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Auto-ejection of liquid from a nozzle
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Auto-ejection of liquid is an important process in engineering applications, and is also very complicated since
it involves interface moving, deforming, and jet breaking up. In this work, a theoretical velocity of meniscus
at nozzle exit is first derived, which can be used to analyze the critical condition for auto-ejection of liquid.
Then a consistent and conservative axisymmetric lattice Boltzmann (LB) method is proposed to study the auto-
ejection process of liquid jet from a nozzle. We test the LB model by conducting some simulations, and find that
the numerical results agree well with the theoretical and experimental data. We further consider the effects of
contraction ratio, length ratio, contact angle, and nozzle structure on the auto-ejection, and observe some distinct
phenomena during the ejection process, including the deformation of meniscus, capillary necking, and droplet
pinch off. Finally, the results reported in the present work may play an instructive role on the design of droplet
ejectors and the understanding of jetting dynamics in microgravity environment.
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I. INTRODUCTION

The auto-ejection process has some fundamental appli-
cations in engineering and biological fields, such as ink-jet
printing [1], molten microdrops technology [2], and biochip
arrayers [3]. Basically, however, this process is caused by the
capillary rise that mainly depends on the capillary geometry,
fluid properties, and fluid-solid interaction [4].

Up to now, there are many theoretical and experimental
studies that have been carried out on the capillary rising
problems. A century ago, Lucas [5] considered the effect of
viscous force, and obtained a theoretical solution of meniscus.
In 1921, Washburn [6] studied the rate of penetration into a
capillary tube, and derived the rising height of meniscus in
time once the gravity is neglected,

z =
√

Rσ cos θ

2μl
t, (1)

which is termed as the classical Lucas-Washburn equation.
z is the penetration height, R is the tube radius, σ is the
surface tension coefficient, θ is the contact angle, and μl is
the viscosity of liquid. It should be noted that during initial
rising time, the inertial force is dominant, and the capillary
rising dynamics at this stage can be described by Ref. [7]

z = t

√
2σ cos θ

Rρl
, (2)

where ρl is the density of liquid. Bosanquet [8] first took
the effects of inertial and viscous forces into account, and
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obtained a theoretical solution of meniscus height,

z =
√

Rσ cos θ

2μl

[
t − R2ρl

8μl

(
1 − e

− 8μl
R2ρl

t
)]

. (3)

With more liquid rising into the tube, however, the effect of
gravitational force becomes more significant. To consider the
influence of gravity, Fries and Dreyer [9] presented a momen-
tum balance equation in which the gravitational force, viscous
force, and inertial force of the liquid column are included,

2σ cos θ

R
= d (ρl zż)

dt
+ 8μl zż

R2
+ ρl gz, (4)

where ż is the rising velocity of meniscus. Furthermore,
they also derived the analytical solutions under different time
stages (inertial stage, viscous stage, and gravitational stage).

In addition, some available works also demonstrated that
the displaced gas or liquid also has a remarkable effect on
the capillary rising process. For instance, Hultmark et al.
[10] investigated the viscous effect of displaced gas on the
imbibition process of liquid theoretically and experimen-
tally, and derived a theoretical solution of the meniscus
height,

z =
√

Rσ cos θ

2μl
t +

(
μgL

μl

)2

− μgL

μl
, (5)

where μg is the viscosity of the gas and L is the length
of tube. On the other hand, Walls et al. [11] studied
the influences of gravitational and viscous forces of the
displaced fluids on the capillary displacement, and also
obtained some simplified governing equations and the analyt-
ical solutions under different limiting cases. Recently, Shan
et al. [12] further extended the previous works [9–11] to
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the capillary rise of non-Newtonian power-law fluids, and
also presented the theoretical solutions of some different
cases.

It should be noted that the meniscus may oscillate around
the Jurin’s height (z = 2σ cos θ

�ρgR ) [13] in the capillary rising
process, and some works are performed on critical conditions
and mechanisms for the oscillation. For example, Quéré et al.
[14] analyzed the criterion, shape, and damping of oscil-
lation through introducing a dimensionless parameter � =
8
√

2σμlR−5/2ρ
−3/2
l , and obtained the critical value � = 2.

From the viewpoint of energy conversion, Shardt et al. [15]
studied the meniscus inverting and spreading onto the top sur-
face of the tube, and found that the occurrence of oscillation
is determined by the ratio of the kinetic energy and sur-
face energy, which can be denoted by Weber number (We =
ρl zż2/8σ ). Combining the experimental and theoretical anal-
ysis, Marston et al. [16] conducted a study on the oscillation
behavior of meniscus in a cylindrical tube where the effects
of the rebound height, immersion depth, tube radius, and fluid
properties are considered. They also gave a critical condition
theoretically, and demonstrated that it is consistent with the
experimental observation. Das and Mitra [17] performed an
analysis on the characteristics of oscillation, and illustrated
that the different regimes in a vertical capillary filling are
determined by the Ohnesorge number (Oh = μ/

√
ρRσ ) and

Bond number (Bo = ρgR2/σ ), and also, the transition from
inertial regime to oscillatory regime was identified. Lorenceau
et al. [18] proposed a model to depict the gravity oscillation
and long-range damping of a liquid column, and demonstrated
that the theoretical solution is dependent on the liquid viscos-
ity. Additionally, they also found that the oscillation trajectory
is parabolic.

We would also like to point out that during the capillary
rise of liquid in a cylindrical tube, the liquid could never expel
itself from the tube even when the tube length is less than
the equilibrium height [19], and the meniscus would oscillate
around the tube exit until it reaches an equilibrium state [20],
which is caused by the combined effects of pinning at sharp
edge, kinetic energy, and surface energy. To enforce the liquid
to rush out from the tube, it would have to form a state of
overpressure, and an inverted meniscus is produced. Actually,
it has been known that the dynamic behavior of meniscus can
be changed through altering the geometry of tube, and the
large inertia may be induced in a nozzle to overcome surface
tension enabling the ejection of droplets automatically. Woll-
man et al. [19,21,22] conducted the capillarity-driven droplet
ejection experiments on the drop towers. In their works, a
force balance model is proposed to predict the velocity of the
meniscus, and a criteria for capillarity-driven droplet ejection
is presented along with details for the data collection, reduc-
tion and analysis,

We = ρlRWt

12σα4
(
1 + K4

n

) � 1, (6)

where Wt is the velocity at inlet of the nozzle, α is the ra-
tio of nozzle radius to capillary radius, and Kn is the loss
coefficient ascribed to the nozzle. Mehrabian and Feng [23]

