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Nonlocal contributions to the turbulent cascade in magnetohydrodynamic plasmas
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We present evidence for nonlocal contributions to the turbulent energy cascade in magnetohydrodynamic
(MHD) plasmas. Therefore, we revisit a well-known result derived directly from the MHD equations, i.e., the
Politano and Pouquet law for the transfer of kinetic and magnetic energy in scale. We propose adding a term that
accounts for nonlocal transfer and represents the influence of fluctuations from large scales due to the Alfvén
effect. Supported by direct numerical simulations of homogeneous and isotropic MHD turbulence, we verify
that in some plasma configurations, neglecting the additional nonlocal term might consistently overestimate
energy dissipation rates and, thus, the contributions of turbulent energy dissipation potentially affecting solar
wind heating, i.e., a central puzzle in space plasma physics that motivates the present work.
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I. INTRODUCTION

The physical mechanisms underlying the solar wind—a
continuous flow of charged particles emitted from the solar
corona—have been hypothesized since the beginning of the
past century. Based on Biermann’s observations of comet
tail motion relative to the Sun [1], Parker provided the first
comprehensive theoretical description of the solar wind as
a rapidly expanding outer coronal atmosphere overcoming
the Sun’s gravitational field [2]. Assuming an adiabatic solar
wind expansion, Parker also considered the radial tempera-
ture profile T (r) as a function of the heliocentric distance
r. Nonetheless, a purely adiabatic expansion of the solar
wind, which suggests a radial temperature profile of proton
temperature as T (r) ∼ r−4/3, differs from actual solar wind
plasma measurements that exhibit a much slower decay with
increasing distances r [3–5].

A possible mechanism that would supply heat to the ex-
panding solar wind—and thus explain the slower decay of
the temperature profile—is the dissipation of turbulent kinetic
and magnetic energy into heat predicted by a phenomenolog-
ical description of magnetohydrodynamic (MHD) turbulence
[6] (we also refer the reader to the recent review article on
scaling laws in solar wind turbulence [7]). The concept of
turbulent cascades, which has been put forth in the context
of hydrodynamic turbulence by Kolmogorov [8], Heisenberg
[9], von Weizsäcker [10], and Onsager [11], highlights the fact
that turbulent motions are essentially transport processes of
energy in scale. The existence of energy cascades in fluid and
plasma turbulence has been assessed experimentally (e.g., in
channel flows and fusion plasmas [12,13]), as well as by atmo-
spheric [14], oceanic [15], and space plasma measurements
[16]. A central quantity in phenomenological descriptions of
such cascade processes is the averaged energy dissipation rate
〈εkin〉, which is assumed to entirely characterize the transfer
of energy from the injection scale, where the turbulent flow is
stirred, to small scales where energy is dissipated into heat.

In a conducting fluid, the rate at which kinetic and mag-
netic energy is dissipated is determined by the local kinetic
and magnetic energy dissipation rates,

εkin(x, t ) = ν

2

∑
i,k

(
∂ui(x, t )

∂xk
+ ∂uk (x, t )

∂xi

)2

, (1)

εmag(x, t ) = λ

2

∑
i,k

(
∂hi(x, t )

∂xk
+ ∂hk (x, t )

∂xi

)2

, (2)

where u(x, t ) denotes the velocity field, h(x, t ) =√
μ/4πρ H(x, t ) the rescaled magnetic field, ρ the

density of the fluid, μ the permeability, ν the kinematic
viscosity, and λ the magnetic diffusivity (see Appendix A
for further details). Figure 1(a) depicts a two-dimensional
cut through the total energy dissipation rate field, εtot (x, t ) =
εkin(x, t ) + εmag(x, t ), from a direct numerical simulation
(DNS) of MHD turbulence (see Table I for further details).
The dissipation field is highly fluctuating and exhibits
strong gradients organized in current sheets, in contrast to
hydrodynamic turbulence [17]; see Fig. 1(b), where the
peaks are more localized, hinting at the presence of vortex
tubes [18,19].

The solar wind is weakly collisional, which implies that
energy cascades from the MHD scale further down to proton
and electron scales [20]. Due to the limited resolution of the
instruments onboard most spacecraft and the presence of mea-
surement noise, strong gradients of the energy dissipation at
kinetic scales cannot typically be resolved directly from in situ
solar wind observations. Nonetheless, the scalewise energy
transfer at the scales at which the interplanetary plasma has a
fluidlike behavior can be estimated indirectly from third-order
moments of velocity and magnetic fields [7,21]. This can best
be illustrated by considering the limit of vanishing magnetic
field in the MHD equations, i.e., the Navier-Stokes equation.
Under the assumption of homogeneity, isotropy, and statistical
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TABLE I. Characteristic parameters of the direct numerical simulations (DNS) of 3D MHD and hydrodynamic turbulence. Taylor-
based Reynolds numbers Reλ,kin = urmsλkin/ν and Reλ,mag = hrmsλmag/λ, root-mean-square velocity urms = √〈u2〉/3 and magnetic field
hrms = √〈h2〉/3, averaged kinetic and magnetic energy dissipation rates (1) and (2), kinematic viscosity ν and magnetic diffusivity λ,
Kolmogorov dissipation length scales ηkin = (ν3/〈εkin〉)1/4 and ηmag = (λ3/〈εmag〉)1/4, Taylor length scales λkin = √

15νu2
rms/〈εkin〉 and λmag =√

15λh2
rms/〈εmag〉, and integral length scales Lkin and Lmag (both determined from the correlation functions), grid spacing dx, and number of

grid points, N . Statistical quantities in the MHD and the hydrodynamic turbulence simulation were averaged over approximately nine and five
large eddy turnover times, respectively.

Reλ,kin Reλ,mag urms hrms 〈εkin〉 〈εmag〉 ν = λ ηkin ηmag λkin λmag Lkin Lmag dx N

252 161 2.43 1.40 2.30 5.65 1.2 × 10−3 5.2 × 10−3 4.2 × 10−3 0.216 0.079 1.350 0.607 6.1 × 10−3 10243

