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Hybrid lattice-Boltzmann–finite-difference approach for the simulation
of micro-phase-change-material slurry in convective flow
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In this paper, we present a hybrid numerical scheme that couples the lattice Boltzmann method (LBM) with the
finite difference method (FDM) to model micro-phase-change-material (MPCM) suspensions in a minichannel.
Within this framework, the LBM was employed to solve the continuity, momentum, and energy equations for
the fluid domain, while a Lagrangian scheme replicates the motion of MPCM particles. The LBM is coupled
with an FDM solver which operates under the lumped capacitance assumption to address the phase-change
phenomena within the microparticles. This hybrid coupling eliminates the necessity for any specific treatment
in handling phase transitions and tracking phase interfaces. The proposed method is first evaluated on classic
particle cases, demonstrating its ability to achieve four-way coupling. Furthermore, the current model effectively
adapted viscosity changes when integrating the microparticles, obviating the need for homogenous viscosity
models. Subsequently, the potential of this approach is demonstrated by examining the influence of the near-wall
thermal interaction of MPCM particles considering three scenarios based on particle density: light (ρp < ρ f ),
neutrally buoyant (ρp ≈ ρ f ), and dense (ρp > ρ f ) microparticles. The hybrid approach further revealed insights
into the impact of the volume fraction on the heat transfer coefficient as well as on the overall heat transfer
coefficient and performance index from a Lagrangian perspective.
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I. INTRODUCTION

Effective heat management is a critical consideration in a
wide range of energy conversion applications. Specifically,
in electrical devices, the generation of heat is not only un-
desirable but can also lead to performance inefficiencies and
potential damage, as highlighted in the literature [1–3]. To
eliminate such undesirable setbacks, various cooling schemes
[4–8] were investigated, focusing on enhancing their thermal
performance. Conversely, it is imperative to recognize that,
while thermal energy reduction proves detrimental in certain
applications, it assumes critical significance in others, promis-
ing enhanced productivity and efficiency [9]. The common
thread weaving through these diverse applications centers on
the pivotal role of enhancing heat transfer mechanisms to
attain optimal performance.

In pursuit of this objective, the literature has primarily
focused on methods that involve multiphase implementations
that operate on the principle of absorbing huge amounts
of energy during phase transition without any temperature
elevation. A material utilizing such physics is called a phase-
change material (PCM), offering an intriguing avenue for heat
management through its superior thermophysical properties
of high-energy storage density and high fusion enthalpy [10].
Nonetheless, PCMs have the drawbacks of leakage problems
during the solid-liquid phase transition and low thermal con-
ductivity. To address these limitations, researchers tend to

*eiyad.abunada@ku.ac.ae
†anas.alazzam@ku.ac.ae

divide the PCM into smaller particles because a PCM at a
large scale exhibits uneven temperature distribution within the
domain which causes the issue of irregular melting and solid-
ification. Therefore, the suspension of a micro-phase-change
material (MPCM) into a carrier fluid to create a heat transfer
fluid (HTF) is introduced.

While few studies [11,12] have tested the integration
of MPCM in heating channels, the actual physics behind
particle mixing has not been extensively represented. The
behavior and the physics of solid MPCM particle motion
and interactions are not studied significantly. Hence, it is
imperative to address this issue by introducing the concept
of particle coupling. Notably, existing literature predomi-
nantly employs three types of particle coupling: one-way
coupling, in which only the fluid influences the solid particle
phase; two-way coupling, where both fluid and solid phases
exert mutual influence; and four-way coupling, which encom-
passes the aforementioned effects, interparticle interactions,
and particle-wall collisions [13]. The utilization of four-way
coupling within the current model permits us to precisely
replicate the true behavior of MPCM particles within a fluid
flow, thereby enhancing the fidelity of the simulation.

To accomplish this coupling, in this paper, we utilize a sim-
ulation approach called the lattice Boltzmann method (LBM).
The adoption of the LBM in the realm of multiphase flow has
gained notable attention due to its various advantages [14].
The LBM emerged as a computational approach based on the
Boltzmann equation, primarily for simulating fluid dynamics.
In current research, various multiphase LBM models have
been developed. These include the color-gradient [15], free-
energy [16], and pseudopotential LBMs [17], among others.
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Building on the LBM, the discrete Boltzmann method (DBM)
excels in capturing the degrees of nonequilibrium systems,
specifically focusing on hydrodynamic and thermodynamic
deviations from equilibrium [18]. The LBM is constrained
by hydrodynamic equation limitations and is often based on
simplifying assumptions about equilibrium and continuity.
The DBM, however, is more flexible and accounts for discrete
formats [19]. The DBM is particularly proficient at addressing
nonequilibrium statistical physics challenges, offering ways to
describe nonequilibrium states and effects [20]. The DBM is
also popular for understanding the dynamics of multicompo-
nent flow coupled with the tracer particle method. The tracer
particle method extends the understanding of complex fluid
dynamics and the interaction of different phases, especially
in problems such as Rayleigh-Taylor instability (RTI) [21,22]
and shock-wave interactions with bubbles [23]. While the
DBM offers notable advantages in modeling nonequilibrium
systems, in this paper, we employ the standard LBM to model
solid-liquid interactions. The reader is referred to a very recent
article for comprehensive insights into the DBM [19].

In addressing particle-fluid interactions, specific methods
within the LBM have been developed. In the current lattice
Boltzmann works of simulating particle suspensions, many
lattice Boltzmann models were developed to handle the in-
teraction of the fluid phase and the solid phase. The most
common ones are the immersed boundary method (IBM)
[24] and the homogenized LBM (HLBM) [25]. The main
difference between the HLBM and the IBM is how they
represent the particle. The IBM employs Lagrange points but
requires interpolation, unlike the HLBM, for the reason that
the particle settles on the grid of the fluid. The solid particles
in the HLBM are defined as moving porous objects for a
smooth shift from the fluid domain to the solid domain [26].
Recently, the HLBM has received attention for the simulation
of particles in a flow. Krause et al. [26] further extended
the model, coupling it with a smoothing parameter based on
the local porosity model to enable a smooth transition between
the fluid medium and the particle for the purpose of elimi-
nating pressure variations. A three dimensional model with
arbitrary shape particles are studied using OpenLB [27].

In the literature, the effectiveness of the HLBM in dealing
with the hydrodynamic behavior of particle interaction has
been proven. Nevertheless, to deal with the PCM behavior
inside a particle, a certain treatment is required either by
introducing an LBM that handles such a task or combining
the LBM with a secondary numerical method. The preference
of the latter solution is solely due to avoiding any additional
computational power when dealing with the phase-change
interface within the particles which is an additional compu-
tationally demanding task. One highly suitable candidate is
the finite difference method (FDM) due to its simplicity and
efficiency in handling differential equations. It is common in
the literature to combine the LBM with the FDM to deal with
certain problems of the simulation. For example, Gupta et al.
[28] utilized the hybrid method in their study by allowing the
FDM to deal with polymer dynamics and the LBM to handle
the multicomponent viscoelastic flow. Others such as Hosseini
et al. [29] utilized the FDM to deal with the energy and species
field, leaving the flow field to be dealt with by the LBM in
the simulation of reacting flow. In the current application,

using the lumped capacitance method (LCM) for miniature
particles, handling the mushy zone of the solid-liquid interface
using specific treatments is no longer needed. The particle is
considered to have a single, uniform temperature and melting
fraction. The phase change within the particle is handled using
the FDM by solving the differential equation proposed by
Beasley and Ramanarayanan [30]. The obtained temperature
is then coupled to the thermal lattice Boltzmann equation.
With an adequate amount of accuracy, the LBM-FDM has
a high potential to be robust and efficient in the handling of
MPCM particles in a convective flow.

