2. (27)

This potential is not singular, and standard Laguerre polyno-
mials (α′ = 0) are used for l = 0.

Binding energies are presented for the optimal value h =
0.37 as a function of N in Table IV. They are obtained after
20 iterations. An exponential convergence is clearly observed.
A relative accuracy of about 10−13 is obtained for N = 50.
A similar accuracy is reached for the mean values 〈1/r〉
and 〈r〉.

The relativistic and nonrelativistic radial functions u00 ex-
hibit the same differences of shapes as in Fig. 1 with different
scales. They are therefore not shown.

No other bound state was found.

D. Regularized Coulomb potential

The regularized Coulomb potential

V (r) = −erf (r)

r
(28)

is nonsingular. It schematizes the potential of a pion in the
Coulomb field of a very heavy nucleus. The Coulomb po-
tential is regularized because of the finite extension of the
nucleus. A realistic situation would require also taking into
account the nuclear interaction between the pion and the
nucleus.

The mesh is defined with α′ = 2l since γ = l + 1. Binding
energies of different levels are presented in Table V. For the

FIG. 1. Ground-state wave functions u00(r) of the Yukawa po-
tential from the Klein-Gordon equation (full line) and from the
Schrödinger equation (dashed line).
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TABLE IV. Binding energy for the Gaussian potential − exp(−r2/2) as a function of N and i with h = 0.37 in relativistic units. A
nonrelativistic result is displayed as NR.

N i E00 − 1 〈1/r〉 〈r〉
10 20 −0.088698 0.724682 2.0610
20 20 −0.088705817 0.72468942 2.0616372
30 20 −0.088705807362 0.7246893715 2.0616373554
40 20 −0.08870580735626 0.7246893713289 2.0616373555808
50 20 −0.08870580735616 0.72468937132785 2.0616373555822
50 NR −0.03771621282652 0.57100402817655 2.7577220089962

ground state, the optimal value is h = 0.25. An accuracy close
to 10−15 is already obtained for N = 30 after 19 iterations.
Like in other cases, the relativistic binding energy is larger
than in the nonrelativistic approximation and the wave func-
tions are more compact.

With the same h = 0.25, fair results are obtained for the
nrl = 10 and 01 excited states but the accuracy is less good.
The number of iterations is smaller than for the ground state.
Two more correct digits arise when h is increased to about
0.32. This increase of the scale parameter is expected since
the wave functions decrease more slowly in the asymptotic
region and are therefore more extended than for the ground
state. The convergence is a little faster for 01 than for 10 as
the u01 radial function has no node.

The same highly excited states as for the Coulomb case in
Table II are considered in Table V. The differences between
low and high l are here important. While the optimal h = 4.3
for the 09 level is not far from the simple guess explained
before the Yukawa example, the optimal h ≈ 1.2 for the 90
level is quite different because of the many nodes of the
radial function. Excellent accuracy is obtained after a few

iterations but requires 100 mesh points for l = 0 and nr = 9.
On the contrary, N = 10 is sufficient for l = 9 and nr = 0
since the centrifugal barrier cancels the difference with the
pure Coulomb potential. For high l , nonrelativistic values are
very close to exact Coulomb values.

As in other examples, the relativistic radial function is
more compact than the nonrelativistic one.

V. CONCLUDING REMARKS

This paper presents an extension of the Lagrange-mesh
method to a case where the eigenvalue does not appear lin-
early. It is hoped that it will open the way to applications of the
Lagrange-mesh method beyond quantum mechanics. It could
be specially useful for problems where coordinates are defined
in infinite or semi-infinite intervals.