418 0.686 0.103 1.85 × 10−4 2.8 × 10−4 0.113 1.364 6.1 × 10−3 10243

stationarity of the flow, the third-order moment of the longi-
tudinal velocity increment, δru = [u(x + r, t ) − u(x, t )] · r

r ,
is related to the averaged kinetic energy dissipation rate
according to

Suuu
r r r (r) = 〈(δru)3〉 = − 4

5 〈εkin〉r, (3)

where angle brackets 〈·〉 denote a suitable averaging proce-
dure, e.g., ensemble averages [22]. A similar law has been
derived from the MHD equations based on the Elsässer fields
by Politano and Pouquet [23,24] and will hereafter be re-
ferred to as PP law. The PP law, which has been successfully
used to assess the significance of solar wind heating [6,25],
suggests that—similar to hydrodynamic turbulence—the non-
linear interactions during energy transfer are purely local in
scale r. The localness of interactions, however, in MHD tur-
bulence is broken by the Alfvén effect [26], which implies that
small-scale fluctuations are susceptible to large-scale mag-
netic field structures and behave approximately as Alfvén
waves [27]—a central assumption in both phenomenological
models put forth by Iroshnikov [28] and Kraichnan [29]. The
Alfvénisation of small-scale fluctuations is also implied in
the phenomenological model by Boldyrev [30], who suggests
a scale-dependent alignment between velocity and magnetic
field that effectively suppresses nonlinear transfer at smaller
scales (we also refer to [31–33] for further discussions, as well
as the incorporation of potential anisotropies captured by the
Goldreich-Sridhar model [34]). The solar wind can be highly
Alfvénic, supporting the propagation of outward and inward
Alfvén waves [35,36] (with respect to the Sun). At the same
time, heliospheric plasmas develop a strong turbulent state,
leading to the apparent paradox known as Alfvénic turbulence
[37,38]. This condition, characterized by the simultaneous
presence of strong turbulence and non-negligible correla-
tions between velocity and the frozen-in magnetic field, is
routinely observed in the solar wind [39]. Alfvénicity, as
well as homogeneity, isotropy, and compressibility, are space
plasma features that vary throughout the heliosphere and, in
time, thus with heliocentric distance, heliolatitude, and the
solar activity itself [25,40–42]. In other words, solar wind
turbulence explores a vast parameter space of the magneto-
hydrodynamic cascade, driven by local nonlinear couplings
[43,44]. In specific conditions, for instance, due to the pres-
ence of large-scale shear and structures propagating from
the Sun, cascade processes might be affected by interactions
that are nonlocal in scale. Such effects should be reproduced
by the third-order model we propose here—at least in the
locally isotropic and homogeneous case. Beyond the MHD

regime, turbulent heating in the solar wind results from dif-
ferent contributions, for instance, Landau-type damping [45]
and nonresonant damping mechanisms (such as stochastic
heating) occurring at small scales due to the existence of
propagating plasma waves, but also the dissipation related to
the presence of coherent structures originating from magnetic
reconnection [46] and currents [47]. Such kinetic effects, as
well as anisotropy and compressibility, have been incorpo-
rated in recent modifications of the scaling laws used to assess
solar wind heating [48,49]. Furthermore, strong turbulence
dominated by nonlinear coherent structures such as Orszag-
Tang vortices [50,51] and Alfvén vortices [52,53] implies the
possibility of nonlocal couplings at MHD scales and thus con-
tributes to energy transfer and dissipation in space plasmas.

This article presents evidence for nonlocal contributions
to kinetic and magnetic energy transfer. To this end, we
first revisit the derivation of the PP law [23] in Sec. II,
obtaining from first principles an additional nonlocal term
that accounts for the influence of magnetic fields induced at
large scales on fluctuations at small scales, as suggested by
the Iroshnikov-Kraichnan phenomenology. The importance
of this nonlocal term for estimations of turbulent energy
transfer based on third-order moments is then assessed
by DNS of homogeneous and isotropic MHD turbulence
in Sec. III, and the validity of the proposed model is
demonstrated in the plasma under study. Although the
original PP law has been verified in numerous DNS of two-
and three-dimensional MHD turbulence, [54–56] (see, also,
[7] for further references), here we provide analytical and
numerical evidence that there can be plasma configurations
for which considering the nonlocal contributions to the MHD
cascade is critical to correctly infer the plasma heating rate
through the third-order law approach. These configurations
can be representative of heliospheric plasmas, whose highly
dynamical state is such that solar wind may at times be
characterized by enhanced turbulence and nonlocal couplings
of kinetic and magnetic modes, due to magnetic reconnection
[57], magnetic switchbacks [58,59], or the interaction
between fast and slow solar wind streams in the ecliptic [40].

II. REVISITING THE PP LAW USING THE INVARIANT
THEORY OF MHD TURBULENCE

In this section, we revisit the PP law [23,24] using the in-
variant theory of MHD turbulence devised by Chandrasekhar
[60]. Following standard statistical treatments of turbulent
flows [22], we introduce ensemble averages denoted by the
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FIG. 1. Top: Surface plot of a cut through the total local energy
dissipation rate, i.e., the sum of Eqs. (1) and (2), obtained from
a direct numerical simulation of homogeneous and isotropic MHD
turbulence with 10243 spatial points (here, only an area of 256 × 256
points is shown) with Reλ,kin and Reλ,mag (see main text and Table I
for additional information). The organization of the dissipation field
into sheetlike structures is visible and is dominated by a singular
sheet peaking at roughly 40 times the mean value. Bottom: Same
plot as on top, but obtained from a snapshot of a direct numerical
simulation of homogeneous and isotropic hydrodynamic turbulence
provided by the Johns Hopkins turbulence database (JHTDB) [62],
with the same spatial resolution 10243 and Reλ,kin = 418 (again,
only an area of 256 × 256 points is shown). The dissipation field
is organized more randomly than its MHD counterpart.

brackets 〈·〉. Under the assumption of homogeneity, it is
straightforward to derive an evolution equation for the total

energy Etot (t ) = 1
2 〈uiui + hihi〉 according to

Ėtot (t ) = 3

2

d

dt

(
u2

rms + h2
rms

) = −〈εtot〉, (4)

where we imply summation over identical indices and intro-
duce the root-mean-square velocity and magnetic fields [see
Appendix A for further details on the derivation of Eq. (4)]. In
his seminal work, Chandrasekhar generalized the work of von
Kármán and Howarth [61] to an invariant theory of homoge-
neous and isotropic MHD turbulence [60]. Here, we consider
evolution equations for the velocity and magnetic field corre-
lation tensors, Cuu

i j (r, t ) = 〈uiu′
j〉 = 〈ui(x, t )u j (x + r, t )〉 and

Chh
i j (r, t ) = 〈hih′

j〉 = 〈hi(x, t )h j (x + r, t )〉, which can be de-
rived from the MHD equations (under the assumption of
homogeneity; see Appendices B and C) according to

∂

∂t
〈uiu

′
j〉 − 2

∂

∂rk
〈(uiuk − hihk )u′

j〉 = 2ν∇2
r 〈uiu

′
j〉, (5)

∂

∂t
〈hih

′
j〉 − 2

∂

∂rk
〈(hiuk − hkui )h

′
j〉 = 2λ∇2

r 〈hih
′
j〉. (6)

Here, tensors of the third order in Eq. (5), i.e., Cuuu
(ik) j (r, t ) =

〈uiuku′
j〉 and Chhu

(ik) j (r, t ) = 〈hihku′
j〉, are symmetric in the in-

dices i and k, which is represented by the round brackets (ik).
By contrast, the third-order tensor in Eq. (6) is antisymmetric
in i and k, which is denoted by square brackets [ik]. It thus
admits a different tensorial form than the latter two (see Ap-
pendix F for further details), namely,

Auhh
[ki] j (r, t ) = 〈(hiuk − hkui )h

′
j〉

= Auhh
[rt]t (r, t )

( ri

r
δ jk − rk

r
δi j

)
. (7)