Therefore, in this paper, we demonstrate an approach of
coupling the LBM (OpenLB [27]) with our own FDM scheme
for handling MPCM particles in a minichannel flow from a
Lagrangian discrete perspective. We first discuss the meth-
ods and models utilized in this paper. Next, we achieve the
complete four-way coupling through the validation of the
following tests: single-particle suspension analysis, classic
drafting-kissing-tumbling (DKT) investigation, and particle-
wall interaction experiment tested by two models. Moving to
the thermal aspect of this paper, the particle temperature varia-
tion is examined to ensure precise thermal behavior. Since we
target the performance of the particles in a forced convective
flow in this paper, the velocity profile and thermal behavior of
the heated minichannel are validated. Subsequently, we con-
duct the mesh sensitivity analysis. The viscosity of the slurry
is estimated through the sedimentation of a foreign particle
within an enclosure filled with the slurry. The results and
discussion section is structured to first address three distinct
cases of MPCM particles with varying density conditions. The
second part of the result section investigates the impact of the
MPCM particles on the heat transfer coefficient at the entrance
and the developed region of the channel. The analysis is ex-
tended to examine the influence of the volume fraction (0.1,
0.2, 0.4, and 0.8%) on the average Nusselt number, friction
factor, and performance index (PI) for various flow regimes.
Lastly, we conclude this paper with some final remarks.

II. NUMERICAL METHOD

The Navier-Stokes equations (NSEs) that govern the trans-
port of a continuum fluid are expressed as follows:

∇ · uf = 0, (1)

∂ (uf )

∂t
+ ∇ · (uf uf ) = − 1

ρ f
∇p + ν(∇2uf ) + Ff , (2)

ρ f Cp f

[
∂T

∂t
+ (uf · ∇)T

]
= ∇ · (k f ∇T), (3)

where uf is the fluid velocity, p is the pressure, Ff is the
total external forces acting on the fluid, k f is the thermal
conductivity of the fluid, Cp f is the specific heat capacity of the
fluid. The lattice Boltzmann equation encapsulates this system
of equations and can be retracted to the above form using
the Chapman-Enskog expansion [31]. The nonlinearity of the
NSEs shown on the left-hand side of Eq. (2) and the disconti-
nuities it provides at very small-scale simulations reorient our
attention to the LBM where such setbacks are absent.
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(a) (b)

FIG. 1. (a) D2Q9 and (b) D3Q19 models.

A. Conventional LBM

In the fundamental LBM method, the Boltzmann transport
equation is written as

∂ f

∂t
+ c · ∇ f = �. (4)

The above equation is discretized into a distribution of fluid
particles that stream and collide at a given space and time
domain. For an incompressible fluid flow, the Boltzmann
equation is described using the density distribution function
fi given as

fi(x + ci�t, t + �t ) = fi(x, t ) + �i(x, t ) + Si, (5)

where ci is the discrete velocity in the direction of i, and
Si is a source term. The left-hand side of Eq. (5) handles
the streaming of the fictitious particles from one node to
another, and the right-hand side handles the collision step
by a collision operator �i. The most popular approach to
approximate the fictitious particle collision is by using the
Bhatnagar-Gross-Krook (BGK) model [32], which is known
as the single-relaxation-time operator defined as

�i(x, t ) = �t

τ f

[
f eq
i (ρ f , u) − fi(x, t )

]
, (6)

where τ f is the fluid relaxation time coefficient and f eq
i is the

equilibrium distribution function specified by

f eq
i = wiρ f

[
1 + u · ci

cs
2

+ (u · ci)2

2cs
4

− u · u
2cs

2

]
, (7)

with

τ f = ν

cs
2

+ 0.5�t, (8)

where wi, ν, and cs are the weight coefficient, kinematic
viscosity, and the lattice speed of sound, respectively. The
selection of the velocity model (D#Q#) establishes the weight
coefficients and discrete velocities. The most common veloc-
ity models for two- and three-dimensional problems are the
D2Q9 and D3Q19 models (Fig. 1), where D represents the
space dimension and Q is the number of possible streaming
directions. Therefore, the discrete velocity and weight coeffi-
cients for a D2Q9 model are [33]

ci =
⎧⎨
⎩

(0, 0), i = 0,

c(±1, 0), c(0, ±1), i = 1, 2, 3, 4,

c(±1, ±1), i = 5, 6, 7, 8,

(9)

wi =

⎧⎪⎪⎨
⎪⎪⎩

4
9 i = 0,

1
9 i = 1, 2, 3, 4,

1
36 i = 5, 6, 7, 8,

(10)

and for D3Q19 [33]:

ci =
⎧⎨
⎩

(0, 0, 0), i = 0,

c(±1, 0, 0), c(0, ±1, 0), c(0, 0, ±1), i = 1−6,

c(±1, ±1, 0), c(±1, 0, ±1), c(0, ±1, ±1), i = 7−18,

(11)

wi =

⎧⎪⎪⎨
⎪⎪⎩

1
3 i = 0,

1
18 i = 1−6,

1
36 i = 7−18.

(12)

Using the above equations, the macroscopic density, pres-
sure, and momentum are calculated from the below equations
[33]:

ρ f (x, t ) =
Q−1∑
i=0

fi(x, t ), (13)

p =
Q−1∑
i=0

cs
2 fi(x, t ), (14)

uf (x, t ) = 1

ρ f

Q−1∑
i=0

ci fi(x, t ). (15)

B. HLBM

To account for the presence of the particles in a base
fluid, the convectional lattice Boltzmann equation is modified
into the homogenized lattice Boltzmann equation. Mainly,
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the MPCM particle dynamics and behavior are treated in a
Lagrangian matter to track their locations and momenta in
the flow field and are represented by Newton’s second law
of motion as

mp
∂ (up)

∂t
= Fp, (16)

Jp
∂ (ωp)

∂t
= Ip, (17)

with mp, up, Jp, ωp, Fp, and Ip denoted as the mass of the
particle, the velocity of the particle, the moment of inertia, the
angular velocity of the particle, the external forces acting on
the particle, and the torque acting on the particle. The external
forces acting on the particle are mainly gravitational forces,
buoyancy forces, and hydrodynamic forces. To smoothen
the transition between the particle and the fluid, a velocity
mapping function dB(x, t ) ranging from 0 to 1 is used to
distinguish between the fluid field and the solid particles. The
function dB(x, t ) having a value of 0 corresponds to the fluid
domain, where the BGK collision model can be retrieved, and
a value of 1 indicates the solid domain. Therefore, the velocity
function for such an approach is identified as [26]

ū(x, t ) = u(x, t ) + dB(x, t )[up(x, t ) − u(x, t )]. (18)

The obtained value from the function is implemented in the
equilibrium distribution equation [Eq. (7)] of the fluid flow.
When the mapping function dB is equal to 1, the momentum
change is fully transferred to the particle for momentum con-
servation, and the convex function ū = up is not interpreted
in Eq. (7). The implementation of the forcing scheme in the
LBM needs careful selection, as it affects the accuracy of
the method. Thus, different forcing schemes have emerged
for higher stability and accuracy. The forcing schemes are
incorporated by either adding a source term or altering the
macroscopic velocity in the discretized Boltzmann distribu-
tion function. Trunk et al. [34] tested three forcing schemes
and compared their accuracy with one another. The tested
forcing schemes are that of Shan and Chen [35], Guo et al.
[36], and the exact difference method developed by Kuper-
shtokh et al. [37]. In this paper, the exact difference forcing
scheme was utilized by implementing a source term Si to
Eq. (5) as

Si = f eq
i (ρ, u + �u) − f eq

i (ρ, u), (19)

with �u defined as the velocity difference calculated by �u =
δt F

ρ
, where δt is equal to unity in lattice units.

C. Thermal LBM

To solve the thermal domain, it becomes imperative to
incorporate an additional distribution function that effectively
characterizes the temperature variations at every individual
grid point. Hence, the distribution function for the thermal lat-
tice Boltzmann model proposed by Huang et al. [38] is utilized
to determine the local temperature using a single relaxation
collision scheme. The distribution function gi is described as

gi(x + ci�t, t + �t ) = gi(x, t ) − �t

τg

[
gi(x, t ) − geq

i (x, t )
]
,

(20)

where geq
i is the thermal equilibrium distribution function, and

τg is the thermal relaxation time given as

τg = α f

cs
2

+ 0.5�t, (21)

in which α is the thermal diffusivity. The common discrete
velocity set selected for the thermal distribution function is
D2Q5 and is considered sufficient and stable for this paper
[39–42]. The equilibrium distribution function responsible for
the relaxation of the fictitious particles is obtained from

geq
i = wiT

(
1 + u · ci

cs
2

)
. (22)

To obtain the macroscopic temperature, the zeroth moment
of the thermal distribution function is used to express the
temperature as

T =
Q−1∑
i=0

gi(x, t ). (23)

D. Hybrid lattice Boltzmann with finite difference approach

The next stage of this paper is to establish the thermal
coupling between the fluid and the particle in the thermal
domain. With a Biot number < 1 for small particles, a lumped
capacitance approach is adopted. The instantaneous uniform
temperature of the solid particle is attained from the energy
equation as [43]

dTp

dt
= ξ (Tf − Tp), (24)

where ξ is the thermal constant obtained from

ξ = 6k f Nup

ρpCpDp
2 . (25)

The instantaneous uniform particle temperature Tp(t ) is
then coupled on the LBM grid overlapping with that of the
particle. The subscript p represents the properties of the parti-
cle such as the Nusselt number, density, specific heat capacity,
and diameter. The Nusselt number of a particle (Nup) de-
scribes the ratio of convective heat transfer to conduction heat
transfer within the fluid across the surface of the particle.