used a diffuse-interface model to study the process of auto-
ejection, and developed a criterion to predict the number of
ejected droplets under some geometric parameters, which is
related to an instantaneous Weber number and an effective
tube length. Dong et al. [24] studied the drop-on-demand
(DOD) drop formation experimentally, and the ejection and
stretching of liquid, pinch off of the liquid thread from the
nozzle exit were analyzed. In addition, the droplet ejection
has some important applications in different fields. In the
area of industry, Utada et al. [25] used a microcapillary ge-
ometry to fabricating double emulsions, which involves the
drop dripping and jetting. In the field of electronic packages,
Pekkanen et al. [26] applied ink-jet technology to manufacture
the interconnection patterns for integrated electronics module,
where the drop shape, formation, and velocity are controlled
accurately. In the aspect of medical diagnostics, Beg et al. [27]
discussed the three-dimensional (3D)-printing technology to
manufacture drug delivery systems, which have the ability
to design customized drug products with high flexibility for
selecting the dose, shape, and size of the dosage form to
meet patient needs. Different from above works, here we pay
attention to the dynamic behavior when the liquid reaches the
end of nozzle from a numerical point of view. It is known
that the ejection process is influenced significantly by the
geometry of the nozzle, and what is more, the meniscus ac-
celeration process inside the nozzle and the mechanism of
auto-ejection have not been well understood. In this work,
we will conduct a comprehensive study on auto-ejection of
liquid from a nozzle. The rest of the paper is organized as
follows. In Sec. II, we first present a theoretical expression
of contact-line velocity at the end of nozzle, and then obtain
a critical condition for auto-ejection process. In Sec. III, we
develop a consistent and conservative axisymmetric lattice
Boltzmann (LB) method to investigate the ejection process,
and also provide some details on how to implement the wet-
ting boundary conditions on curved surface. In Sec. IV, a
benchmark problem of droplet spreading on a solid sphere,
and a comparison between numerical and experimental results
of the auto-ejection are used to validate the developed LB
method. In Sec. V, we investigate the auto-ejection process
where the effects of geometry of the nozzle and contact an-
gle are considered, and also conduct an analysis on the jet
breakup process. Finally, some conclusions are summarized
in Sec. VI.

II. A THEORETICAL ANALYSIS ON THE
AUTO-EJECTION OF LIQUID FROM THE NOZZLE

The auto-ejection of liquid refers to the process where the
liquid rushes out from the nozzle exit and forms a liquid col-
umn under the influences of capillary force and gravitational
force. The axisymmetric geometry of the problem consists of
a capillary tube, which connects to the liquid at the bottom and
air at the top (see Fig. 1). The tube has a contracting nozzle
at its top end where the radius shrinks from Rb to Rt at the
end of the nozzle, the nozzle angle is α, the total length is
L = Lb + Lt with Lb and Lt being the lengths of the tube and
the nozzle. In this section, we will focus on how to derive the
meniscus velocity and critical condition for auto-ejection of
liquid jet from the nozzle.
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FIG. 1. Schematic of auto-ejection and boundary conditions.

A. Meniscus velocity at the end of nozzle

According to the previous works [28–30], the velocity of
the problem can be approximated by the Hagen-Poiseuille
law,

v(r) = 1

4μl

(
∂ p

∂z
+ ρl g

)
[r2 − R(z)2], (7)

where r denotes the axial coordinate in cylindric coordinates,
g is the gravitational acceleration, and p is the pressure. From
Eq. (7), one can also obtain the volumetric flow rate,

Q = −R4π

8μl

(
∂ p

∂z
+ ρl g

)
. (8)

For the meniscus at the position h(z), the capillary pressure Pc

can be expressed as [31]

Pc|z=h = pn − pw = 2σ cos(θ − α)

R(h)
, (9)

where pn is the pressure in nonwetting phase, pw is the pres-
sure in wetting phase, and R(h) is related to the position h,

R(h) =
{

Rt + (Lb + Lt − h) tan α h > Lb

Rb 0 < h � Lb.
(10)

Integrating Eq. (8) from 0 to h with Pc|z=0 = 0, we have

2σ cos(θ − α)

R(h)
− ρl gh = 8μl

Q

π

∫ h

0

dz

R(z)4
. (11)

With the help of mass conservation and Q = πR(h)2 dh
dt ,

Eq. (11) can be rewritten as [28]∫ h

0

dz

R(z)4

dh

dt
=

2σ cos(θ−α)
R(h) − ρl gh

8μl R(h)2
, (12)

then substituting Eq. (10) into Eq. (12) yields{∫ Lb

0

dz

R4
b

+
∫ h

Lb

dz

[Rt + (Lb + Lt − z) tan α]4

}
dh

dt

=
2σ cos(θ−α)

R(h) − ρl gh

8μl R(h)2
. (13)

When the contact line first reaches the end of nozzle
where h = Lb + Lt , the velocity of the meniscus Vt can be
obtained,

Vt =
2σ cos(θ−α)

Rt
− ρl g(Lb + Lt )

8μlR2
t

[
Lb

R4
b
+ 1

3 tan α

(
R−3

t − R−3
b

)] . (14)

B. Critical condition for auto-ejection of liquid jet

As the liquid is coming out from a tube, it would be in
a state of overpressure that produces an inverted meniscus.
When the kinetic energy is consumed by the liquid pressure,
we have

1
2ρlπR2

t δhV 2
t = PcπR2

t δh, (15)

taking Pc = 2σ/Rt , one can obtain

1

2
ρlV

2
t = 2σ

Rt
. (16)

If we denote the velocity of meniscus when wetting fluid
ejected from the nozzle as Ve, the decrease of meniscus veloc-
ity due to the inversion of the meniscus curvature in terms of
dynamics pressure can be given by [19]

ρlV 2
t

2
− ρlV 2

e

2
= 4σ

Rt
. (17)

After the inversion of the meniscus, the liquid has the suffi-
cient inertia to overcome the resistance of the surface tension.
Through balancing the inertial force and surface tension force
of the fluids [19], we have

ρlV 2
e

2Rt
∼ 2σ

R2
t
, (18)

after rearranging, one can obtain

ρlRtV 2
e

4σ
� 1. (19)

Substituting Eq. (17) into Eq. (19), the necessary condition for
auto-ejection phenomenon can be obtained,

ρlRtV 2
t

12σ
� 1. (20)

If we introduce the Weber number defined by We =
ρlRtV 2

t /12σ , the critical condition can be rewritten as

We = 1. (21)
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Here we would like to point out that unlike the previous
works [19,23], the critical condition is mainly dependent on
the geometry of the nozzle and the fluid properties, and the
velocity Vt can be predicted by Eq. (14) for a specified geom-
etry of the nozzle.

III. MATHEMATICAL MODEL
AND NUMERICAL METHOD

To keep consistence with above theoretical analysis, in this
section we will first present the axisymmetric mathematical
model for the auto-ejection of liquid jet, and then develop a
consistent and conservative LB method for the model. Finally,
a special discussion on how to treat boundary conditions on
the curved surface is also presented.

A. A consistent and conservative mathematical model for
axisymmetric two-phase flows

To describe the movement of the interface between dif-
ferent phases and fluid flows, the following conservative
Allen-Cahn equation for phase field and consistent incom-
pressible Navier-Stokes equations (NSEs) for fluid field are
considered in the cylindrical coordinate,

∂rφ

∂t
+ ∇ · (rφu + MφφE) = ∇ · Mφ[∇(rφ) − rλn], (22)

∇ · ru = 0, (23a)

∂ (rρu)

∂t
+ ∇ · (rρuu + mφu) = −∇(r p) + ∇ · [rνρ(∇u

+∇u�)] + F, (23b)

F = r(Fs + G) +
(

p − 2ρν

r

)
E,

(23c)

where φ is the order parameter, Mφ is a positive constant
named mobility, u is the velocity, λ = 4φ(1 − φ)/W with
W being the interface thickness, E = (1, 0), and G is the
gravitational force. The unit vector normal to the interface n,
the surface tension Fs, the mass flux mC and mass diffusion
mφ are defined by

n = ∇φ

|∇φ| , Fs = μ̃φ∇φ, (24a)

mC = ρu + mφ,

mφ = ρl − ρg

φl − φg
[MφφE − Mφ (∇(rφ) − rλn)], (24b)

where μ̃φ = μφ − κ∂rφ/r, μφ is the chemical potential given
by

μφ = 4β(φ − φl )(φ − φg)

(
φ − φl + φg

2

)
− κ∇2φ. (25)

Here φl = 1.0 and φg = 0 are corresponding to liquid and
gas phases, respectively, and the interface is marked by the
contour level of φ = (φl + φg)/2. The physical parameters κ

and β are dependent on the interface thickness and the surface
tension σ ,

κ = 3

2
σW, β = 12σ

W
. (26)

Compared to the previous works [20,32,33], the mass diffu-
sion between different phases mφ is introduced into the NSEs,
and a consistent mass flux mC is redefined. Additionally, it
should be noted that the consistent and conservative model
composed of Eqs. (22) and (23) can preserve the consis-
tency of mass conservation and momentum transport through
including the flux caused by the mass diffusion mφ in the
interface layer, and some unphysical phenomena can be elim-
inated [34,35].