Furthermore, the indices r and t denote the longitudinal and
transverse projections, ur = r

r ( r
r · u) and ut = −[ r

r × ( r
r ×

u)], respectively [the same projections hold for the magnetic
field h(x, t ); see Appendix F for further derivation]. Following
Chandrasekhar [60] (see Appendix C for further derivations),
we obtain evolution equations for the longitudinal velocity
and magnetic field correlation functions,

∂

∂t
Cuu

r r (r, t )

= 1

r4

{
∂

∂r
r4

[
Cuuu

r r r (r, t ) − Chhu
r r r (r, t ) + 2ν

∂

∂r
Cuu

r r (r, t )

]}
,

(8)
∂

∂t
Chh

r r (r, t ) = − 4

r
Auhh

[rt]t (r, t ) + 2λ
1

r4

∂

∂r
r4 ∂

∂r
Chh

r r (r, t ). (9)

Equation (8) is the generalization of the von Kármán–Howarth
equation to MHD turbulence and the additional third-order
correlation is due to the Lorentz force Chhu

r r r (r, t ) in the MHD
equations. A similar equation also holds for the second-order
longitudinal magnetic field correlation function (9), where the
third-order correlation is due to the advection by the velocity
field and the corresponding transformation of the electric field,
E′ = E + μu × H. Similar equations were recently derived in
the context of Hall MHD [63], where the Hall term modifies
such a transformation.
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To derive the equivalent of the four-fifths law (18) for
MHD turbulence, we introduce the second- and third-order
longitudinal structure functions,

Suu
r r (r, t ) =

〈{
[u(x + r, t ) − u(x, t )] · r

r

}2
〉
, (10)

Shh
r r (r, t ) =

〈{
[h(x + r, t ) − h(x, t )] · r

r

}2
〉
, (11)

Suuu
r r r (r, t ) =

〈{
[u(x + r, t ) − u(x, t )] · r

r

}3
〉
. (12)

As shown in Appendix H, these structure functions are related
to the longitudinal correlation functions as

Suu
r r (r, t ) = 2

[
Cuu

r r (0, t ) − Cuu
r r (r, t )

]
, (13)

Shh
r r (r, t ) = 2

[
Chh

r r (0, t ) − Chh
r r (r, t )

]
, (14)

Suuu
r r r (r, t ) = 6Cuuu

r r r (r, t ). (15)

Furthermore, we evaluate the longitudinal correlation func-
tions for r = 0, which yields

Cuu
r r (0, t ) = u2

rms and Chh
r r (0, t ) = h2

rms. (16)

Combining Eqs. (4), (8), (9), and (13)–(16) thus yields

1

2

∂

∂t

[
Suu

r r (r, t ) + Shh
r r (r, t )

]
= −2

3
〈εtot〉 − 1

r4

∂

∂r

(
r4

{
1

6
Suuu

r r r (r, t ) − Chhu
r r r (r, t )

+ ∂

∂r

[
νSuu

r r (r, t ) + λShh
r r (r, t )

]})
+ 4

r
Auhh

[rt]t (r, t ). (17)

In the following, we assume statistical stationarity, which
allows us to set the left-hand side of Eq. (17) to zero. Mul-
tiplying by r4 and integrating from 0 to r yields

Suuu
r r r (r) − 6Chhu

r r r (r) − 24

r4

∫ r

0
dr′r′3Auhh

[rt] t (r
′)

= −4

5
〈εtot〉r + ∂

∂r

[
νSuu

r r (r) + λShh
r r (r)

]
. (18)

In the inertial range, i.e., for r smaller than integral-length
and larger than dissipation-length scales, we neglect the vis-
cous terms in square brackets and obtain a relation between
third-order statistics on the left-hand side and a term that is
proportional to r on the right-hand side whose magnitude is
determined by the total averaged local energy dissipation rate
〈εtot〉 [64]. Nonetheless, in contrast to the hydrodynamic case
(3) and to the original derivation by Politano and Pouquet
[23,24] where the energy transfer is purely local in scale r,
we obtain a scaling law in the MHD inertial range (18) that
exhibits a nonlocal term stemming from the magnetic induc-
tion equation and is a direct consequence of the antisymmetric
tensorial form (7). As shown in Appendix E, we can recast this
nonlocal term as

∫ r

0
dr′r′3Auhh

[rt] t (r
′) = −

∫ ∞

r
dr′r′3Auhh

[rt] t (r
′), (19)

which thus represents the influence of magnetic field struc-
tures induced at larger scales r′ on the local fluctuations at
scale r in the sense of the Alfvén effect [26–29]. We will
now consider further implications of this additional nonlo-
cality for the conservation of energy at small scales and the
phenomenon of solar wind heating by turbulent cascades. In
more detail, for small scales r in the vicinity of the dissipa-
tion range, nonlinear transfer terms on the left-hand side in
Eq. (18) should decay faster than the terms on the right-hand
side [22]. From a Taylor expansion around r = 0, we obtain
Suuu

r r r (r) ∼ r3 as well as

Chhu
r r r (r) = ∂Chhu

r r r (r)

∂r

∣∣∣∣
r=0

r + O(r2), (20)

Auhh
[rt]t (r) = ∂Auhh

[rt]r (r)

∂r

∣∣∣∣∣
r=0

r + O(r2). (21)

Hence, for small r, the third-order velocity contribution can
be neglected. In contrast, the two other correlation functions
(20) and (21) would yield a finite contribution to the nonlinear
transfer in the dissipation range [please note that the left-hand
side in Eq. (18) scales as r as well]. As was first derived
by Chandrasekhar, for small r, both correlation tensors are
related by

∂Auhh
[rt]r (r)

∂r

∣∣∣∣∣
r=0

= −5

4

∂Chhu
r r r (r)

∂r

∣∣∣∣
r=0

, (22)

which is derived in Appendix D. Inserting this relation into
Eq. (18) leads to the exact cancellation of both third-order cor-
relations and reproduces the expected result in the dissipation
range, i.e.,

0 = −4

5
〈εtot〉r + ∂

∂r

[
νSuu

r r (r) + λShh
r r (r)

]
(23)

or

Shh
r r (r) + PmSuu

r r (r) = 〈εtot〉
15λ

r2, (24)

where Pm = ν/λ denotes the magnetic Prandtl number. In the
following section, we will verify the modified scaling law (18)
in direct numerical simulations of MHD turbulence.