To model the thermal aspect of phase change inside the
particle, the Beasley and Ramanarayanan [30] model was
introduced:

dTp

dt
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6Up(Tf −TPCM)
ρp,ssCp,ssDp

, when γ = 0,

6Up(Tf −TPCM)
ρp,lsCp,lsDp

, when γ = 1,

6Up(Tf −TPCM)
ρp,mushyCp,mushyDp

, when 0 < γ < 1.

(26)

Here, the subscripts ss, ls, and mushy represent the property
at solidus temperature, at liquidus temperature, and in be-
tween both states, respectively. The advantage of using this
approach enables the accurate prediction of temporal tempera-
ture variation during phase transition. Such a temperature rise
is described as phase trajectory. The model depends on the
mushy specific heat capacity Cmushy, mushy density ρmushy,
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and liquid fraction γ , which are obtained based on the PCM
properties from [44]

Cmushy = HL

�TMelting
, (27)

ρmushy = γ ρp,ls + (1 − γ )ρp,ss, (28)

γ = (Tp − TMelting,start )

�TMelting
, (29)

where HL is the latent heat of melting, and �TMelting is the
difference between saturation temperatures. To obtain the con-
vective heat transfer coefficient Up, the Nusselt number of the
particle Nup is approximated using the empirical correlation
for small spherical particles of Ranz and Marshall [45] as

Nup = 2 + 0.6(Pr)1/3(Rep)1/2. (30)

Here, Rep is the relative particle’s Reynolds number defined
by

Rep = Dp|uf − up|
ν

. (31)

The empirical equation [Eq. (30)] is valid for the laminar
region specifically when the Reynolds number is below the
limit of 104 [46], which is suitable for this paper. Even with
the lack of updated correlations, Eq. (30) is adopted exten-
sively in the literature on micro/nanoparticles and is deemed
to project adequate estimation of the convective coefficient.
By applying the first-order forward FDM on either Eq. (24) or
(26), the differential equation is discretized into

dTp

dt
= T k+1

p − T k
p

�t
+ O(�t ), (32)

where �t is the time step, and O(�t ) is the order of accuracy.
As shown in Eq. (32), the order of accuracy is substantially
low. Thereby, for a more stable and accurate model, a back-
ward difference model with second-order accuracy is used:

dTp

dt
= 3T k

p − 4T k−1
p + T k−2

p

2�t
+ O(�t2). (33)

Here, the difference scheme solves temperature information
for k using the values obtained from the previous time steps.
The current algorithm of the hybrid numerical method is illus-
trated in Fig. 2. Two loops are defined, where the LBM loop is
coupled with the FDM loop. The LBM main loop takes care of
the momentum transport for the fluid and the particles where
two distribution functions are solved for density and tempera-
ture [Eqs. (5) and (20)]. In addition, it resolves the motion of
the particle through Newton’s second law of motion [Eqs. (16)
and (17)]. The FDM takes care of the thermal effects of the
fluid on the particle and the thermal effects of the particle
on the fluid [Eq. (24) or (26)]. Such an algorithm iterates
until convergence (steady state is achieved) or the simulation
reaches the maximum time period. The coupling between the
two methods is implemented based on the response time of the
particle. The response time of the particle, also referred to as
the relaxation time of the particle, is defined as the ability of
the particle to transition between the particle motion state to
a different state [47]. However, it is essential to acknowledge
that particle dynamics are also influenced by the surrounding
fluid flow. To account for these influences, the Stokes number

FIG. 2. The algorithmic framework of the current numerical
model.

St is utilized as the ratio of the particle relaxation time to
the characteristic time scale of the flow. This dimensionless
number, as shown in Eq. (34), offers insight into the extent of
particle motion relative to the fluid [48]:

Stp = 
p


 f
. (34)

Here, 
 f is the characteristic time scale of the flow, and 
p is
the particle relaxation time obtained from [47]


p = ρpDp
2

18µ f
. (35)

The value of the Stokes number is divided into two ranges.
If Stp � 1, then the relaxation time of the particle is minimal
in comparison with the scale of the fluid. On the other hand,
if Stp > 1, then the particle migrates independently. For this
paper, water is utilized as the fluid in the simulation, with
the temporal scale of 6 µs, the Stoke’s number = 0.002. The
value indicates that the particle changes in motion each 500
time steps of the fluid. Based on this, the fluid flowing over
the particle will absorb or release the heat dissipated by or
to the MPCM particle, and the grids overlapping the particles
attain the instantaneous particle temperature.

E. Complete four-way coupling

The physics behind the interaction of the particle with
its surroundings is substantial and complex. Mimicking the
exact behavior of the particle interaction with the surround-
ing medium is important for an accurate simulation. Hence,
achieving this aim is addressed by introducing the concept
of four-way coupling [48,49]. As mentioned earlier, the four-
coupling approach considers the MPCM particle collision
with the surface of the channel. The particle-wall collision
requires a separate treatment to approximate the elastic or
inelastic collision of the particle with the solid wall. Sev-
eral collision models were investigated [50–53] to completely
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capture the collision dynamics of the MPCM particle and
resolve it accurately. Due to its simplicity, the method of
Crowe et al. [52] has gained attention in the literature [54,55]
for predicting the behavior of the particle after the impact. The
hard sphere model describes the particle rebound velocity and
the before-impact velocity as a ratio called the coefficient of
restitution e shown as

e = V(2)
y

V(0)
y

. (36)

Superscripts 2 and 0 indicate the conditions after and before
the impact of the particle with the wall surface. The model is
designed to address postcollision translation and angular ve-
locities in rigid spherical particles. Such physical variables are
solved using the impulse equations. Additional information on
this subject can be found in Ref. [52]. The essential parameter
of the model is the coefficient of restitution e, governing
postcollision particle behavior. However, it has limitations in
addressing the effect of viscous dissipation upon the impact
of the particle with the wall in viscous fluids. In addition,
a refined time step is necessary to accurately capture the
collision dynamics. Hence, we investigated a second model,
namely, the one revealed by Nassauer and Kuna [53]. The
model focuses on predicting the behavior of the solid particle
collision by obtaining the contact forces from the general con-
tact law that mainly depends on the overlapping volume Vol

and indentation depth dind. This model not only models the in-
teraction of particles with wall surfaces but also the interaction
of interparticle collisions. The particle is virtually enlarged
and thus defines the overlapping volume as the overlapping
section between the virtually enlarged particle and the wall.
Following this model, the contact force of the particle-wall
collision is obtained from

Fc = 4E∗√dindVol

3
√

π
(1 + cḋ ), (37)

in which c is the damping constant, and ḋ is the relative
velocity between the particle and wall in contact. The effective
modulus of elasticity E∗ is described as

E∗ =
[(

1 − υA
2

EA

)
+

(
1 − υB

2

EB

)]−1

, (38)

where E and υ are the modulus of elasticity and Poisson’s
ratio for the colliding objects A and B, respectively. The other
essential exhibited force is the tangential force, also called
frictional force, defined as

Ft = Fc

[
a2(2 f ∗

st − fkin )

a4 + 1
+ fkin − fkin

a2 + 1

]
, (39)

with

f ∗
st = fst

[
1 − 0.09

(
fk

fst

)4
]
, (40)

where fst is the static friction coefficient, and fkin is the kinetic
friction coefficient. Also, a is the ratio between normalized
tangential velocity and the transition velocity from static to
kinetic friction. In this paper, we emphasize these models to
highlight the key parameters that are essential in revealing
the dynamics of particle collisions. We precisely analyzed

TABLE I. The fluid properties of each case in the ten Cate et al.
[56] experiment.