B. Consistent and conservative LB method for axisymmetric
mathematical model

1. LB model for conservative Allen-Cahn equation

The evolution equation of the multiple-relaxation-time
(MRT-LB) model for the conservative Allen-Cahn equa-
tion can be expressed as [36]

fi(x + ci�t, t + �t ) − fi(x, t )

= −�i j
[

f j (x, t ) − f eq
j (x, t )

]+ �t

(
δi j − �i j

2

)
Fj (x, t ),

(27)

where fi(x, t ) is the particle distribution function and �i j =
(M−1S f M)i j is the collision matrix. In the D2Q9 (nine
discrete velocities in two-dimensional space) lattice model
considered here, the transformation matrix M, the diagonal
relaxation matrix S f , the discrete velocity ci and weight coef-
ficient ωi can be given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28a)

S f = diag
(
s f

0 , s f
1 , s f

2 , s f
3 , s f

4 , s f
5 , s f

6 , s f
7 , s f

8

)
,
(
0 < s f

i < 2
)

(28b)
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FIG. 2. Schematic of interpolation schemes [fluid nodes (circle dots), solid nodes (square dots), and boundary nodes (diamond dots)].

ci =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c,

(29a)

ωi =
(

4

9

1

9

1

9

1

9

1

9

1

36

1

36

1

36

1

36

)
,

(29b)

where c = �x/�t is the lattice speed with �x and �t repre-
senting the grid spacing and time step. For simplicity, �x and
�t are set as the lattice and time units, i.e., �x = �t = 1.

To recover the conservative Allen-Cahn equation correctly
(see Appendix A), the following equilibrium distribution
function f eq

k and source distribution function Fk are adopted
[33],

f eq
j = ω j

[
rφ + c j · (rφu + φMφE)

c2
s

]
, (30)

Fj = ω jc j · [∂t (rφu + φMφE) + c2
s rλn

]
c2

s

. (31)

In addition, the order parameter and the mobility are deter-
mined by

φ = 1

r

∑
j

f j, (32)

Mφ = c2
s (τ f − 0.5)�t, (33)

where τ f = 1/s f
3 = 1/s f

5 . In the following simulations, the
other relaxation parameters in the relaxation matrix S f are
fixed as s f

0 = s f
1 = s f

2 = s f
7 = s f

8 = 1.0 and s f
4 = s f

6 = 1/τ f .

2. LB model for consistent incompressible equations

Here we also consider the MRT-LB model for the Navier-
Stokes equations [Eq. (23)], and the evolution equation of the
model reads [36]

gi(x + ci�t, t + �t ) − gi(x, t ) = − �i j
[
g j (x, t ) − geq

j (x, t )
]

+ �t

(
δi j − �i j

2

)
Gj (x, t ).

(34)

Here gi(x, t ) is the distribution function and �i j =
(M−1SgM)i j is the collision matrix. To satisfy the divergence-
free condition of velocity, the equilibrium distribution func-
tion geq

j (x, t ) should be given by

geq
j =

{ r p
c2

s
(ω j − 1) + s j (r, ρ, φ, u), j = 0

r p
c2

s
ω j + s j (r, ρ, φ, u), j �= 0

(35)

with

s j (r, ρ, φ, u)

= ω j

[
c j · (rρu)

c2
s

+ (rρuu + mφu) : (c jc j − c2
s I)

2c4
s

]
.

(36)

For the axisymmetric flows, the D2Q9 lattice model is still
adopted, the weight coefficients ω j and the discrete velocities
c j are the same as Eqs. (29a) and (29b). The diagonal relax-
ation matrix Sg in Eq. (34) is expressed as

Sg = diag
(
sg

0, sg
1, sg

2, sg
3, sg

4, sg
5, sg

6, sg
7, sg

8

)
, (0 < sg

j < 2).
(37)

FIG. 3. Schematic of fluid nodes (circle dots), solid nodes
(square dots), and boundary nodes (diamond dots) around a curved
boundary.
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FIG. 4. Schematic of droplet spreading on a solid sphere.

To recover incompressible Navier-Stokes equations (see
Appendix B), the force distribution function is designed by

Gj = ω j

[
ru · ∇ρ + c j · F̄

c2
s

+ (uF̃ + F̃u + ∂t (mφu)) :
(
c jc j − c2

s I
)

2c4
s

]
, (38)

where F̃ = F̄ + c2
s ∇(rρ), and F̄ = r(Fs + G) + (p − 2ρν

r ur )
E + Fφ with Fφ = −∇ · (mφu − umφ )/2.

The macroscopic fluid velocity is calculated by

rρu =
∑

j

c jg j + 0.5�t F̄, (39)

which can be further recast explicitly as

u =
∑

j c jg j + 0.5�t[r(Fs + G) + Fφ + pI]

rρ + �tr−1νρE
. (40)

In addition, it should be noted that the fluid density ρ is taken
as a linear function of the order parameter φ, and is given by

ρ = φ(ρl − ρg) + ρg. (41)

The pressure p can be computed by (see Appendix C for
details)

p = c2
s

(1 − ω0)

[
1

r

∑
j �=0

g j + 1

r
s0(r, ρ, φ, u) + +�t

2
u · ∇ρ

+ �t
2

r3c2
u · F̄ + �t

2

9r
sp1ρv + �t

1

3c2r
sp1∂t (mφ · u)

+ �tsp2 ru · ∇ρ + �tsp3

1

3rc2
∂t (mφ · u)

]
, (42)

where sp1 , sp2 and sp3 are related to the relaxation parameters

through sp1 = sg
1sg

2−sg
1−sg

2

sg
1sg

2
, sp2 = sg

2−sg
0

sg
0sg

2
and sp3 = sg

1+sg
2

sg
1sg

2
. In our

simulations, the relaxation parameters sg
0, sg

3 and sg
5 corre-

sponding to the conserved moments are taken as 1.0, while sg
7

and sg
8 related to the kinematic viscosity ν can be determined

by

sg
7 = sg

8 = 1

τg
, ν = c2

s

(
τg − 1

2

)
�t . (43)

The other relaxation parameters are set as sg
1 = 0.75, sg

2 = 0.8,
and sg

4 = sg
6 = 1.0.

C. Implementation of boundary conditions
on the curved surface

1. Discretization of the wetting boundary condition

To impose a specified contact angle at a solid boundary, the
following boundary condition can be applied [37],

nw · ∇φ |xw
= �φw(1 − φw ), (44)

where φw is the phase-field value at wall boundary, and � is
related to the contact angle θ ,

� = −
√

2β

κ
cos θ. (45)

After discretizing the left-hand-side term of Eq. (44) with the
central-difference scheme, one can obtain

nw · ∇φ

∣∣∣∣
xw

= ∂φ

∂nw

|xw
= φp − φi, j

2l
= �φw(1 − φw ), (46)

where φp is the interpolated phase-field value at the point p
[see Fig. 2(a)], φi, j is the unknown phase-field value, and l =
|xp − xw| is the distance between the boundary node w and the
interpolated point p. To obtain the value of φi, j , the following
scheme is adopted [38],

φi, j = s + l

2al
(1 + a −

√
(1 + a)2 − 4aφp) − s

l
φp,

a = l� �= 0 (θ �= 90◦), (47)

where s = |xw − xi, j | is the distance between the boundary
node w and the solid node (i, j), φp can be calculated by using
the unidirectional interpolation. Additionally, if the slope of
the vector normal to the boundary is larger than unity [see
Fig. 2(a)], the interpolation is carried out in the z direction;
otherwise, the interpolation is carried out in the r direction
[see Fig. 2(b)].