III. VERIFICATION OF THE THIRD-ORDER LAW
VIA DIRECT NUMERICAL SIMULATIONS

OF MHD TURBULENCE

To verify Eq. (18), we performed DNS of homogeneous
and isotropic MHD turbulence in a box of 10243 grid points
with characteristic turbulence parameters summarized in Ta-
ble I. The forcing scheme consists of a divergence-free
random forcing [65] that is applied to the evolution equa-
tion of the velocity field (i.e., the evolution equation for the
magnetic field is not actively forced). As shown in Fig. 2,
after an initial phase, the forcing scheme leads to nearly con-
stant kinetic and magnetic energy dissipation rates 〈εkin〉 and
〈εmag〉 over time. Figure 3 depicts the third-order moments
that enter Eq. (18). The lowest curve corresponds to the third-
order velocity structure function Suuu

r r r (r). Interestingly, this
curve exhibits three distinct scaling regions: In the dissipation
range, we observe the predicted scaling ∼r3 followed by a
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FIG. 2. Temporal evolution of the kinetic, magnetic, and total
energy dissipation rates throughout the simulation. After an initial
oscillation, the dissipation rates remain fairly constant due to the ap-
plied forcing mechanism, which indicates a close-to-stationary MHD
flow. The assessed statistical quantities in Table I were averaged
for t/TL > 5.

region that scales in agreement with the Iroshnikov-Kraichnan
phenomenology ∼r3/4, whereas a linear increase seems to
dominate at larger r. Furthermore, in the dissipation range,
we can directly verify the relation between the symmetric
and antisymmetric correlations (22). In the case under study,
the original prediction [23,24] without the additional nonlocal
source term overestimates the total energy dissipation rate
〈εtot〉 (dashed line) and does not vanish for small r, therefore
violating energy conservation. This becomes even more ap-
parent in the compensated plot in Fig. 3(b), which suggests
that including the source term results in the correct scaling
in the inertial range in between the largest Taylor scale λkin

and the smallest integral length scale Lmag. In contrast, the
scaling obtained using the PP law [23,24] (green curve) would
plateau before this inertial range and overestimate the 〈εtot〉
by a factor of 1.71. We must emphasize that this discrepancy
between the original PP law and (18) might have been barely
detectable in previous numerical studies of MHD turbulence
[54–56] due, for instance, to low magnetic and fluid Reynolds
numbers and signatures of the large-scale anisotropic forcing
scheme (e.g., by Taylor-Green vortices). Indeed, MHD and
kinetic simulations reproduce plasma dynamics and features
that are peculiar to the set of governing parameters defined
for specific runs, which may differ significantly from actual
solar wind parameters. Due to the insufficient computational
power of today’s supercomputers, constraints in numerically
reproducing the solar wind are technical, but also inherent
since solar wind dynamics develop in a vast parameter space,
hardly reproducible even with large ensembles of simulations.

This entails that the influence of the additional nonlocal
term on cascade processes can be subdominant to the third-
order correlation stemming from the Lorentz force Chhu

r r r (r, t )
or that the assumptions of isotropy and homogeneity in the
derivation of Eq. (18) are not strictly guaranteed, in some of
the simulations appearing in the literature, and also in many

FIG. 3. (a) Assessment of the four-fifths law in MHD turbu-
lence from DNS (10243) of forced MHD turbulence simulation.
The dashed line represents the right-hand side of Eq. (18), which is
determined from the total energy dissipation rate εtot of the snapshot.
The top curve corresponds the original PP law Suuu

r r r (r) − 6Chhu
r r r (r)

derived in [23,24], whereas the additional nonlocal term in Eq. (18)
is closer to the dashed line. The mixed tensors verify the dissipation
range behavior (22). The lowest curve represents the third-order
longitudinal velocity structure function Suuu

r r r (r). (b) Same as in (a),
but compensated by the right-hand side in Eq. (18). The original PP
law (top curve) overestimates the total energy dissipation rate εtot

by a factor of 1.71 and peaks in front of the inertial range, whereas
the inclusion of the nonlocal term in Eq. (18) leads to the correct
prediction (dashed line).

cases within the actual solar wind. Nonetheless, for some
settings, e.g., strong Alfvénic turbulence, this term might play
an important, non-negligible role.

IV. CONCLUSIONS

In this paper, we have derived, from first principles, an ad-
ditional nonlocal term in the equation for the energy cascade
directly from the incompressible MHD equations, assuming
isotropy and homogeneity only. This additional term can po-
tentially improve the heating rate predictions by the original
PP law when nonlocal interactions become essential in the
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overall plasma dynamics. We have verified by numerical sim-
ulations of MHD turbulence forced at large scales that this
additional nonlocal term is critical in describing the energy
transfer from large to small scales for the chosen set of
parameters.

The exact law established by Politano and Pouquet [23,24]
assumes homogeneity, isotropy, and incompressibility—
conditions that are fulfilled perhaps only locally in interplan-
etary space plasmas—representing to date the most robust
statistical framework to characterize energy transfer and heat-
ing in the solar wind [6,7]. Without diminishing its validity,
our findings suggest that in some solar wind samples, the
current analyses of observational data by the original PP law
and some of its surrogates might substantially overestimate
the rate at which energy is dissipated (or further transferred
across subproton scales) at the bottom of the MHD turbulent
cascade developing in the solar wind. This leads to im-
proved third-order moment law predictions characterizing the
observed space plasma heating.

As mentioned in Sec. II, the additional nonlocal term arises
due to the advection of the magnetic field by the velocity
field and the corresponding transformation of the electric
field, E′ = E + μu × H. Hence, it would also be interesting
to assess other transformations of the electric field, e.g., in
the context of Hall MHD [51,63]. Future work will be de-
voted to applying the law (18) and assessing the influence of
nonlocality in solar wind measurements. Moreover, we aim to
reconstruct the velocity and magnetic fields from partial mea-
surements by extending current velocity field reconstructions
[66,67] to MHD turbulence [68–70], exploiting observations
of the state-of-the-art ongoing [71,72] and future multispace-
craft solar wind mission [73–76].
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APPENDIX A: DERIVATION OF THE EQUATION
OF TOTAL ENERGY BALANCE IN MHD TURBULENCE

In this Appendix, we derive an evolution equation for
the total energy (i.e., the sum of kinetic and magnetic

energy) in MHD turbulence. Therefore, we consider the MHD
equations

∂

∂t
ui(x, t ) + uk (x, t )

∂

∂xk
ui(x, t ) − hk (x, t )

∂

∂xk
hi(x, t )

= − 1

ρ

∂

∂xi
P(x, t ) + ν∇2

x ui(x, t ), (A1)

∂

∂t
hi(x, t ) + uk (x, t )

∂

∂xk
hi(x, t ) − hk (x, t )

∂

∂xk
ui(x, t )

= λ∇2
x hi(x, t ), (A2)

where summation over identical indices is implied. Here,
P(x, t ) = p(x, t ) + ρ

2 |h|2 denotes the sum of hydrodynamic
pressure p(x, t ) and the magnetic pressure ρ

2 |h|2, ρ the density
(which will be set to one), ν the kinematic viscosity, and λ the
magnetic diffusivity of the conducting fluid. Furthermore, it
should be noted that in this formulation of the MHD equa-
tions, the magnetic field H is measured in units of the velocity
field,

h(x, t ) =
√

μ

4πρ
H(x, t ). (A3)

The total energy can now be defined as the sum of the
kinetic and magnetic energy according to

Etot (t ) = 1
2 〈uiui + hihi〉 = 3

2

(
u2

rms + h2
rms

)
, (A4)

where urms and hrms denote the root-mean-square velocity and
magnetic field of a three-dimensional MHD flow. Moreover,
the brackets 〈·〉 represent suitable averages, e.g., ensemble
averages. We scalar multiply Eq. (A1) by ui and Eq. (A2)
by hi,