Fluid’s density, Fluid’s dynamic viscosity,
Case No. ρ f (kg/m3) μ f (Pa s)

1 970 0.373
2 965 0.212
3 962 0.113
4 960 0.058

the impact of these key parameters on particle-wall collision
physics, finetuning them to accurately simulate the collision
dynamics.

In this paper, the examination of the models of both Crowe
et al. [52] and Nassauer and Kuna [53] is undertaken. Based
on this comparison and considering the limitations associated
with the restitution coefficient, we have decided to proceed
with the Nassauer and Kuna [53] model. Further details re-
garding the model comparison can be found in Sec. III D.

III. VALIDATION OF NUMERICAL SCHEME

In this section, we present the validation of this paper
for the complete four-way coupling using the single-particle
sedimentation, classic DKT investigation, and particle-wall
interaction experiment tested by the models of Crowe et al.
[52] and Nassauer and Kuna [53]. Additionally, the transient
thermal behavior of the particle is verified. Lastly, the velocity
and thermal profiles of the channel are validated.

A. Sedimentation of a single spherical particle in an enclosure

The first validation case in this paper is a comparison
between the current model and the experimental work of
ten Cate et al. [56] for the sedimentation of a single solid
particle in a static incompressible Newtonian fluid. For val-
idation purposes in two-dimensional nonspherical particles or
irregular-shaped single-particle sedimentation test cases, it is
recommended to refer to the study conducted by Chen et al.
[57]. The experiment of ten Cate et al. [56] encompasses four
distinct cases, each involving fluids with varying densities and
viscosities. Table I summarizes the details of each case.

The isothermal incompressible fluid is entrapped by a do-
main sized 0.16 m high and 0.1 m by 0.1 m in width and depth,
like that of the experimental setup. Bounce-back (no slip)
boundary conditions are applied to the walls of the domain.
The density of the particle is selected as 1120 kg/m3 with a
diameter of 15 mm positioned at the center of the rectangular
domain at the height of 0.12. The schematic of the problem is
illustrated in Fig. 3.

In the LBM model, the domain is divided into 200, 200,
and 320 voxels in the x, y, and z axes, respectively. Therefore,
the spacing of each grid is set to 0.5 mm. In this validation, the
diameter of the particle fits 30 grid cells. The two parameters
targeted in this validation are the settling velocity and the
vertical location of the particle. Figure 4 plots the accelerated
velocity in the direction of gravity against time for all four
cases, and Fig. 5 demonstrates the normalized location of

045301-6



HYBRID LATTICE-BOLTZMANN–FINITE-DIFFERENCE … PHYSICAL REVIEW E 109, 045301 (2024)

FIG. 3. Schematic for the single-particle sedimentation problem.

the particle in the z direction against time for all four cases.
Figures 4 and 5 show good agreement with the experimental
findings.

B. Sedimentation of an elliptical particle in a viscous fluid

In this phase of this paper, the behavior of a settling ellip-
tical particle in an infinite channel with width (8a) filled with
a fluid is represented. Initially, the elliptical particle at rest is
located at the centerline of the channel at the angle of θ0 =
π/2. The elliptical particle with a density of 1100 kg/m3 has
a major axis (a) length of 0.05 cm and a minor axis (b) length

FIG. 4. Streamwise particle velocity vs time in the current model
compared with the experimental setup of ten Cate et al. [56] for four
cases.

FIG. 5. Normalized vertical particle position plotted against time
for the current model along with the findings of the experimental
setup by ten Cate et al. [56] for four cases.

of 0.025 cm. The density and dynamic viscosity of the fluid
are ρ f = 1000 kg/m3 and ν f = 10−6 m2/s, respectively. The
gravitational acceleration g is equal to 9.81 m/s2, and no-slip
boundary conditions are applied on the walls of the channel,
as depicted in Fig. 6. The particle is discretized by 9 lattices
across the minor axis length and 18 lattices across the major
axis length. Furthermore, the time step selected corresponds to
τ f = 0.515. The elliptical particle initiates sedimentation and
rotational movement through the channel, eventually stabiliz-
ing at a terminal Reynolds number of 6.6. The findings are
compared with data obtained from Xia et al. [58] and Chen
et al. [57].

The findings are demonstrated in Fig. 7. Figure 7(a) tracks
the lateral migration of the particle with respect to the settling
position, and Fig. 7(b) tracks the change in orientation of the

FIG. 6. Schematic for the elliptical particle sedimentation.
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(a)

(b)

FIG. 7. (a) Particle lateral position and (b) particle orientation
plotted against the normalized settling position for the current model
along with the findings of Xia et al. [58] and Chen et al. [57].

particle with respect to the settling position. It is evident that
the present results agree well with Xia et al. [58] and Chen
et al. [57] results, and the reported behavior is reproduced.

C. Interaction of two-particle sedimentation in a cavity

The DKT analysis is a benchmark problem where two
particles settle in an enclosure filled with a viscous fluid and
interact with each other accordingly. Such behavior is recre-
ated to assess the fidelity of the model by comparing this paper
against the numerical works of Wang et al. [59], Nie et al. [60],
Krause et al. [26], and Feng and Michaelides [61]. The setup
involves water (ρ f = 1000 kg/m3 and ν f = 10−6 m2/s) as the
fluid medium. The two particles with identical radii of 1 mm
and a density of 1010 kg/m3 are placed in a 2 × 8−cm − high
two-dimensional domain (Fig. 8). The upper particle is posi-
tioned at {0.999, 7.2} cm, and beneath it is the leading particle
with a position of {1, 6.8} cm. The fluid is stagnant and
isothermal, and no-slip boundary conditions are applied to the
walls of the domain.

The domain of the model is discretized into 1600 grids on
the x axis and 6400 grids on the y axis. Hence, the lattice spac-
ing is 12.5 µm. The particle-particle collision parameters are
obtained from the study of Zhang et al. [62] due to the absence
of experimental data for these specific parameters. The critical
finding targeted in this validation is the lateral motion of the
particles rather than the vertical motion, as this was validated
in the previous section. Initially, the two particles start to
sediment across the fluid (drafting). Afterwards, the particle
collides (kisses) at t = 1.5 s, where the trailing particle pushes
the leading particle to the side and then initiates the tumbling
part at 2.5 s.

FIG. 8. The schematic on the left-hand side represents the two-particle interaction problem. P1 and P2 denote the leading and trailing
particles, respectively. Contours on the right-hand side of the figure show the drafting-kissing-tumbling timeframes.
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FIG. 9. Particle lateral position over time: a comparative analysis
with literature (Wang et al. [59], Nie et al. [60], Krause et al. [26],
and Feng and Michaelides [61]). Filled symbols denote the leading
particle, and unfilled symbols represent the trailing particle.

The comparison between the findings of this paper and
several published works in the literature is demonstrated in
Fig. 9. The graph presents the behavior of both particles in the
lateral direction for the range of 5 s. The investigation into the
DKT dynamics of two particles presents a complex challenge,
as highlighted by the inconsistencies in existing research,
notably in Fig. 9. This complexity arises from the variability
in both particle-particle and particle-wall interaction parame-
ters. A critical aspect of accurately representing the physics
of DKT phenomena involves the precise adjustment of these
parameters. The studies compared in Fig. 9 did not provide de-
tailed values for these parameters, and each referenced study
utilized distinct models with varying parameters. This dis-
crepancy in parameters contributes to the observed differences
in the results reported by various researchers, particularly
noticeable in the tumbling phase of particle transport. It is
important to note that the availability of experimental data for
the two-dimensional DKT model would enable finer calibra-
tion of the parameters of these studies to align with empirical
findings. However, such data are currently not available.

D. Rebound motion of a particle near the bottom surface

This subsection involves the validation of the particle-
wall interaction by two models, namely, the particle-wall
interaction method of Crowe et al. [52] and the discrete
contact model [53], using the experimentation of Hage-
meier et al. [63]. The experiment involves a Teflon particle
with a diameter of 20 mm suspended in a cylindrical tank
with a radius of 55 mm filled with a water-glycerin mix-
ture (ρ f = 1141 kg/m3 and μ f = 0.008 kg m−1 s−1) shown in
Fig. 10. According to the studies [64,65], polytetrafluoroethy-
lene (PTFE) spheres have a density of 2170 kg/m3, a modulus
of elasticity of 0.670 GPa, and Poisson’s ratio of 0.46. The
static and kinetic friction factors are obtained from the same

FIG. 10. Validation setup for particle-wall contact model.

studies and are reported as 0.05 and 0.02, respectively. The
domain is discretized by 100 grids in the x axis for adequate
results. For the model of Crowe et al. [52], the restitution
coefficient is selected with a value of 0.72 according to Hage-
meier et al. [63]. In addition, the time step size for the same
model is selected as 10−4 s. On the other hand, the discrete
contact model is employed with a damping constant of 0.05.
The parameters of the discrete contact model are selected
according to the recommendation of Marquardt et al. [66].