2. Boundary conditions of the distribution functions

In the implementation of LB method, we must identify
the boundary conditions of distribution functions (or unknown
distribution functions) from the given physical boundary con-
ditions. On one hand, to determine the unknown phase-field
distribution functions at the solid nodes, the halfway bounce-
back scheme is adopted (see Fig. 3),

fᾱ (xs, t + �t ) = fα (x f , t + �t ), (48)

where ᾱ is the opposite direction of α, xs is solid node near the
boundary, x f is the fluid node near the boundary. On the other
hand, the Yu-Mei-Shyy scheme [39] is used to determine the
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TABLE I. The measured values of the contact angle and the
relative errors.

Contact angle Predicted value Relative errors
(deg) (deg) (%)

30
◦

30.89
◦

2.99
60

◦
58.88

◦
1.86

90
◦

91.70
◦

1.92
135

◦
138.9

◦
2.89

unknown flow-field distribution functions (see Fig. 3),

gᾱ (xs, t + �t ) = δ

1 + δ
[gᾱ (x f , t + �t ) + gα (x f , t + �t )]

+ 1 − δ

1 + δ
gᾱ (x f f , t + �t ), (49)

where δ = |x f − xw|/|x f − ws| and x f f = (x f + cαδt ) is the
fluid node.

IV. NUMERICAL VALIDATION

In this section, we will test the axisymmetric LB method
by considering two benchmark problems. The first one is a

droplet spreading on a solid sphere, the other one is auto-
ejection of liquid from a nozzle.

A. Spreading of a droplet on a solid sphere
The spreading of a droplet on the solid sphere is a classic

example, and can be used to test the capacity of axisymmetric
LB method in predicting the contact angle on the curve sur-
face. For this problem (see Fig. 4), Lr = Lz = 400, a droplet
with the radius R = Lz/6 is initially located at node (r, z) =
(0, Lz/3), the distance between the centers of droplet and
sphere is k, and the radius of solid is Rs. The contact angle is θ ,
which can be calculated by the cosines law with the measured
values of R, k, and Rs [35,40]. The no-slip boundary condition
(NSBC) imposed on the left, right, and bottom boundaries,
and the halfway bounce-back scheme is adopted to treat such a
boundary condition [41]. In addition, the convection boundary
condition (CBC) [42] is attached on the top boundary, the
wetting boundary condition (WBC) is applied on the solid
surface, and the symmetry boundary condition is used at the
axial line r = 0. The initial distribution of order parameter is
given by

φ(z, r) = 0.5 + 0.5 tanh

[
2

R −
√

r2 + (z − Lz/3)2

W

]
.

(50)

FIG. 5. The equilibrium states of the droplet obtained by the axisymmetric LB method [(a) θ = 30
◦
, (b) θ = 60

◦
, (c) θ = 90

◦
, and (d) θ =

120
◦
].
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TABLE II. Units and values used in numerical simulations

Variable Length Mass Time Density Dynamic viscosity Surface tension coefficient

unit �x mu �t mu/�x3 mu/�x�t mu/�t2

value 10−4 m 10−9 kg 10−5 s 103 kg/m3 1 kg/ms 10 kg/s2

In our simulations, the densities of the droplet and gas
are fixed as ρl = 100 and ρg = 0.1, the dynamic viscosities
of droplet and gas are μl = 1.0 and μg = 0.01. The surface
tension coefficient is σ = 0.01, the thickness of the inter-
face W = 5�x and the contact angles are specified as θ =
30

◦
, 60

◦
, 90

◦
, and 135

◦
. The equilibrium states of the droplet

under different contact angles are presented in Fig. 5, and the
predicted values of contact angle are listed in Table I. From
this table, one can find that the maximum relative error be-
tween the predicted values and theoretical data is less than 3%,
which indicates that the present LB method and the treatments
on the boundary conditions are accurate for the axisymmetric
two-phase flows.

B. Auto-Ejection of liquid from a nozzle

In the study of liquid auto-ejection, the basic lattice units
and their values are listed in Table II. A grid-independence
is first conducted before performing the simulation of auto-
ejection, and for this purpose, the grid sizes are chosen
as Nr × Nz = 400 × 1400, Nr × Nz = 600 × 2100, and Nr ×
Nz = 800 × 2100. The halfway bounce-back scheme is used
for NSBC and no-flux boundary condition (NFBC) imposed
on the left, right, and bottom boundaries, the CBC [42] is
applied on the top boundary. For the nozzle wall, the halfway
bounce-back scheme is used to treat the NSBC for flow field,
while for phase field, the WBC is adopted. The schematic and
boundary conditions of the problem are shown in Fig. 1 where
the tube is located at the axial line (r, z) = (0, 250), and the
following initial distribution of the phase field is applied,

φ(r, z) = 0.5 + 0.5 tanh

[
2(300 − z)

W

]
. (51)

In this test, the geometric and material parameters are
chosen based on the previous experiments [19]. The density
and dynamic viscosity of the gas phase are fixed as ρg =
1.2 kg/m3 and μg = 2 × 10−5 kg/ms, the initial contact angle
is θ = 0

◦
and the initial interface height is L0 = 5 mm. Here

L0 represents the capillary climbing under normal gravity

TABLE III. The physical parameters of PDMS fluids in simulations

Kinematic Dynamic Surface tension
Density viscosity viscosity coefficient

ρl νl σ μl

(kg/m3) (cS) (kg/s2) (kg/ms)
760 0.65 4.9 × 10−4 0.0159
872 2.0 1.744 × 10−3 0.0187
913 5.0 4.565 × 10−3 0.0197

before the drop-tower experiment commences, which avoids
complications at the corner [23].

The physical parameters of PDMS fluids and geometrical
parameters of nozzles are listed in Tables III and IV. Due to
the use of whole or half grids in this simulations, the geo-
metrical parameters in lattice units are slightly different from
those used in the experiments. We simulate the rising process
of 0.65cS fluid in tube #35 [19], and present the motion of
the meniscus in Fig. 6 where the numerical results are in
agreement with the experimental data. In addition, we also
note that the differences of imbibition height and meniscus
velocity under different grid sizes are very small, thus in the
following simulations, grid size with Nr × Nz = 400 × 1400
is adopted. Actually, from Fig. 6, one can also observe that
initially the meniscus experiences an acceleration and adjust-
ment under the influence of inertial force. Before forming a
steady shape and constant rising speed, the meniscus oscil-
lates several times due to the effects of the inertial force and
capillary force [see points a, b, and c in Fig. 6(a) where the
initial meniscus changes from flat into concave shape]. With
more fluids rising into the tube, the contact line begins to move
upward at a roughly steady shape and constant speed. This
steady constant rising stage persists until point d , which is
corresponding to the entrance of the nozzle. Once the contact
line reaches the nozzle, the interface immediately deforms
to adjust its orientation relative to the tapering wall of the
nozzle. This deformation further generates a capillary wave
that propagates radially inward, which pushes the central por-
tion of the meniscus backward by capillarity. At this time,
the meniscus velocity will be reduced to the minimum value,
which is smaller than zero [see point e in Fig. 6(b)]. Then the
meniscus accelerates rapidly upward, this is mainly because
the momentum of the liquid column would gradually increase
when it passes through a narrowing conduit. The evolutions
of meniscus at points a–e are presented in Fig. 7, which cor-
responds to the significant oscillations and changes appeared
in Fig. 6.