1

2

∂

∂t
u2 + 1

2

∂

∂xk
uku2 − ui

∂

∂xk
hkhi = − 1

ρ

∂

∂xi
uiP

+ uiν∇2
x ui, (A5)

1

2

∂

∂t
h2 + 1

2

∂

∂xk
ukh2 − hi

∂

∂xk
hkui = hiλ∇2

x hi, (A6)

where we used the incompressibility conditions for both ve-
locity and magnetic field, i.e., ∂

∂xk
uk = 0 and ∂

∂xk
hk = 0. Here,

the viscous terms can be reformulated according to

uiν∇2
x ui = ν

∂

∂xk
ui

∂ui

∂xk
− ν

∑
i,k

(
∂ui

∂xk

)2

= ν

2
∇2

x u2−ν

2

∑
i,k

(
∂ui

∂xk
+∂uk

∂xi

)2

+ ν
∑
i,k

(
∂ui

∂xk

∂uk

∂xi

)

= ν

2
∇2

x u2 − εkin + ν
∂

∂xi
uk

∂

∂xk
ui. (A7)

The same procedure applies to the diffusive terms in Eq. (A6).
Furthermore, local kinetic and magnetic energy dissipation
rates are defined according to

εkin(x, t ) = ν

2

∑
i,k

(
∂ui(x, t )

∂xk
+ ∂uk (x, t )

∂xi

)2

, (A8)

εmag(x, t ) = λ

2

∑
i,k

(
∂hi(x, t )

∂xk
+ ∂hk (x, t )

∂xi

)2

. (A9)
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We observe that nonlinear terms which are advected by
the magnetic field [third terms on the left-hand side of
Eqs. (A5) and (A6)] can be cast in conservative form by
adding Eqs. (A5) and (A6), which yields

∂

∂t
etot (x, t ) + ∇x · Jtot (x, t ) = −εtot (x, t ), (A10)

where we defined

etot (x, t ) = u2(x, t ) + h2(x, t )

2
,

Jtot (x, t ) = u(x, t )

(
u2(x, t ) + h2(x, t )

2
+ P(x, t )

ρ

)
(A11)

− h(x, t )[u(x, t ) · h(x, t )] − ν

2
∇xu2(x, t ) − λ

2
∇xh2(x, t )

− νu(x, t ) · ∇xu(x, t ) − λh(x, t ) · ∇xh(x, t ), (A12)

εtot (x, t ) = εkin(x, t ) + εmag(x, t ). (A13)

The two first terms in the brackets of (A11) denote the kinetic
and magnetic energy transported throughout the surface. The
second term is the work from the fluid against the total pres-
sure. The next term is the cross helicity u(x, t ) · h(x, t ) which
is transported antiparallel along the lines of force. Perform-
ing the averaging procedure, we obtain a temporal evolution
equation for the total energy Etot (t ) = 〈etot (x, t )〉 as

Ėtot (t ) = −〈εtot (x, t )〉, (A14)

where we assumed homogeneity to neglect the transport terms
∇x · 〈Jtot (x, t )〉 = 0. Hence, the total energy is only changed
by viscous and magnetic dissipation. Here, we only con-
sidered decaying MHD turbulence; otherwise, the temporal
evolution Etot (t ) would be influenced by additional forcing
mechanisms in Eqs. (A1) and (A2) that would lead to addi-
tional source terms on the right-hand side of Eq. (A14).

APPENDIX B: DERIVATION OF THE
FRIEDMANN-KELLER HIERARCHY IN HOMOGENEOUS

AND ISOTROPIC MHD TURBULENCE

In this Appendix, we recapitulate Chandrasekhar’s deriva-
tion [60] of the Friedmann-Keller hierarchy [79] for magnetic
and velocity field correlation functions. In a statistical descrip-
tion of MHD turbulence, evolution equations for the two-point
correlation tensors,

Cuu
i j (r, t ) = 〈ui(x, t )u j (x′, t )〉, (B1)

Cuh
i j (r, t ) = 〈ui(x, t )h j (x′, t )〉, (B2)

Chh
i j (r, t ) = 〈hi(x, t )h j (x′, t )〉, (B3)

are obtained by the same procedure as in the hydrodynamic
case [61] and were first derived by Chandrasekhar [60]. In the
following, we are solely interested in evolution equations for
the two-point velocity and magnetic field tensors (B1) and
(B3). The evolution equation and invariant form of the cross
helicity tensor (B2), which is a skew-symmetric tensor, can
be found in [60]. The procedure for the velocity correlation

tensor (B1) starts with multiplying Eq. (A1) by u′
j = u j (x′, t ),

u′
j

∂

∂t
ui + ∂

∂xk
(ukuiu

′
j − hkhiu

′
j )

= −u′
j

1

ρ

∂

∂xi
P + νu′

j∇2
x ui, (B4)

where we used the incompressibility condition for both ve-
locity and magnetic field, i.e., ∂

∂xk
uk = 0 and ∂

∂xk
hk = 0. In

the same manner, we can multiply the evolution equation for
u j (x′, t ) by ui = ui(x, t ), which yields

ui
∂

∂t
u′

j + ∂

∂x′
k

(u′
ku′

jui − h′
kh′

jui ) = −ui
1

ρ

∂

∂x′
i

P′ + νui∇2
x′u′

j .

(B5)

Moreover, from the induction equation (A2), we obtain

h′
j

∂

∂t
hi + ∂

∂xk
(ukhih

′
j − hkuih

′
j ) = λh′

j∇2
x hi, (B6)

as well as

hi
∂

∂t
h′

j + ∂

∂x′
k

(u′
kh′

jhi − h′
ku′

jhi ) = λhi∇2
x′h′

j . (B7)

Before we add Eqs. (B4) and (B5) and take the ensemble
average 〈·〉, we discuss certain simplifications that are a direct
consequence of the assumptions of homogeneity and isotropy
of the MHD flow:

(i) Based on the assumption of homogeneity, correlation
functions solely depend on the relative distance r = x′ − x,
and we obtain

Cuu
i j (r, t ) = 〈ui(x, t )u j (x′, t )〉 = Cuu

i j (−r, t ), (B8)

Cuuu
(ki) j (r, t ) = 〈uk (x, t )ui(x, t )u j (x′, t )〉, (B9)

Cuuu
(k j)i(−r, t ) = 〈uk (x′, t )u j (x′, t )ui(x, t )〉. (B10)

Therefore, viscous terms can be rewritten according to[∇2
x + ∇2

x′
]〈ui(x, t )u j (x′, t )〉 = 2∇2

r 〈ui(x, t )u j (x′, t )〉
= 2∇2

r Cuu
i j (r, t ). (B11)

Correlations where the magnetic field occurs an even number
of times transform identically to Eqs. (B8)–(B10),

Chh
i j (r, t ) = 〈hi(x, t )h j (x′, t )〉 = Chh

i j (−r, t ), (B12)

Chhu
(ki) j (r, t ) = 〈hk (x, t )hi(x, t )u j (x′, t )〉, (B13)

Chhu
(k j)i(−r, t ) = 〈hk (x′, t )h j (x′, t )ui(x, t )〉, (B14)

and for the antisymmetric tensor, we obtain

Auhh
[ki] j (r, t ) = 〈[uk (x, t )hi(x, t ) − ui(x, t )hk (x, t )]h j (x′, t )〉,

(B15)

Auhh
[k j]i(−r, t ) = 〈[uk (x′, t )h j (x′, t )−u j (x′, t )hk (x′, t )]hi(x, t )〉.