Having the numerical setup, the spacing between the bot-
tom surface of the particle and the wall is plotted in Fig. 11. As
shown in Fig. 11, a discrepancy is observed during the initial
sedimentation stage before the particle-wall collision. This
early stage, where particle-wall interaction is yet to occur,
suggests that the deviation might be related to issues in the
free sedimentation of the particle. The aspect of free sedi-
mentation was previously tested and validated, as evidenced

FIG. 11. Validation of particle rebound height for discrete con-
tact model [53] and the model of Crowe et al. [52] with experimental
work [63].
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TABLE II. Thermophysical properties of particles utilized in the
validation of a hot particle.

Density, Specific heat capacity,
Particle material ρp (kg/m3) Cp (kJ K−1 kg−1)

Aluminum 2702 0.903
Beryllium 1850 1.825

in Figs. 4 and 5. Interestingly, the validation shown in these
figures (Figs. 4 and 5) aligns more closely with the experimen-
tal data than the comparisons made in Fig. 11. This indicates
that uncertainties in the experimental data, particularly those
presented in Fig. 11, may contribute to the observed dis-
crepancy. Furthermore, the differences noted before and after
the rebound appear to be independent of the accuracy of the
discrete contact model [53] or the model of Crowe et al.
[52]. In the upcoming analysis, the discrete contact model was
adopted for this paper, as it captures the rebound physics more
appropriately. Additionally, it does not require any treatment
for the time step size.

E. Transient thermal response of a hot particle in a cavity

To evaluate the thermal reliability of the proposed hybrid
LBM-FDM model, a hot metallic spherical particle with an
initial temperature of 350 K is suspended, initially stationary
in a rectangular container constructed like the Cate et al. [56]
experiment, filled with the fluid with properties demonstrated
in Case 1 of the Cate et al. [56] experiment. Aluminum and
beryllium were used as the materials of the spherical particles,
each with a diameter of 1 mm. The thermophysical properties
are summarized in Table II. Since the maximum Biot num-
ber obtained in this analysis is 0.001, the analytical solution
shown in Eq. (41) is compared with the current hybrid LBM-
FDM model. For the LCM, the nondimensional temperature
across the solid spherical particle is estimated using [67]

θ = T (t ) − T∞
Tp,sf − T∞

= exp

(
− t

τLCM

)
, (41)

where θ indicates the nondimensional temperature. The sub-
scripts w and ∞ represent the surface of the particle and
surrounding fluid, and τLCM is the thermal time constant ob-
tained from

τLCM = UpAsf

ρpVCp
, (42)

where Asf and V are the surface area and volume of the sphere.
Since the particle suspension is validated in the preceding
section, the suspending velocity of the particle is used as an
input to Eq. (41). The primary focus of the investigation lies in
evaluating the efficacy of the proposed model in accommodat-
ing variations in the temperature of the particle. As depicted in
Fig. 12, the submerged particle exhibits an exponential energy
loss to the encompassing fluid. The associated graph provides

FIG. 12. Comparison between the hybrid numerical method with
the closed form solution.

insights into the temporal reduction of the temperature of the
particle from its initial state to that of the surrounding fluid.
Eventually, after a long period, the particle attains thermal
equilibrium with the ambient surroundings. The duration of
this thermal equilibration is contingent upon the thermophys-
ical properties of the particle. For instance, in the case of
the beryllium material, characterized by its high specific heat
capacity, the energy dissipation rate of the particle is notably
low. This behavior can be attributed to the increased thermal
time constant, which indicates a delayed response to changes
in its thermal environment. The gradual decay behavior is ac-
curately achieved by the model and does not require any finer
time step. Similarly, the model accurately predicts the thermal
behavior of aluminum, a material characterized by lower heat
capacity yet higher thermal conductivity. Fundamentally, the
results of the model align favorably with analytical solutions,
demonstrating the effectiveness in simulating particle-fluid
thermal interactions.

FIG. 13. The fully developed velocity profile across the height of
the channel obtained using the analytical solution against the current
model.
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F. Hydrodynamic and thermal behavior of a minichannel flow

Through the previous sections, the physics governing the
kinetics and thermal dynamics of the resolved particle has
been thoroughly addressed. Nonetheless, it is also critical
to substantiate the flow domain in both the momentum and
energy fields. To accomplish that, the analytical solution of a
flow between two parallel plates is provided for the velocity
as [68]

V(y) = 3

2
um

{
1 −

[
y2

(0.5h)2

]}
, (43)

where um is the channel mean velocity, h or H is the height
of the channel, and y is the varying distance from the channel
center. The channel Reynolds number is defined based
on the hydraulic diameter, ReDh = Dh um

ν
, where Dh is the

hydraulic diameter and is equivalent to twice the height of
the channel. With a heat flux boundary condition imposed
on the two parallel plates, the local Nusselt number of the
channel surface (Nux ) is utilized to indicate the variation
of the Nusselt number along the length of the channel.
Therefore, the local Nusselt number of the channel surface
in the entrance and developed region is represented by
[68]

Nux =

⎧⎪⎪⎨
⎪⎪⎩

1.49
x1/3
∗

, x∗ � 0.0002,

1.49
x1/3
∗

− 0.4, 0.0002 < x∗ � 0.001,

8.235 + 8.68e−164x∗ (x∗ × 103)
−0.506

, x∗ > 0.001.

(44)

Here, x∗ is the nondimensional entrance length obtained
from x∗ = x/Dh

ReDh Pr , in which Pr is the Prandtl number. For the

findings of the numerical model, Nux is obtained from

Nux = q′′(x)Dh

k f [Tsf (x) − Tm(x)]
, (45)

where q′′ represents the applied heat flux, Tsf is the local
surface temperature, and Tm is the bulk temperature at a
certain local distance obtained using

Tm = 1

H · um
∫ uT dy, (46)

with

um = 1

H
∫ udy, (47)

where H represents the height of the channel. The fluid
is water with a Pr of 6.4 flowing with ReDh = 594. The
channel height is 4 mm, and the length is set to achieve a

FIG. 14. The distribution of the local Nusselt number across the
normalized local length of the channel is obtained using both the
analytical solution and the current model.

fully developed flow. The two walls of the channel use a
bounce-back scheme with constant heat flux applied at each
wall. The inlet and outlet of the channels employ the Dirichlet
boundary condition to the inlet (constant velocity) and outlet
(zero pressure) of the channel. In the setup of the parameter,
the mesh size is 0.0202 mm with a time step of 9.16 µs for
stability and high accuracy. Accordingly, the velocity profile
at the developed local distance is plotted compared with the
analytical solution [Eq. (43)] in Fig. 13. Correspondingly,
the local Nusselt number obtained by Eq. (44) is plotted
against the numerical model, as shown in Fig. 14. The figure
demonstrates our ability to model the developing flow (Graetz
problem) and the fully developed region for a flow between
the parallel plates. The analogy reveals the competency
of the model in handling the channel flow of fluid motion
accompanied by heat transfer with a minor error percentage.

In summary, the hybrid LBM-FDM model has undergone
thorough testing and has been demonstrated to be a reliable
model for simulating thermal transport in suspensions under
both steady-state and transient conditions.

G. Mesh independence analysis

In computational simulations, it is important to ensure the
independence of the findings from the grid size, and such
an analysis enables us to achieve adequate accuracy with
efficient run time. Typically, LBM simulations employ a

FIG. 15. Visualization of the computational mesh generated for
the model.
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TABLE III. Mesh sensitivity analysis for various mesh types.