The Klein-Gordon equation is solved on a Lagrange-
Laguerre mesh and the quadratic dependence on the eigen-
value is treated with an iteration. The method is efficient for
potentials singular or nonsingular at the origin provided the
potential is not too strong with respect to the mass energy

TABLE V. Binding energies of various levels for potential −erf (r)/r as a function of N , h, and i in relativistic units. Nonrelativistic results
are displayed as NR.

nr l N h i Enr l − 1 〈1/r〉 〈r〉
0 0 20 0.25 19 −0.372897347180 0.68477904145 2.0366141749

30 19 −0.37289734718778 0.68477904137430 2.0366141757043
40 19 −0.37289734718781 0.68477904137433 2.0366141757042
40 0.25 NR −0.33114071792649 0.61674707364291 2.2341042851891

1 0 40 0.25 13 −0.1176363446407 0.22190111329 6.42088489911956
20 0.32 13 −0.11763621 0.221904 6.42069
30 13 −0.117636344639 0.22190111335 6.420884900
40 13 −0.117636344641828 0.22190111325055 6.420884903242
40 0.32 NR −0.101446603058818 0.19715766101250 7.371331670215

0 1 40 0.25 16 −0.138696257922225 0.28149554290709 4.471476941398
20 0.32 16 −0.1386962567 0.28149558 4.4714746
30 16 −0.13869625792225 0.2814955429074 4.47147694138
40 16 −0.138696257922229 0.28149554290695 4.471476941412
40 0.32 NR −0.122794944077784 0.24137677361672 5.1292270331795

9 0 80 1.2 7 −0.005061801508 0.00994518576 148.27255727
90 7 −0.0050618015100 0.0099451857558 148.272557430

100 7 −0.00506180150967 0.0099451857551 148.2725574395
100 1.2 NR −0.00479018046176 0.0095292904592 156.5652731809

0 9 10 4.3 6 −0.005015216501087 0.01005571217925 104.4446452292
20 6 −0.005015216501088 0.0100557121792749 104.44464522897
20 4.3 NR −0.005000000000000 0.0999999999999991 105.00000000000
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of the particle. Tests performed with the Coulomb potential
for which exact solutions are available confirm the validity
of the method. A high accuracy is obtained with rather small
numbers of mesh points. Applications to singular or nonsin-
gular potentials and various levels are successful with small
numbers of iterations. Computer times are short because of the
small size of matrices required in the Lagrange-mesh method.

This mesh method also provides accurate approximations
of the wave functions in analytical form. Like for the Dirac
equation, such functions are easy to handle and can be used,
e.g., in calculations of electromagnetic transitions [15], po-
larizabilities [14], and other properties. When used in Gauss
quadratures, they lead to simple compact expressions.

APPENDIX : SUMMARY OF EXACT PROPERTIES
FOR THE COULOMB CASE

In this Appendix, the analytical energies Enr l and radial
wave functions unr l of the Klein-Gordon equation with the
Coulomb potential (19) are presented in relativistic units,
i.e., h̄/mc for the radial coordinate and mc2 for the energy.
Convenient notations allowing an easy comparison with non-
relativistic expressions are

ν = nr + γ (A1)

and

N =
√

ν2 + Z2α2, (A2)

where γ is given by Eq. (20). Both ν and N become the
principal quantum number n = nr + l + 1 in the nonrelativis-
tic limit α = 0 where γ = l + 1. The radial wave functions

read

unr l (r) =
√

�(nr + 2γ )

2νnr!

(2εnr l )γ+1/2

�(2γ )
rγ

× 1F1(−nr, 2γ , 2εnr l r)e−εnr l r, (A3)

where

εnr l =
√

1 − E2
nr l = Zα

N
. (A4)

The total relativistic energy is given by

Enr l = ν

N
. (A5)

The binding energy reads

Enr l − 1 = − Z2α2

N(N + ν)
. (A6)

This writing minimizes rounding errors in numerical evalua-
tions, as also observed in the Dirac case [13].

Mean values of powers of the radial coordinate are given
by

〈r〉 = 3ν2 − γ (γ − 1)

2νεnr l
, (A7)

〈r2〉 = 5ν2 − 3γ (γ − 1) + 1

2ε2
nr l

, (A8)

〈
1

r

〉
= εnr l

ν
= Zα

νN
, (A9)

〈
1

r2

〉
= 2ε2

nr l

ν(2γ − 1)
. (A10)

Expressions in atomic units are obtained for Enr l − 1 after
multiplying by c2 and for 〈rk〉 after multiplying by c−k = αk .
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