Next, we calculate the volume of ejected droplets during
the auto-ejection process, and the entrance of #35 tube is
submerged 5 mm under the PDMS fluids with different vis-
cosities. As seen from in Fig. 8, one droplet is ejected for
the 2cS and 5cS PDMS fluids, respectively. Although the
droplet-ejection altitude of 2cS PDMS fluid is higher than
that of 5cS PDMS fluid, the droplet volume of latter is larger
than that of former. We also list the volume of ejected drop
in Table V, and find that the numerical results are close to
the experimental data [19]. In addition, we also show the
complete ejection process of 2cS PDMS fluid in Fig. 9 where
there is an agreement between the numerical and experimental
results. From this figure, one can also observe that at initial
time, the meniscus moves with a stable shape along the tube
[see Fig. 9(b)]. When the meniscus contacts with the nozzle,

045302-8



AUTO-EJECTION OF LIQUID FROM A NOZZLE PHYSICAL REVIEW E 109, 045302 (2024)

TABLE IV. The geometry parameters of nozzle (�x).

ID Num # Tube length Lb Nozzle length Lt Tube radius Rb Nozzle radius Rt

(a) geometry parameters of experiment
35 489.8 116.6 101.45 50.0
36 475.4 128.8 101.35 25.3
(b) geometry parameters in simulations
35 490.0 117.0 101.5 50.0
36 476.0 129.0 101.5 25.5

however, its shape begins to change due to the capillary wave
caused by the perturbation [see Fig. 9(c)]. With the increase
of time, the contact line reaches the exit, a high pressure is
produced by the nozzle, which makes the contact line depin
from the nozzle, and a jet is formed [see Fig. 9(d)]. Then the
capillary force will cause a Rayleigh breakup of the jet, which
leads to the formation of droplets [see Fig. 9(e)].

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we will focus on the dynamic behaviors
of the interface when the meniscus advancing through the
straight portion of the tube and the contracting nozzle. As
we know, the meniscus velocity is determined by geometry
of the nozzle, the surface tension force, the viscous force, and
the gravitational force, and it changes with time and space.
In the following parts, the effects of the contraction ratio
C = Rt/Rb, the length ratio K = Lt/L and the contact angle θ

are considered. In our simulations, the geometric parameters
are fixed as Rb = 10 mm, L = 49.5 mm, and L0 = 5 mm, the
physical parameters of fluid are chosen based on the experi-
ments [19], where the fluid density and dynamic viscosity are
given as ρl = 913 kg/m3 and 0.004565 kg/ms, the surface
tension coefficient σ = 0.0197 kg/s2. To describe the motion
and deformation of the meniscus, we track the velocity Vc and
imbibition height Hc of the meniscus along the centerline of
the tube.

A. Effect of contraction ratio

To explore the effect of contraction ratio, we conduct some
simulations at different values of Rt , and plot the velocity
profile and meniscus position in Fig. 10 where the time is
recorded from initial moment to the droplet being formed.
From this figure, one can observe that the maximum value
of Vc decreases with increasing contraction ratio [Fig. 10(a)].
This is because when the contraction ratio decreases, the
liquid column is accelerated more quickly. From Fig. 10(b),
one can also find that the largest capillary necking height of
the contact line also decreases with the increase of contrac-
tion ratio. Additionally, we plotted the changes of maximum
velocity Vmax and maximum height under different values of
the contraction ratio C. As shown in Fig. 11, the maximum
velocity and height decrease with the increase of C.

To see the dynamic process more clearly, we also plot
the evolutions of flow field and interface of the cases C =
0.25, 0.275, and 0.37 in Figs. 12–14 where the point e is taken
as the start point of the ejection process, and the record time
is t∗ = t − te. At t∗ = 0 s, the contact line is subjected to the
radial capillary wave, and the interface depresses to the lowest
position. After an acceleration of interface passing through the
nozzle, the contact line reaches the nozzle exit (t∗ = 0.165 s)
where the velocity reaches the maximum value. Then a high
pressure will push central portion of the meniscus out of the
nozzle lip, and a jet is formed (t∗ = 0.26 s). Under the effect
of surface tension force, the capillary necking commences on

FIG. 6. The imbibition height and meniscus velocity along the centerline of the tube #35 [(a) the position of meniscus, (b) the velocity of
the meniscus].
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FIG. 7. The evolutions of meniscus at specific time stage in tube #35 [(a) point a, (b) point b, (c) point c, (d) point d , (e) point e, (f) after
point e].

the jet, a droplet begins to pinch off at the tip (see Fig. 12 at
t∗ = 0.31 s). Finally, a droplet separates from the liquid neck,
and the liquid column slowly shrinks back to the lip of the
nozzle (see Figs. 12 and 13 at t∗ = 0.36 s). Different from the
cases of C = 0.25 and 0.275, the capillary necking and droplet
pinch off do not occur for the case of C = 0.37 due to a lower
kinetic energy when t∗ � 0.31 s [see Fig. 14(d)], while the
contact line begins to retract until moving back to the nozzle
end [see Fig. 14(e)].

B. Effect of length ratio

We now consider effect of the length ratio K = Lt/L on the
ejection process in Fig. 15 where K = 0.09, 0.15, 0.21 and
the contraction ratio C = 0.25. As seen from this figure, the
maximum value of Vc increases with the decrease of K . For
a small K = 0.09 with α = 59.03

◦
, the contraction obstructs

much of the upward momentum of the liquid column, and the
acceleration process becomes shorter due to a small nozzle
length. Thus, the maximum value of Vc is smaller than that of
the case K = 0.21 (α = 35.53

◦
). In a word, too gentle a con-

traction does not provide sufficient flow focusing to produce
a long jet, while an abrupt contraction stifles the momentum
of the liquid column. To clearly show the influence of length
ratio, we plotted the variations of maximum velocity Vmax and
maximum height Hmax in Fig. 16. As seen from this figure,

FIG. 8. The ejected droplets of different PDMS fluids in tube #35
[(a) 2cS PDMS fluid, (b) 5cS PDMS fluid].

the maximum velocity and maximum height increase with
increasing K .

The dynamic processes are depicted in Figs. 17 and 18,
from which one can observe that after the meniscus enters the
nozzle, the sudden change in curvature leads to a capillary
wave propagating radially inward. Since capillarity cannot
keep up with the rapid contact-line movement, the menis-
cus deviates markedly from a spherical shape, and a deep
depression forms in the center region (t∗ = 0 s). Then, the
contractive wall leads to an acceleration of the meniscus ve-
locity. Afterwards, the strong radial flow converges toward
the center (t∗ = 0.17 s), and surface tension makes the deeply
curved interface concave rapidly. These two effects produce a
high pressure and a nonuniform velocity profile at the nozzle
exit, which promotes a jet (t∗ = 0.31 s). The capillary necking
first occurs at the upper end of the liquid column, and the first
droplet generates gradually. After the ejection of one droplet,
the jet grows a bulb at the tip while forming a neck at the base
(t∗ = 0.35 s). Shortly afterwards, the neck pinches off and the
bulb detaches, producing a smaller drop (t∗ = 0.36 s).