Mesh type Very coarse Coarse Baseline Fine

Number of grids, x×y 50 × 2475 100 × 4950 200 × 9900 400 × 19800
Grid size (µm) 80.8 40.4 20.2 10.1
Nusselt number at fully developed location, Nux 10.302 9.033 8.351 8.235
Relative error (%) 25.1 9.69 1.41 —

square grid mesh that exhibits uniformity across the entire
computational domain. This uniformity simplifies the math-
ematical implementation of the simulation process. Although
LBM simulations can accommodate various mesh shapes to
address complex geometries, in the context of this paper,
where the geometric characteristics of the domain remain rela-
tively simple, the utilization of a uniform square grid suffices,
as demonstrated in Fig. 15, and such a uniform mesh geometry
was used for all the rigorous validation that we presented in
the last section. The mesh sensitivity analysis targeted the
nondimensional number Nux at the fully developed location
as the main parameter for comparison in a convective flow
with no MPCM particles. As demonstrated in Table III, four
types of meshes—very coarse, coarse, baseline, and fine—
are examined to identify the most efficient mesh size. The
very coarse and coarse meshes, with typical sizes of 80.8
and 40.4 µm, respectively, were deemed to be insufficient for
fully resolving the hydrodynamic and thermal behavior of the
findings. The fine mesh, while accurate, proved to be compu-
tationally expensive when the microparticles were employed.
Therefore, the baseline mesh is employed in this paper (where
the deviation between the fine and the baseline is <1.5%, as
shown in Table III). Such a selection provides the particle with
8 grid cells in diameter to inhibit during the analysis.

IV. RESULTS AND DISCUSSION

A. Physical model and slurry viscosity estimation

In this paper, the MPCM particles are suspended in a
carrier fluid of mainly water to investigate the potential of
the suspension in enhancing heat transfer. The presence of
microparticles influences the properties of the carrier fluid.
Commonly, the viscosity of the slurry is estimated using either
the Einstein [69] or the Brinkmann [70] model. However, such
correlations presume homogenous dispersion of the micropar-
ticles, which is not completely true when dealing with random
microparticle dispersions. Therefore, to estimate the viscosity
of the slurry, a detailed analysis is conducted. A large foreign
sphere is dropped in an enclosed rectangular container filled
with a slurry of various volume fractions. Figure 16 is a rep-
resentation of this analysis setup. The properties, the size of
the large sphere, and the dimension of the numerical domain
are like Case 1 of the Cate et al. [56] experiment. The foreign
particle is initially at rest and initiates its descent at t > 0. As
it descends, the foreign particle eventually reaches its terminal
velocity and ceases to accelerate, a condition attained through
the balance of the net forces acting upon it. At this period, the
terminal velocity is determined by the equilibrium between
the gravitational force (weight), buoyant force, and drag force,

giving rise to the following equation:

Vt =
√

4gD f p

3Cdr

(
ρ f p − ρ f

ρ f

)
, (48)

where the subscript f p designates the specific parameters that
pertain to the foreign particle. Here, Cdr is the drag coefficient
obtained by the Abraham [71] correlation as

Cdr =
(

0.5407 +
√

24

Re f p

)2

, 0 < Re f p < 5000, (49)

with

Re f p = ρ f Vt D f p

μ f
, (50)

where Re f p corresponds to the Reynolds number of the
foreign particle. Solving Eqs. (48)–(50) at the terminal con-
dition with the terminal velocity value obtained from the
model simulation provides the dynamic viscosity of the slurry.
This process results in the generation of Fig. 17, depicting
variations for volume fractions of 0.1, 0.2, 0.4, and 0.8%,
respectively. The obtained results are presented as a ratio
between the viscosity of the slurry and the viscosity of the
base fluid.

FIG. 16. A depiction of the setup for obtaining the viscosity of
the slurry.
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FIG. 17. Ratio of dynamic viscosity to that of the base fluid for
varying volume fractions.

Through Fig. 17, the model demonstrates its efficacy in
capturing the influence of MPCM particles on fluid viscosity.
While the viscosity test employed a dispersed particle config-
uration throughout the enclosure, the current model exhibits
versatility in handling regions where the volume fractions
significantly vary. As a result, in this paper, we provide a
valuable tool for investigating particle distribution in different
regions within the channel, such as the top wall, bottom wall,
or centerline.

Consequently, the results of this paper are divided into
two primary segments. The first part examines three dis-
tinct cases of MPCM particles at ReDh = 200, which are
categorized as follows: light MPCM particles [11] (ρp < ρ f ),
heavy MPCM particles [72] (ρp > ρ f ), and neutrally buoyant
MCPM particles [73] (ρp ≈ ρ f ). The second segment investi-
gates the influence of various parameters for a single case of
MPCM particles. The MPCM particles for this whole paper
are spherical and rigid with constant impact parameters (E∗,
fst, fkin, and υ; Sec. II E). Moreover, the particles possess an
80 µm radius and are positioned within an incompressible,
two-dimensional laminar flow regime. Figure 18 provides

a comprehensive description of the current analysis setup
with the necessary boundary and initial conditions. A time
step of 1 µs was determined to yield results independent of
the time step across the entire range of volume fractions.
Therefore, it is utilized in this paper. The particle-wall im-
pact parameters are selected based on the recommendation
of Marquardt et al. [66]. The simulations are conducted on
a high-performance computing cluster at Khalifa University,
utilizing Intel Xeon Gold 6230R processors. Each simulation
is conducted utilizing 50 processing cores, with each case
requiring approximately one week for completion.

B. Impact of MPCM particle distribution

The steady-state distribution of the MPCM particles in a
confined minichannel is contingent upon their density, result-
ing in either sedimentation at the lower or upper regions, or
potentially in between, of the surface of the channel. The dis-
tinctive sedimentation patterns exhibited by different MPCM
variants are depicted in Fig. 19. A showcase for the compari-
son between the three cases of MPCM particles is conducted
at ReDh = 200. Typically, for the case of clear fluid with no
suspension, the local mean temperature and surface tempera-
ture increase along the channel length. Nonetheless, with the
presence of the sedimented MPCM particles on the surface of
the channel, a major change in the behavior occurs. To give
more insight into such variation, the temperature difference
between the inlet temperature Ti and the wall temperature
Tsf is plotted in Fig. 20. Figure 20 demonstrates the growth
in the difference in temperature (Tsf − Ti ) across the stream-
wise direction of the channel for the three different cases
of MPCMs. The neutrally buoyant MPCM particles had the
least effect on the surface temperature for all volume frac-
tions. Such behavior is expected since these particles rarely
engage with regions of elevated temperatures near the sur-
face of the heating walls [Figs. 21(a) and 21(b)]. Figure 21
demonstrates the nondimensional temperature contours ob-
tained by subtracting the inlet temperature and dividing by the
difference between the maximum surface temperature and the
inlet temperature (T − Tin )/(Tsf,max − Tin ). This is interpreted
in Fig. 20, where the difference between the bottom and top

FIG. 18. An illustration of the current model setup with the applied boundary conditions. Note: The particles are not drawn to scale.
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FIG. 19. Distinctive sedimentation patterns exhibited by relatively light, neutrally buoyant, and heavy micro-phase-change-material
(MPCM) particles.

surface temperatures is zero (as indicated by the black solid
and dashed lines). A noteworthy observation regarding the
neutrally buoyant MPCM particles pertains to their effect on
the thermal behavior of the channel in response to changes
in volume fraction. When the volume fraction increased from
0.1 to 0.2%, there was no visible impact on the surface tem-
perature. However, as the volume fraction further increased
to 0.4% and subsequently to 0.8%, a notable reduction of 0.5
and 1.1 K, respectively, in surface temperature was observed

FIG. 20. A diagram illustrating the different behaviors of heavy
[red (dark gray)], neutrally buoyant [black], and light [blue (light
gray)] micro-phase-change-material (MPCM) particles for different
volume fractions at various points of the normalized local position.

when compared with the 0.1% volume fraction. The inclusion
of more particles led to a more crowded concentration of
MPCM particles in the central region, increasing interparticles
collisions. Accordingly, these collisions enable the particles to
migrate near the regions closer to the walls of the channel and
thus decrease the surface temperature [Fig. 21(c)].