(B16)

Here, square brackets in the index of Eq. (B15) indicate that
the corresponding tensor is antisymmetric in i and k.

(ii) Furthermore, isotropic and mirror-symmetric tensors of
the third order obey the following relation:

Cuuu
(k j)i(−r, t ) = −Cuuu

(k j)i(r, t ), (B17)
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Chhu
(k j)i(−r, t ) = −Chhu

(k j)i(r, t ), (B18)

and for the antisymmetric tensor,

Auhh
[k j]i(−r, t ) = −Auhh

[k j]i(r, t ). (B19)

(iii) Pressure-velocity contributions vanish based on
isotropy and mirror symmetry [80], which yields(

∂

∂xi
+ ∂

∂x′
i

)
〈P(x, t )u j (x′, t )〉 = 0. (B20)

Under the above assumptions, we obtain, from Eqs. (B4)
and (B5),

∂

∂t
Cuu

i j (r, t ) − ∂

∂rk

[
Cuuu

(ki) j (r, t ) + Cuuu
(k j)i(r, t )

−Chhu
(ki) j (r, t ) − Chhu

(k j)i(r, t )
] = 2ν∇2

r Cuu
i j (r, t ). (B21)

Furthermore, as terms such as ∂
∂rk

Cuuu
(ki) j (r, t ) are second-order

isotropic tensors, they must be symmetric in i and j. We thus
obtain

∂

∂t
Cuu

i j (r, t ) − 2
∂

∂rk

[
Cuuu

(ki) j (r, t ) − Chhu
(ki) j (r, t )

]
= 2ν∇2

r Cuu
i j (r, t ). (B22)

The same procedure can be applied to the induction equa-
tion (A2) and we obtain

∂

∂t
Chh

i j (r, t ) − 2
∂

∂rk
Auhh

[ki] j (r, t ) = 2λ∇2
r Chh

i j (r, t ). (B23)

These two equations (and the additional equation for the cross
helicity tensor of second order derived by Chandrasekhar
[60]) are a generalization of the Friedmann-Keller hierarchy
[79] to homogeneous and isotropic MHD turbulence.

APPENDIX C: DERIVATION OF EVOLUTION EQUATIONS
FOR LONGITUDINAL VELOCITY AND MAGNETIC FIELD

CORRELATION FUNCTIONS OF SECOND ORDER

A further simplification of Eqs. (B22) and (B23) can be ob-
tained from the invariant theory of homogeneous and isotropic
turbulence [81]. Each tensor can be rewritten in terms of
its longitudinal correlation function, which is a consequence
of the incompressibility condition and is further derived in
Appendices F, G, and H. The second-order tensors (B8) and
(B12) both follow the tensorial form

Ci j (r, t ) =
{

Crr (r, t ) − 1

2r

∂

∂r
[r2Crr (r, t )]

}
rir j

r2

+ 1

2r

∂

∂r
[r2Crr (r, t )]δi j, (C1)

where Crr (r, t ) denotes the longitudinal correlation function
of the second order. In the same manner, third-order tensors
that are symmetric in i and k, such as (B10) and (B13), obey

the following form:

C(ki) j (r, t ) = − r2

2

∂

∂r

(
Crrr (r, t )

r

)
rir jrk

r3

+ 1

4r

∂

∂r
[r2Crrr (r, t )]

( ri

r
δk j + rk

r
δi j

)
− Crrr (r, t )

2

r j

r
δik . (C2)

It should be noted that this tensorial form is only applicable to
third-order terms in Eq. (B22). The third-order correlation in
Eq. (B23) is antisymmetric in k and i and follows a different
tensorial form, namely,

Auhh
[ki] j (r, t ) = Auhh

[rt]t (r, t )
( ri

r
δ jk − rk

r
δi j

)
. (C3)

Summing over i = j in Eqs. (B22) and (B23) yields

Qkin(r, t ) = 1

2

∑
i= j

Cuu
i j (r, t ),

Jkin
k (r, t ) = −

∑
i= j

[
Cuuu

(ki) j (r, t ) − Chhu
(ki) j (r, t )

]
, (C4)

Qmag(r, t ) = 1

2

∑
i= j

Ci j (r, t ),

Jmag
k (r, t ) = −

∑
i= j

Auhh
[ki] j (r, t ), (C5)

and we obtain two balance equation for Qkin(r, t ) and
Qmag(r, t ) with their corresponding currents Jkin(r, t ) and
Jmag(r, t ) that read

∂

∂t
Qkin(r, t ) + ∇r · Jkin(r, t ) = 2ν
rQkin(r, t ), (C6)

∂

∂t
Qmag(r, t ) + ∇r · Jmag(r, t ) = 2λ
rQmag(r, t ). (C7)

As shown in Appendix H, Qkin(r, t ), Qmag(r, t ) and their cor-
responding currents Jkin(r, t ), Jmag(r, t ) can be expressed as

∂

∂t
Qkin(r, t ) = 1

2r2

∂

∂r

[
r3 ∂

∂t
Cuu

r r (r, t )

]
,

∂

∂t
Qmag(r, t ) = 1

2r2

∂

∂r

[
r3 ∂

∂t
Chh

r r (r, t )

]
, (C8)

∂

∂rk
Jkin

k (r, t ) = − 1

2r2

∂

∂r

{
1

r

∂

∂r

[
r4

(
Cuuu

r r r − Chhu
r r r

)]}
,

∂

∂rk
Jmag

k (r, t ) = 2

r2

∂

∂r

(
r2Auhh

[rt]t (r, t )
)
, (C9)


rQkin(r, t ) = 1

r2

∂

∂r

[
r2 ∂

∂r
Qkin(r, t )

]
,


rQmag(r, t ) = 1

r2

∂

∂r

[
r2 ∂

∂r
Qmag(r, t )

]
. (C10)

Inserting these relations into Eq. (C6) and (C7) yields

∂

∂t
Cuu

r r (r, t ) = 1

r4

{
∂

∂r
r4

[
Cuuu

r r r (r, t ) − Chhu
r r r (r, t )

+ 2ν
∂

∂r
Cuu

r r (r, t )

]}
, (C11)
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∂

∂t
Chh

r r (r, t ) = −4

r
Auhh

[rt]t (r, t ) + 2λ
1

r4

∂

∂r
r4 ∂

∂r
Chh

r r (r, t ).