C. Effect of contact angle

As an important factor, the contact angle also plays a
significant role on the process of droplet ejection. Different
from the analysis on the effect of contact-line depinning
[23], we focus on the change of surface energy caused by the
contact angle. Here we take Lt = 10.5 mm as an example, the
contraction ratio is chosen as C = 0.25, and the contact angles
are θ = 0

◦
, θ = 10

◦
, and θ = 15

◦
. Figure 19 depicts the effect

of contact angle on the velocity and position of meniscus.
As seen from Fig. 19(a), when the meniscus rises steadily
in a straight tube, the differences of velocity Vc are small for
the contact angles considered here, however, the contact line
reaches the nozzle earlier for the case θ = 0

◦
. As the contact

line arrives at entrance of the nozzle, the meniscus begins

TABLE V. Ejected droplets of different PDMS fluids in tube #35.

Volume (ml)

Viscosity (cS) Present Experiment

2 1.07 1.21–1.36
5 1.56 1.43–2.33
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FIG. 9. The auto-ejection process of 2cS PDMS fluid in tube #36 (left: numerical results, right: experimental results [19]).

to deform and depress, the velocity Vc becomes smallest.
After advancing through the nozzle, the velocity has been
accelerated to a maximum value, and the maximum velocity
of meniscus and Weber number of the case θ = 15

◦
is larger

than those of the case θ = 0
◦
. However, for the case θ = 15

◦
,

it takes longer time for the meniscus to reach the entrance of
the nozzle, as shown in Fig. 19(b). This is because a larger
contact angle offsets the influence of the radial capillary
wave, which is caused by the slope of the nozzle. On the other
hand, with the combined effect of an increasing contact angle
θ and the contraction angle α, the adhesion of the contact
line to nozzle is enhanced. As a result, the imbibition height

of the meniscus of the case of θ = 15
◦

is lower. To see the
effect of contact angle more clearly, we plotted the changes
of maximum velocity Vmax and maximum height Hmax under
different contact angles θ in Fig. 20. As shown in this figure,
the maximum velocity first increases to maximum value, and
then decreases with increasing θ , while the maximum height
decreases with the increase of θ . Although the combining
effect will lead to a higher Weber number when θ = 20

◦
, how-

ever, the surface energy becomes smaller and cannot provide
higher kinetic energy with a larger velocity. We also present
the flow fields and interfaces at two different contact angles in
Figs. 21 and 22 in which some differences are also observed.

FIG. 10. The meniscus velocities along the centerline and imbibition heights at different contraction ratios [(a) meniscus velocity,
(b) meniscus position].
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FIG. 11. The maximum velocities and heights under different contraction ratios.

FIG. 12. The evolutions of flow field and interface of the case with Lt = 4.5 mm and C = 0.25.

FIG. 13. The evolutions of flow field and interface of the case with Lt = 4.5 mm and C = 0.275.
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FIG. 14. The evolutions of flow field and interface of the case with Lt = 4.5 mm and C = 0.37.

FIG. 15. The velocity profiles and imbibition heights of the cases with K = 0.09, K = 0.15, and K = 0.21.

FIG. 16. The maximum velocities and heights under different length ratios.
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FIG. 17. The evolutions of flow field and interface of the case with Lt = 7.5 mm and C = 0.25.

FIG. 18. The evolutions of flow field and interface of the case with Lt = 10.5 mm and C = 0.25.

FIG. 19. The meniscus velocities along the centerline and the imbibition heights under different values of contact angle [(a) meniscus
velocity, (b) imbibition height].
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FIG. 20. The maximum velocities and heights under the different contact angles.

FIG. 21. The evolutions of flow field and interface of the case with Lt = 10.5 mm and θ = 10
◦
.

FIG. 22. The evolutions of flow field and interface of the case with Lt = 10.5 mm and θ = 15
◦
.
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FIG. 23. The effects of length ratio (K), contraction ratio (C),
and contact angle (θ ) on the number of ejected droplets.

To test the critical condition [Eq. (21)], we consider the
effect of contraction ratio (C), length ratio (K), and contact
angle (θ ) on the number of ejected droplets in Fig. 23, where
the symbol © denotes the state where the interface is ejected
and then oscillates around the nozzle exit. The surface We = 1
is also depicted in the picture, the value below the surface
indicates We > 1 and the value above the surface is We < 1
where the contact line cannot depin from the nozzle tip. As
shown in this figure, the numerical results are consistent with
the theoretical prediction, and additionally, the liquid and
droplets can be ejected and formed more easily under a small
contraction ratio and a large length ratio.

D. Effect of nozzle structure

We now focus on the influence of nozzle structure on the
ejection process, and consider three cases in Fig. 24 where the
top radius Rt2 is fixed at 2 mm while Rt1 can be changed,
the total length is L = 49.5 mm and the lengths across the noz-
zle are Ln1 = Ln2 = 10 mm. The velocity profile and meniscus
position are plotted in Fig. 25 from which one can observe
that there are some apparent differences between the single-

layer nozzle [Fig. 24(a)] and two-layer nozzles [Figs. 24(b)
and 24(c)]. For a narrow nozzle (Rt1 = 4.5 mm) with a large
structure gradient [Fig. 24(b)], the meniscus moves faster, but
the maximum meniscus velocity of Rt1 = 4.5 mm is smaller
than that of Rt1 = 6.0 mm [Fig. 24(a)]. However, when the
radius becomes large (Rt1 = 8.5 mm) with a small gradient
[Fig. 24(c)], the meniscus moves more slowly, which means
that the velocity under a gentle contraction is smaller, and
the maximum velocity is smaller than that of Rt1 = 6.0 mm
but larger than that of Rt1 = 4.5 mm. This is because too
gentle a contraction does not provide sufficient flow focusing
to produce a long jet. Too abrupt a contraction stifles the
momentum of the liquid column.

To analyze the structure effect more clearly, we plotted the
changes of maximum velocity Vmax and maximum height Hmax

under different radii Rt1 in Fig. 26. As shown in this figure,
the maximum velocity and height first increase to maximum
values, and then decrease with increasing Rt1 . And a suitable
contraction will provide a sufficent kinetic energy leading to
a higher instantaneous velocity when Rt1 = 7.0 mm. We also
present the interfaces of three cases at t = 1.3 s in Fig. 27. As
seen from this figure, the nozzle with Rt1 = 6.0 mm produces
a higher liquid column and then two droplets forms, while the
nozzle with Rt1 = 8.5 mm produces a lower liquid column and
the interface moves more slowly. From the above discussion,
one can find that the structure has a significant impact on the
ejection process, and a desirable structure can be designed
to increase the flow velocity and produce the droplets more
easily.

VI. CONCLUSIONS

A comprehensive understanding of the auto-ejection pro-
cess is essential for some emerging techniques, such as
complicated drop generators and manipulation of small-scale
flows involving drops. The auto-ejection process, however,
is also very complex since it involves the interface moving,
deformation, and jet breaking up. In this work, we develop
a consistent and conservative axisymmetric LB method to
analyze the auto-ejection process, and some distinct dynamic
processes are captured. We first validate the LB method
through a comparison between the numerical results and

FIG. 24. The schematic of different nozzle structures.
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FIG. 25. The meniscus velocities along the centerline and the imbibition heights under different nozzle structures [(a) meniscus velocity,
(b) meniscus velocity].

experimental data [19], and then explore the effects of nozzle
geometry and fluid properties on the ejection process. Ad-
ditionally, we derive an analytical solution of the meniscus
velocity at the nozzle lip, and also, under the balance of iner-
tial force and surface tension, a critical condition for ejection
is obtained, which is only dependent on the liquid properties
and geometric parameters. Based on the present results, the
features of ejection and droplet production can be summarized
as follows.