In comparison with the neutrally buoyant particles, the
heavy MPCM particles had a significant influence on the
surface temperature of the bottom walls but a slight impact on
the surface temperature of the upper wall. This is attributed
to the increased particle concentration within the lower re-
gion as opposed to the upper region of the channel surface
[Figs. 22(a) and 22(b)]. The MPCM particles in contact with
the bottom heating wall absorb the generated heat in the form
of latent and sensible energy, and thus, an effective approach
in dissipating the heat is provided. Furthermore, due to the
increased surface area of the particle, the heat transfer mech-
anism is further enhanced, resulting in the reduction of the
surface temperature. As demonstrated in Fig. 20, such surface
temperature reduction is increased by the addition of more
MPCM particles in the form of volume fraction. It is important
to note that this assertion is specifically applicable to volume
fractions exceeding 0.4%, as very minimal influence is visible
below this threshold. The surface temperature of the upper
walls is also influenced by the presence of the MPCM parti-
cles. A similar increase in volume fraction led to the reduction
of the upper wall surface temperature by an average of 0.15
and 0.59 K and a maximum of 0.32 and 1.1 K, respectively,
when compared with the top surface temperature of 0.1%. The
widening gap demonstrated in Fig. 20 between the surface
temperatures of the bottom and top walls is directly associated
with the increasing number of particles. This behavior occurs
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FIG. 21. Normalized temperature contour for the neutrally buoyant micro-phase-change-material (MPCM) particles. (a) Normalized
temperature for the full channel at ReDh = 200. (b) A segment of the channel for the volume fraction of 0.1%. (c) A segment of the channel
for the volume fraction of 0.8%.

due to the introduction of a greater quantity of MPCM heavy
particles, which in turn intensifies the cooling effect on the
surface temperature of the bottom wall. Consequently, this
increased cooling effect leads to a more pronounced differ-
ence between the temperature values of the two walls.

The last MPCM examined in this analysis is the light
MPCM particles. Since these particles exhibit a lower den-
sity than the other MPCM cases, the particle distribution is
focused on the upper region of the channel. Thus, the surface
temperature of the top wall is less than the bottom, as illus-
trated in Fig. 21. The behavior of the light MPCM particles
closely mirrors that of dense MPCM particles in terms of their

effect on reducing the surface temperature with increasing
particle concentration. However, this effect is negligible at
lower volume fractions, specifically at 0.1%. A notable shift
in the reduction of the upper wall temperature is observed,
with average values of 0.15, 0.67, and 1.07 K for volume
fractions of 0.2, 0.4, and 0.8%, respectively, in comparison
with the 0.1% volume fraction. The maximum reduction in
upper wall temperature for each of these volume fractions
across the entire length of the channel is quantified at 0.4,
1.28, and 1.83 K, respectively, when compared with the 0.1%
volume fraction. Unexpectedly, the fluctuations of the surface
temperature for the volume fraction of 0.8 and 0.4% are more

FIG. 22. Normalized temperature contours for various conditions: (a) Heavy micro-phase-change-material (MPCM) particles in the full
channel at ReDh = 200. (b) A 0.1% volume fraction of heavy MPCM particles in a channel segment. (c) Light MPCM particles in the full
channel at ReDh = 200. (d) A 0.8% volume fraction of light MPCM particles in a channel segment.
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FIG. 23. Comparative analysis of temperature rate change in
light and dense micro-phase-change-material (MPCM) particles.

visible compared with the denser MPCM particles at the same
volume fractions. The primary reason for this observed be-
havior is attributed to the difference in densities between the
MPCM particles and the surrounding fluid. In the case of light
MPCM particles, their faster arrival at the channel surface,
when compared with the denser particles, is a consequence
of the difference in density between the fluid and the light
particles (ρp,light − ρ f > ρp,heavy − ρ f ). This huge difference,
in turn, hinders the uniform dispersion of microparticles along
the upper wall of the channel. Therefore, regions without any
MPCM particles exist [Fig. 22(d)], leading to no reduction
in surface temperature, as outlined by the dashed lines in
Fig. 22(d). To understand more why the surface temperature
reduction is different for the light and heavy MPCM particles,
Fig. 23 is plotted.

Figure 23 demonstrates the particle temperature rate of
change for the two cases. The curve represents a random light
and dense MPCM particle behavior from its initial state until a
certain period. In both scenarios, the MPCM particles absorb
heat, resulting in a consequent temperature rise. Because our
PCM model accounts for the temperature change during the
melting period, the temperature of the particle continues to
escalate until it exits the channel. As mentioned before, the
lighter MPCM particles approach the heating wall earlier than
the dense particles, and thus, the light particles interact with
elevated temperature regions more frequently than the dense
particles. Moreover, it is noteworthy that the thermophysical
characteristics of the light MPCM present distinct advantages
when set against the dense MPCM. These reasons enabled
the best reduction in surface temperature for light MPCM
particles.

C. Effect of particle distribution on heat transfer coefficient

In the channel validation case (Sec. III F), Nux is equal for
both the top and bottom walls of the channel. Nonetheless, in
this section, the presence of particles disrupts this uniformity.
Therefore, we introduce a complementary definition of the
local Nusselt number, denoted as NuT

x for the top surface and

(a)

(b)

FIG. 24. The distribution of local Nusselt numbers for (a) upper
local Nusselt number NuT

x and (b) bottom local Nusselt number NuB
x .

NuB
x for the bottom surface of the channel. These values are

determined using the following equations:

NuT
x = −Dh

Tsf (x) − Tm(x)

(
∂T

∂y

)
y=H

, (51)

NuB
x = −Dh

Tsf (x) − Tm(x)

(
∂T

∂y

)
y=0

. (52)

Using these two equations, the local Nusselt number at the top
NuT

x and bottom NuB
x surfaces of the channel are evaluated, as

shown in Fig. 24. Based on the prior findings, we anticipated
the specific trends in the Nusselt numbers for the bottom
and upper channel walls concerning light, neutrally buoyant,
and heavy MPCM particles. These trends are dependent upon
the local surface temperature. However, it is essential to ac-
knowledge that the Nusselt number is additionally influenced
by both the average local temperature and the temperature
gradient along the height of the channel. In light of this, the
local heat transfer coefficient for the neutrally buoyant MPCM
particles increased, and that is attributed to the influence on
the bulk fluid temperature and not the surface temperature.
As demonstrated in Fig. 22(d), the effect of the light MPCM
particle is more influential than the other two types. That is
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FIG. 25. A compilation of local Nusselt number trends is pre-
sented at the entrance region, portraying the relationship with
nondimensional local position and volume fraction, characterized by
Peclet number.

the reason why the local Nusselt number for the upper heat-
ing surface is significant. Naturally, this observed behavior
becomes more pronounced with the increased incorporation
of additional MPCM particles for the three MPCM cases, as
depicted in Fig. 24. Furthermore, the fluctuations in NuT

x for
the light MCPCM particles are ascribed to the fluctuation in
surface temperature.

D. Influence of volume fraction on heat transfer enhancement

Since the light MPCM particles had the highest enhance-
ment of heat transfer, this MPCM is examined for a range
of flow regimes and particle concentrations, where the heat
transfer coefficient is examined at the bottom wall of the
channel. A crucial part of this analysis focuses on studying the
impact of the volume fraction ϕ on the heat transfer by means
of calculating the Nusselt number. Firstly, the local Nusselt
number variation in the entrance region of the channel with
respect to the Peclet number (Pe = ReDhPr) is demonstrated
in Fig. 25. Throughout the length of the channel, the increase
of microparticle volume fraction causes the thermal transfer
to gradually increase. However, because in the developing
region the heat transfer coefficient is significantly high, the
impact of the particles on the heat transfer enhancement is
negligible. In addition, the increase in the Peclet number,
which by definition indicates a rise in advective fluid transport
rather than diffusive transport, delays the development of the
thermal boundary layer throughout the channel.

At the low value of Pe = 325, the increase of the volume
fraction from 0.1 to 0.2% slightly enhances thermal dissi-
pation for the positions beyond the normalized location of
x/Dh = 2.5. On the other hand, the incorporation of MPCM
particles to a volume fraction of 0.4% leads to a sudden
growth from the usual trend at x/Dh = 1.25. The point of
bifurcation in trend is also noticed at Pe = 650, 1300, and
2600 but delayed at the normalized locations of x/Dh = 2.5,
5, and 8, respectively. These points of bifurcation reveal that
the influence of microparticles on thermal enhancement is
only noticeable beyond such a location, and this location

varies along the Peclet number. Similar behavior is exhibited
in the research conducted by Ma et al. [74].