(C12)

Equation (C11) is the generalization of the von Kármán–
Howarth equation to MHD turbulence with the additional

third-order correlation function Chhu
r r r (r, t ) that is due to the

Lorentz force in Eq. (A1). The evolution equation for the
second-order longitudinal correlation function for the mag-
netic field (C12) possesses a different differential form, which
is due to the antisymmetry of the tensor in Eq. (C3).

APPENDIX D: ON THE EQUIVALENCE OF THE MIXED THIRD-ORDER CORRELATIONS
FOR SMALL-SCALE SEPARATIONS

As first recognized by Chandrasekhar [60], the defining scalars of the mixed third-order correlation functions, Chhu
(ki) j (r, t ) =

〈hi(x, t )hk (x, t )u j (x′, t )〉 and Auhh
[ki] j (r, t ) = 〈[hi(x, t )uk (x, t ) − hk (x, t )ui(x, t )]h j (x′, t )〉, are related to each other for small-scale

separations r. This can be shown as follows: First, we consider the derivative of the symmetric tensor defined by Eq. (C2),

∂Chhu
(ki) j (r, t )

∂ri

∣∣∣∣∣
r=0

=
〈
hi(x, t )hk (x, t )

∂u j (x, t )

∂xi

〉
=

[
Chhu

r r r (r, t )

r
+ 3

2

∂Chhu
r r r (r, t )

∂r

]
r=0

δ jk = 5

2

∂Chhu
r r r (r, t )

∂r

∣∣∣∣
r=0

δ jk . (D1)

Similarly, we derive the tensorial form of the antisymmetric third-order correlation tensor (C3) and obtain

∂Auhh
[ki] j (r, t )

∂ri

∣∣∣∣∣
r=0

=
〈
(hi(x, t )uk (x, t ) − hk (x, t )ui(x, t ))

∂h j (x, t )

∂xi

〉
= 2

∂Auhh
[rt]t (r, t )

∂r

∣∣∣∣∣
r=0

δ jk . (D2)

Next, we derive the following identity:〈
[hi(x, t )uk (x, t ) − hk (x, t )ui(x, t )]

∂h j (x, t )

∂xi

〉

=
〈
hi(x, t )uk (x, t )

∂h j (x, t )

∂xi

〉
−

〈
hk (x, t )ui(x, t )

∂h j (x, t )

∂xi

〉

= ∂

∂xi
〈hi(x, t )h j (x, t )uk (x, t )〉︸ ︷︷ ︸

=0, homogeneity

−
〈
hi(x, t )h j (x, t )

∂uk (x, t )

∂xi

〉
−

〈
∂hi(x, t )

∂xi︸ ︷︷ ︸
=0

h j (x, t )uk (x, t )

〉

− ∂

∂xi
〈hk (x, t )ui(x, t )h j (x, t )〉︸ ︷︷ ︸

=0, homogeneity

+
〈
h j (x, t )ui(x, t )

∂hk (x, t )

∂xi

〉
+

〈
∂ui(x, t )

∂xi︸ ︷︷ ︸
=0

h j (x, t )hk (x, t )

〉

= −
〈
hi(x, t )h j (x, t )

∂uk (x, t )

∂xi

〉
+

〈
h j (x, t )ui(x, t )

∂hk (x, t )

∂xi

〉
. (D3)

Interchanging j and k in Eq. (D2) yields〈
[hi(x, t )u j (x, t ) − h j (x, t )ui(x, t )]

∂hk (x, t )

∂xi

〉
= ∂

∂xi
〈hi(x, t )hk (x, t )u j (x, t )〉︸ ︷︷ ︸

=0, homogeneity

−
〈
hi(x, t )hk (x, t )

∂u j (x, t )

∂xi

〉

−
〈

∂hi(x, t )

∂xi︸ ︷︷ ︸
=0

hk (x, t )u j (x, t )

〉
−

〈
h j (x, t )ui(x, t )

∂hk (x, t )

∂xi

〉
. (D4)

Adding Eqs. (D3) and (D4) yields

4
∂Auhh

[rt]t (r, t )

∂r

∣∣∣∣∣
r=0

δ jk = −
〈
hi(x, t )h j (x, t )

∂uk (x, t )

∂xi

〉
−

〈
hi(x, t )hk (x, t )

∂u j (x, t )

∂xi

〉
=︸︷︷︸

Eq. (D1)

−5
∂Chhu

r r r (r, t )

∂r

∣∣∣∣
r=0

δ jk . (D5)

Hence, for small-scale separations r, the defining scalars of symmetric and antisymmetric mixed third-order tensors are related
according to

∂Auhh
[rt]t (r, t )

∂r

∣∣∣∣∣
r=0

= −5

4

∂Chhu
r r r (r, t )

∂r

∣∣∣∣
r=0

. (D6)

045208-9



J. FRIEDRICH, M. WILBERT, AND R. MARINO PHYSICAL REVIEW E 109, 045208 (2024)

APPENDIX E: LOITSIANSKY INVARIANTS AND THEIR
IMPLICATIONS FOR THE ADDITIONAL SOURCE TERM

In this Appendix, we discuss further implications of
Eqs. (8) and (9), namely, the existence of certain in-
variants. As shown by Loitsiansky [82], in the hydrody-
namic limit, the von Kármán–Howarth equation admits the
invariant,

�uu =
∫ ∞

0
dr r4Cuu

r r (r, t ). (E1)

As shown by Chandrasekhar [60], this quantity should also be
conserved in MHD turbulence, which can be seen by multi-
plying Eq. (8) by r4 and subsequent integration,

∂

∂t

∫ r

0
dr′ r′4Cuu

r r (r′, t )

= r4

[
Cuuu

r r r (r, t ) − Chhu
r r r (r, t ) + 2ν

∂

∂r
Cuu

r r (r, t )

]
. (E2)

Hence, if the bracketed terms on the right-hand side decay
more rapidly than ∼r−4 in the limit of r → ∞, then �uu is
a conserved quantity in MHD turbulence as well. Nonethe-
less, due to the antisymmetry of the third-order correlation in
Eq. (9), one cannot establish a similar line of reasoning for the
magnetic Loitsiansky invariant,

�hh =
∫ ∞

0
dr r4Chh

r r (r, t ). (E3)

Following Chandrasekhar [60], we introduce the vector poten-
tial a(x, t ) according to

b(x, t ) = ∇ × a(x, t ). (E4)

The antisymmetric tensor (C3) can thus be recast as

Auhh
[ki] j (r, t )

= 〈[uk (x, t )hi(x, t ) − ui(x, t )hk (x, t )]h j (x′, t )〉

= ε jlm
∂

∂rl
〈[uk (x, t )hi(x, t ) − ui(x, t )hk (x, t )]a j (x′, t )〉.

(E5)

The corresponding tensor is skew and possesses the following
form:

Auha
[ki] j (r, t )

= 〈[uk (x, t )hi(x, t ) − ui(x, t )hk (x, t )]a j (x′, t )〉

= 2Auha
[rt]t (r, t )εi jk + r

∂Auha
[rt],t (r, t )

∂r

(
ri

r
ε jkl

rl

r
+ rk

r
ε jil

rl

r

)
.