At the start of imbibition, the meniscus oscillates under
the effect of inertial force. After this stage, it advances with
almost a constant velocity before it reaches the entrance of
nozzle. Under the disturbance of capillary wave, the meniscus
velocity can reach a minimum value, which is less than zero,
while it is accelerated to a maximum value after the meniscus
moving through the contraction nozzle. When the contact line
is pinned by the nozzle lip, a high pressure is produced from
radial flow along the nozzle, which accounts for the formation
of a jet. Due to the influence of surface tension, the capillary
necking begins to commence on the jet, leading to a droplet
pinch off.

In terms of the effect of contraction ratio C = Rt/Rb, we
present two sets of numerical results with Lt = 4.5 mm and
Lt = 10.5 mm, and find that the critical contraction ratio is
about C = 0.275 for Lt = 4.5 mm, and C = 0.315 for Lt =
10.5 mm. The results also show that under a gentle contraction
ratio, the liquid column cannot provide a sufficient kinetic
energy, and cannot produce a long jet with forming a droplet
pinch off. Additionally, when the contraction ratio is fixed,
the nozzle length Lt has a significant effect on the ejection
process. When Lt becomes larger, the acceleration process
is longer and the liquid column will obtain more sufficient
kinetic energy to create a jet, and the longer jet will also break
up into more droplets.

With respect to the effect of contact angle, the results show
that the maximum velocity of meniscus and Weber number
increase in contact angle. However, for the case with a large
contact angle, it takes longer time for the meniscus to reach
the entrance of the nozzle. With an increasing contact angle
and a fixed contraction angle α, the adhesion of the contact
line to nozzle is enhanced. As a result, the imbibition height
of the meniscus with a larger contact angle is lower, and it is

FIG. 26. The maximum velocities and heights under the different contraction radius.
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FIG. 27. The flow fields and interfaces at t = 1.3s [(a) Rt1 = 6.0 mm, (b) Rt1 = 4.5 mm and Rt2 = 8.5 mm].

difficult to produce droplets by capillary necking. For the
effect of nozzle structure, three different types are considered.
The meniscus through nozzle with a large structure gradient
moves faster, but the kinetic energy of the liquid column
is smaller. However, for the nozzle with a small structure
gradient, the meniscus moves more slowly and induces a
lower liquid column. The nozzle with a suitable gradient
can be used as an accelerator for the auto-ejection process.
Finally, the present work provides a guideline for the design
of autonomous droplet ejector where no external force and
flux are included.
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APPENDIX A: DIRECT TAYLOR EXPANSION OF LB
MODEL FOR THE AXISYMMETRIC ALLEN-CAHN

EQUATION

1. Direct Taylor expansion

From Eqs. (30) and (30) we can obtain the moments of f eq
i

and Fi,∑
i

f eq
i = rφ,

∑
i

ci f eq
i = rφu + MφE,

∑
i

cici f eq
i = c2

s rφI, (A1a)

∑
i

Fi = 0,
∑

i

ciFi = ∂t (rφu + MφE) + c2
s rλn.

(A1b)

Based on the previous work [36], when the Taylor expan-
sion is applied to Eq. (27), we have

N∑
j=1

�t j

j!
D j

i fi + O(�tN+1)

= −�i j
(

f j − f eq
j

)+ �t

(
δi j − �i j

2

)
Fj, (A2)

where Di = ∂t + ci · ∇. Introducing fi = f eq
i + f ne

i and sub-
stituting f ne

i = O(�t ) into Eq. (A2), one can derive the
equations at first and second orders of �t ,

Di f eq
i = −�i j

�t
f ne

j +
(

δi j − �i j

2

)
Fj + O(�t ), (A3)

Di
(

f eq
i + f ne

i

)+ �t

2
D2

i f eq
i

= −�i j

�t
f ne

j +
(

δi j − �i j

2

)
Fj + O(�t2). (A4)

From Eq. (A3) we have

�t

2
D2

i f eq
i = −1

2
Di�i j f ne

j

+ �t

2
Di

(
δi j − �i j

2

)
Fj + O(�t2), (A5)
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then substituting Eq. (A5) into Eq. (A4) yields

Di f eq
i + Di

(
δi j − �i j

2

)
f ne

j + �t

2
Di

(
δi j − �i j

2

)
Fj

= −�i j

�t
f ne

j +
(

δi j − �i j

2

)
Fj + O(�t2). (A6)

Summing Eq. (A6) over i gives rise to the following result,

∂t

∑
i

f eq
i + ∇ ·

∑
i

ci f eq
i + ∂t

∑
i

(
δi j − �i j

2

)
f ne

j

+ ∇ ·
∑

i

ci

(
δi j − �i j

2

)
f ne

j

+ �t

2
∂t

∑
i

(
δi j − �i j

2

)
Fj

+ �t

2
∇ ·

∑
i

ci

(
δi j − �i j

2

)
Fj

= − 1

�t

∑
i

�i j f ne
j +

∑
i

(
δi j − �i j

2

)
Fj . (A7)

In addition, from Eq. (A3) we also have

∑
j

c j f ne
j = − �t

s f
3

[∂t (rφu + MφE)

+∇ · c2
s rφI −

(
1 − s f

3

2

)∑
j

c jFj

⎤
⎦, (A8)

substituting Eq. (A8) into Eq. (A7) and with the help of the
moments of fi and Fi, one can derive the axisymmetric Allen-
Cahn equation [Eq. (22)] with Mφ = c2

s (τ f − 0.5)�t (1/τ f =
s f

3 = s f
5 ) .

APPENDIX B: DIRECT TAYLOR EXPANSION OF LB
MODEL FOR CONSISTENT NAVIER-STOKES EQUATIONS

1. Direct Taylor expansion

Similarly, we can obtain the moments of geq
i and Gi from

Eqs. (35) and (38),

∑
i

geq
i = 0,

∑
i

cig
eq
i = rρu,

∑
i

cicig
eq
i = rρuu + r pI + mφu + umφ

2
,

∑
i

cicicig
eq
i = rρc2

s � · u, (B1a)

∑
i

Gi = ru · ∇ρ,
∑

i

ciGi = F̄,
∑

i

ciciGi = M2,G. (B1b)

Besides, one can also determine the moments of the nonequilibrium distribution function gne
i ,∑

i

gne
i = −�t

2
ru · ∇ρ,

∑
i

cig
ne
i = −�t

2
F̄. (B1c)

Similar to the analysis on the LB model for axisymmetric Allen-Cahn equation, the equations at the first and second orders
of �t can be expressed as

Dig
eq
i = −�i j

�t
gne

j +
(

δi j − �i j

2

)
Gj + O(�t ), (B2)

Dig
eq
i + Di

(
δi j − �i j

2

)
gne

j + �t

2
Di

(
δi j − �i j

2

)
Gj = −�i j

�t
gne

j +
(

δi j − �i j

2

)
Gj + O(�t2). (B3)

Summing Eq. (B2) over i and combining with the moments of geq
i and Gi, one can derive

∂t

∑
i

geq
i + ∇ ·

∑
i

cig
eq
i = − 1

�t

∑
i

�i jg
eq
j +

∑
i

(
δi j − �i j

2

)
Gj, (B4a)

∇ · (ru) = 0. (B4b)

Multiplying ci on both sides of Eq. (B3), and through a summation over i, we have