Turning attention to the region where heat transfer en-
hancement by MPCM particles is evident within the final
regions of the entrance length, the volume fraction of ϕ =
0.8% led to a substantial increase in Nux for all Pe. This
substantial enhancement of heat transfer is quantified with
values of 10.77, 10.49, 7.55, and 6.19% compared with the
base fluid for Pe values of 325, 650, 1300, and 2600, re-
spectively. Conversely, the smallest MPCM concentration of
ϕ = 0.1% had a slight increase in the heat transfer coeffi-
cient at Pe = 325 and an insignificant impact on the thermal
enhancement for Pe = 650, 1300, and 2600. These findings
reveal a positive correlation between the volume fraction and
thermal enhancement in the entrance length of the channel.

In contrast to the previous figure, Figs. 26(a)–26(d) demon-
strates the enhancement of the MPCM concentration in the
fully developed region of the minichannel for various volume
fractions at different flow regimes. In Fig. 26(a), it is apparent
that the introduction of MCPM particles on the base fluids
provides notable advancement in thermal performance. For
higher Reynolds numbers of 100 and 200 [Figs. 26(b) and
26(c)], the effect of increasing the concentration of MPCMs
starts to get more distinct.

Since the number of MPCM particles at a low volume
fraction (0.1%) is few, increasing ReDh leads to the delay
of the thermally developing region which will include more
MPCM particles in that region and less at the thermally
developed region. Consequently, the effect of ϕ = 0.1% on
the heat transfer coefficient decreases when ReDh gradually
increases from 50 to 300. A similar trend is observed with
a volume fraction of 0.2% when raising the Reynolds num-
ber from 50 to 100 and then to 200, in contrast to ReDh =
300, where the impact of MPCM particles on enhancing
heat transfer becomes evident. This difference arises because,
at ReDh = 300, the MPCM particles possess sufficient mo-
mentum to migrate to the fully developed region where the
MPCM particle influence on thermal enhancement becomes
more apparent. In comparison with the base fluid, the in-
corporation of a volume fraction of 0.4% enhanced the heat
transfer coefficient by > 20% for ReDh = 200 and 21% for
ReDh = 200 at the end region (x/Dh = 20) of the channel.
Notably, the highest volume fraction of 0.8% resulted in
the greatest increase in Nux, where the recorded value re-
mained consistently > 10 within the developed region for
all flow regimes at various locations of the channel. The
primary insight obtained from this part underscores that the
heat transfer coefficients are affected not only by the volume
fraction of particles but also by their distribution throughout
the channel. Furthermore, it is noteworthy that, in the devel-
oped region exclusively, the increase of Reynolds numbers
for higher volume fractions contributes to an improvement
in thermal performance, whereas increasing the Reynolds
number for lower volume fractions leads to a reduction in heat
transfer.

It is essential to establish a comprehensive metric that
quantifies the overall heat transfer coefficient as a singular
parameter to fully encapsulate the extent of heat transfer en-
hancement when employing MPCM particles. A suitable way
to represent this enhancement is by determining the average
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(a)

(b)

(c)

(d)

FIG. 26. A compilation of local Nusselt number trends is pre-
sented at the fully developed region, portraying the relationship
with nondimensional local position across various flow regimes (a)
Re = 50, (b) Re = 100, (c) Re = 200, and (d) Re = 300.

Nusselt number (Nu) along the length of the channel surface

FIG. 27. Comparison between the average Nusselt number and
Reynolds number for different volume fractions.

by the following correlation:

Nu = 1

L

∫ L

0
Nux dx . (53)

By implementing the above equation, Fig. 27 is constructed.
The average Nusselt number exhibits a decline as ReDh pro-
gresses from 50 to 100 for volume fractions of 0.1 and
0.2% due to reasons previously mentioned. Nevertheless, by
increasing ReDh to 200 and 300, the decaying Nu trend
for ϕ = 0.1 and 0.2% undergoes a transformation to an as-
cending trend due to the extended entrance length of the
thermally developed region. Such a growth is the lowest
when transitioning to an elevated flow regime, as shown in
Table IV. However, when compared with the base fluid, the
enhancement of the heat transfer coefficient is significantly
improved. Furthermore, a linear growth pattern is exhibited
when increasing the flow velocity from ReDh = 200 to the
highest flow regime of ReDh = 300. Throughout different
flow regimes, the most enhancing volume concentration is
0.8%, as demonstrated in Table IV. The core emphasis of this
investigation reveals an enhancement in the overall heat trans-
fer coefficient by increasing the Reynolds number and volume
fraction. Nonetheless, the objective of continually elevating
the Reynolds number to enhance thermal performance entails
the tradeoff of increased pumping power. Consequently, the
subsequent section discusses such a subject.

TABLE IV. The average enhancement percentage in comparison
with the base fluid, for different volume fractions across various flow
regimes.

ϕ/ReDh 50 100 200 300

0.1 21.31 17.61 27.18 35.13
0.2 24.89 24.73 28.65 44.29
0.4 33.49 34.73 36.65 45.77
0.8 33.21 35.76 38.49 47.39

045301-18



HYBRID LATTICE-BOLTZMANN–FINITE-DIFFERENCE … PHYSICAL REVIEW E 109, 045301 (2024)

FIG. 28. An examination of the relationship between the per-
formance index and Reynolds number is conducted across various
volume fractions and base fluid configurations.

E. PI

The primary aim behind the integration of MPCMs into
a minichannel is to attain optimal heat transfer conditions.
This objective is realized through the pursuit of increased ther-
mal enhancement while simultaneously minimizing pumping
costs. To facilitate this pursuit, a correlation has been es-
tablished to interrelate the friction factor with the average
Nusselt number. The parameter employed is the PI or thermal
enhancement factor defined as [75]

PI =
(

Nu

Nubf

)/(
fD

fD,bf

)1/3

. (54)

Here, the subscript bf denotes the base fluid, where particles
are absent for the average Nusselt number and friction factor.
The friction factor fD is obtained using [76]

fD = 2
�pDh

ρ f Lu2
m

. (55)

Using Eq. (54), Fig. 28 is plotted. As expected, the PI for
the volume fractions ϕ = 0.2, 0.4, and 0.8% at a Reynolds
number = 50 is below the value of unity. Such a value indi-
cates the impracticability of incorporating MPCMs into the
channel with such a flow regime due to the substantial es-
calation in pressure loss, which is not counterbalanced by a
concurrent improvement in the heat transfer coefficient. On
the other hand, the PI exceeds the value of 1 for ReDh >

100 for all volume fractions. Upon increasing the Reynolds
number to 200, a further augmentation in the PI is evident,
as shown in Table V. The investigation of the PI within the

TABLE V. Quantitative analysis of the PI across various flow
regimes at different volume fractions.

ϕ/ReDh 50 100 200 300

0.1 1.18 1.14 1.20 1.29
0.2 0.96 1.19 1.26 1.36
0.4 0.81 1.28 1.35 1.36
0.8 0.71 1.29 1.33 1.36

specified range of volume fractions, excluding the flow regime
at 50, has unveiled an ascending trend in the PI as the volume
fraction escalates from 0.1 to 0.8% with increasing Reynolds
number. Notably, the highest PI in this analysis is achieved at
ReDh = 300 for a volume fraction of 0.2, 0.4, and 0.8% with
a PI of 1.36.

V. CONCLUSIONS

In conclusion, the presented hybrid numerical scheme in-
tegrates LBM with FDM, offering a promising approach for
simulating the flow of MPCM particles. The numerical model
specifically investigates the MPCM behavior near the heating
channel surfaces. The comprehensive exploration of such be-
havior explored additional insights. These findings are briefly
summarized as follows:

(1) Concentrating MPCM particles near the heating sur-
faces proves advantageous, resulting in lower surface temper-
atures and improved overall thermal performance.

(2) Both heavy and light MPCM particles exhibit a similar
trend in reducing surface temperature, yet the light variant
outperforms the heavy one in the amount of temperature re-
duction.

(3) Integrating more particles increased interparticle colli-
sions, allowing particles to move toward higher-temperature
regions, thereby enhancing thermal behavior at the cost of
more pumping power.

(4) In the fully developed region, the heat transfer coeffi-
cients are influenced by both particle volume fraction and their
distribution throughout the channel, but that is not the case for
the entrance region.

It is noteworthy that, while an increase in ϕ enhances the
heat transfer coefficient, it concurrently raises the resistance to
particle flow, leading to an amplified pressure loss. Therefore,
achieving an optimal condition becomes imperative. Within
the scope of this analysis, it has been determined that this
condition is attained at ReDh = 300, when ϕ is set at 0.2, 0.4,
and 0.8%, resulting in a maximum PI of 1.36.
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