∂t

∑
i

cig
eq
i + ∇ ·

∑
i

cicig
eq
i + ∂t

∑
i

ci

(
δi j − �i j

2

)
gne

j + ∇ ·
∑

i

cici

(
δi j − �i j

2

)
gne

j + �t

2
∂t

∑
i

ci

(
δi j − �i j

2

)
Gj

+ �t

2
∇ ·

∑
i

cici

(
δi j − �i j

2

)
Gj = − 1

�t

∑
i

ci�i jg
ne
j +

∑
i

ci

(
δi j − �i j

2

)
Gj, (B5)
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which leads to following equation,

∂t (rρu) + ∇ ·
(

rρuu + r pI + mφu + umφ

2

)
+ ∇ ·

(
1 − sg

7

2

)⎛⎝∑
j

c jc jg
ne
j + �t

2
M2,G

⎞
⎠ = F̄. (B6)

Now let us give an evaluation to the term
∑

i cicigne
i . Actu-

ally, from Eq. (B2) we have∑
i

cicig
ne
i = −�t

∑
i

cici�
−1
i j

[
Djg

eq
j −

(
δi j − �i j

2

)
Gj

]

= −�t

sg
7

[
∂t

∑
j

cicig
eq
i + ∇ ·

∑
i

cicicig
eq
i

−
(

1 − sg
7

2

)
M2,G

]

= −�t

sg
7

c2
s rρ

(∇u + ∇u�)

− �t

sg
7

[
∂t

(
rρuu + r pI + mφu + umφ

2

)

+ c2
s u∇(rρ) + c2

s ∇(rρ)u

]

− �t

sg
7

[
c2

s (ρ∇ · ru + ru · ∇ρ)I

−
(

1 − sg
7

2

)
M2,G

]
. (B7)

Additionally, the term ∂t (rρuαuβ ) can be evaluated by

∂t (rρuαuβ ) = 2∂t (rρuαuβ ) − ∂t (rρuαuβ )

= uαF̄β + F̄αuβ − uα∇βrρuαuβ − uα∇βr pδαβ

− uα∇βmφc
α uβ

− uβ∇αrρuαuβ − uβ∇αr pδαβ − uβ∇αmφc
β uα

+ rρuβ∂t uα + rρuα∂t uβ − ∂t (rρuαuβ )

= uαF̄β + F̄αuβ + O(Ma2), (B8)

then substituting Eq. (B8) into Eq. (B7) yields(
1 − sg

7

2

)(∑
i

c jc jg
ne
j + �t

2
M2,G

)

= �t

(
1

2
− 1

sg
7

)
c2

s rρ(∇u + ∇u�)

+ �t

(
1

2
− 1

sg
7

)
(uF̄ + F̄u + ∂t mφu)

+ �t

(
1

2
− 1

sg
7

)
c2

s [u∇rρ + ∇(rρ)u + ru · ∇ρI]

− �t

(
1

2
− 1

sg
7

)
M2,G, (B9)

where M2,G should be designed as

M2,G = uF̄ + F̄u + ∂t mφcu + c2
s [u∇rρ + ∇(rρ)u]

+ c2
s ru∇ · ρI

= u
(
F̄ + c2

s ∇rρ
)+ (

F̄ + c2
s ∇rρ

)
u + ∂t mφcu

+ c2
s ru∇ · ρI. (B10)

Substituting Eqs. (B10) and (B9) into Eq. (B6), one can obtain
following equation,

∂t (rρu) + ∇ · (rρuu + rρI + mφu)

= ∇ · [rνρ(∇u + ∇u�)] + F, (B11)

where ν is determined by Eq. (43).

APPENDIX C: COMPUTATION OF THE PRESSURE

Now let us focus on how to calculate the pressure from the
distribution function gi. According to the expression of geq

0
[see Eq. (35)], we have

g0(x, t ) − [
g0(x, t ) − g(eq)

0 (x, t )
]

= r(w0 − 1)

c2
s

p(x, t ) + rρs0(r, ρ, φ, u). (C1)

Expanding gi(x + ciδt , t + δt ) in Eq. (34) at position x and
time t , one can obtain

�tDigi(x, t ) = − (M−1SgM)i j
[
g j (x, t ) − geq

j (x, t )
]

+ �t

[
M−1

(
I − Sg

2

)
M
]

i j

G j (x, t )+O(�t2).

(C2)

Neglecting the error term and multiply the matrix
(M−1Sg−1M) on both sides of Eq. (C2), we can get

gi(x, t ) − geq
i (x, t ) = − �t (M−1Sg−1M)i jD jg j (x, t )

+ �t

[
(M−1Sg−1M)i j − I

2

]
Gj (x, t ),

(C3)

which leads to the following result [36],

g j (x, t ) = g(eq)
j (x, t ) + O(�t ). (C4)
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With the aid of Eq. (C4), we can rewrite Eq. (C3) as

gi(x, t ) − geq
i (x, t ) = − �t (M−1Sg−1M)i jD jg

(eq)
j (x, t ) + �t

[
(M−1Sg−1M)i j − I

2

]
Gj (x, t ). (C5)

If we substitute Eqs. (35) and (38) into Eq. (C5), and take j = 0, one can derive

g0(x, t ) − geq
0 (x, t ) =

(
3sg

1 + 2sg
2

3c2sg
1sg

2

)
�t∂t r p +

(
sg

1 + sg
2

3c2sg
1sg

2

)
�t∂t (rρu · u) + sg

1 + sg
2

3c2sg
1sg

2

�t∂t (mφ · u)

+ 1

9
�t

sg
2 − sg

0

sg
0sg

2

ru · ∇ρ + 2

9
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

ρur + 1

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

∂t (mφ · u)

+ 2

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

u · F̄. (C6)

Under the incompressible condition, Eq. (C6) can be simplified by

g0(x, t ) − geq
0 (x, t ) = sg

1 + sg
2

3c2sg
1sg

2

�t∂t (mφ · u) + 1

9
�t

sg
2 − sg

0

sg
0sg

2

ru · ∇ρ + 2

9
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

ρur

+ 1

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

∂t (mφ · u) + 2

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

u · F̄. (C7)

Substituting Eq. (C7) into Eq. (C1) yields

r(ω0 − 1)

c2
s

p = g0 − rρs0(r, ρ, φ, u) + sg
1 + sg

2

3c2sg
1sg

2

�t∂t (mφ · u) + 1

9
�t

sg
2 − sg

0

sg
0sg

2

ru · ∇ρ

+ 2

9
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

ρur + 1

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

∂t (mφ · u)

+ 2

3c2
�t

sg
1sg

2 − sg
1 − sg

2

sg
1sg

2

u · F̄, (C8)

according to Eq. (B1c), g0 can be expressed by

g0 = −�t

2
ru · �ρ −

∑
j �=0

g j . (C9)

As a result, we can compute the hydrodynamic pressure p by

p = c2
s

(1 − ω0)

⎡
⎣1

r

∑
i �=0

gi + �t

2
u · ∇ρ + 1

r
s0(r, ρ, φ, u) + sp3

�t

3rc2
∂t (mφ · u) + 1

9
�tsp2 u · ∇ρ

⎤
⎦

+ c2
s

(1 − ω0)

[
2

9r
�tsp1ρur + 1

3c2r
�tsp1∂t (mφ · u) + 2

3c2r
�tsp1 u · F̄

]
, (C10)

where sp1 = sg
1sg

2−sg
1−sg

2

sg
1sg

2
, sp2 = sg

2−sg
0

sg
0sg

2
, and sp3 = sg

1+sg
2

sg
1sg

2
.
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