(E6)

Inserting this tensorial form in Eq. (E5) thus yields

Auhh
[rt]t (r, t ) = − 1

r3

∂

∂r

(
r4

∂Auha
[rt]t (r, t )

∂r

)
, (E7)

which, upon insertion into Eq. (9), yields

∂

∂t
Chh

r r (r, t ) = 1

r4

∂

∂r

[
r4

(
∂Auha

[rt]t (r, t )

∂r
+ 2λ

∂

∂r
Chh

r r (r, t )

)]
.

(E8)

Hence, similar arguments as the ones used in Eq. (E2) lead to
λhh = const, and Chandrasekhar further concluded λhh = 0.
From Eq. (9), we can thus derive∫ ∞

0
dr′r′3Auhh

[rt]t (r, t ) = 0. (E9)

APPENDIX F: LONGITUDINAL AND TRANSVERSE
CORRELATION FUNCTIONS

In this Appendix, we derive tensorial forms for second-
and third-order correlation functions under the assumptions
of homogeneity and isotropy. To this end, we consider the
velocity fields u(x + r, t ) at point x + r and u(x, t ) at point
x (a similar treatment applies for a magnetic field). We can
divide the vector u = ur + ut into a part ur parallel to r, and
a transverse part ut . These parts are thereby given as

ur = r
r

(
r
r

· u
)

and ut = −
[

r
r

×
(

r
r

× u
)]

. (F1)

The longitudinal correlation function,

Cr r (r, t ) = 〈ur (x, t ) · ur (x + r, t )〉, (F2)

can be calculated by multiplying the two-point correlation
tensor,

Ci j (r, t ) = 〈ui(x, t )u j (x + r, t )〉, (F3)

by ri
r j

and r j

r . Assuming that Ci j (r, t ) = 〈ui(x, t )u j (x + r, t )〉
is isotropic and mirror symmetric [22], its general form is
given by

Ci j (r, t ) = C1(r, t )
rir j

r2
+ C2(r, t )δi j, (F4)

where the defining scalars C1(r, t ) and C2(r, t ) can now be
expressed in terms of the longitudinal (F2) and transverse
correlation functions,

Ct t (r, t ) = 1
2 〈ut (x + r, t ) · ut (x, t )〉. (F5)

Here, the factor 1
2 has been included in three dimensions: two

transverse and only one longitudinal direction. Multiplying
Eq. (F4) by rir j

r2 thus yields

Crr (r, t ) = C1(r, t ) + C2(r, t ). (F6)

Decomposing the correlation tensor (F10) yields

Ci j (r, t ) = 〈ur (x, t ) · ur (x + r, t )〉 rir j

r2

+ 〈ut,i(x + r, t )ut, j (x, t )〉. (F7)

Hence, we can identify

〈ut,i(x+r, t )ut, j (x, t )〉 = [C1(r, t )−Crr (r, t )]︸ ︷︷ ︸
Eq. (F6)

rir j

r2
+C2(r, t )δi j

= C2(r, t )

(
δi j − rir j

r2

)
. (F8)

Summing Eq. (F8) over i = j thus yields

2Ctt (r, tt ) = 2C2(r, t ), (F9)
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and we can express the correlation tensor (F4) in terms of its
longitudinal and transverse correlation functions according to

Ci j (r, t ) = [Cr r (r, t ) − Ct t (r, t )]
rir j

r2
+ Ct t (r, t )δi j . (F10)

The bilinear form (F4) can now be extended to a trilinear form
[81]. A general isotropic and mirror-symmetric tensor of order
three can be defined as

Ci jk (r, t ) = C1(r, t )
rir jrk

r3
+ C2(r, t )

rk

r
δi j

+ C3(r, t )
r j

r
δik + C4(r, t )

ri

r
δ jk . (F11)

Whereas a bilinear form is always symmetric in i and j, we
can now impose further symmetry conditions on this tensor,
e.g., the third-order correlation function,

Cuuu
(i j)k (r, t ) = 〈ui(x, t )u j (x, t )uk (x + r, t )〉, (F12)

is symmetric in i and j, which implies C3(r, t ) = C4(r, t ).
This also applies to the third-order correlation Chhu

(i j)k =
〈hi(x, t )h j (x, t )uk (x + r, t )〉, which stems from the Lorentz
force. Both of these tensors can thus be expressed as

C(i j)k (r, t ) = C1(r, t )
rir jrk

r3
+ C2(r, t )

rk

r
δi j

+ C3(r, t )

(
r j

r
δik + ri

r
δ jk

)
, (F13)

where the coefficients will be specified later on in terms of
longitudinal and transverse correlation functions. In contrast,
the third-order tensor,

Auhh
[i j]k (r, t ) = 〈[ui(x, t )h j (x, t )−u j (x, t )hi(x, t )]hk (x + r, t )〉,

(F14)

is antisymmetric in i and j, which implies C1(r, t ) =
C2(r, t ) = 0 and C3(r, t ) = −C4(r, t ) = A1(r, t ). Hence, an
antisymmetric tensor of order three obeys the trilinear form,

A[i j]k (r, t ) = A1(r, t )

(
r j

r
δik − ri

r
δ jk

)
. (F15)

APPENDIX G: THE CORRELATION FUNCTIONS
FOR INCOMPRESSIBLE, ISOTROPIC,

AND HOMOGENEOUS FIELDS

1. Correlation functions of second order

Due to the incompressibility condition, it is possible to
reduce the tensorial form of Ci j (r, t ) to a dependence of the
longitudinal structure function Cr r (r, t ) only. The incompress-
ibility condition is used according to

∂

∂ri
Ci j (r, t ) =

〈
∂ui(x + r, t )

∂ri
u j (x, t )

〉
= 0. (G1)

Using the relation ∂
∂ri

= ri
r

∂
∂r yields

∂

∂ri
Ci j (r, t ) = ∂

∂r
[Cr r (r, t ) − Ct t (r, t )]

r j

r

+2

r
[Cr r (r, t ) − Ct t (r, t )]

r j

r
+ ∂

∂r
Ct t (r, t )

r j

r
= 0, (G2)

and results in the von Kármán–Howarth relation,

Ct t (r, t ) = 1

2r

∂

∂r
[r2Cr r (r, t )]. (G3)

The correlation function Ci j (r, t ) can therefore be described
solely in terms of the longitudinal correlation function
Cr r (r, t ). Furthermore, summing Ci j (r, t ) over equal indices
i = j, we obtain

∑
i= j

Ci j (r, t ) = Cr r (r, t ) + 2Ct t (r, t )

= 1

r2

∂

∂r
[r3Cr r (r, t )]. (G4)

2. Correlation functions of third order

Applying the incompressibility condition,

∂

∂rk
C(i j)k (r, t ) = 0, (G5)

to the third-order correlation function (F13) yields{
1

r2

∂

∂r
[r2C1(r, t )] + 2r

∂

∂r

C3(r, t )

r

}
rir j

r2

+
{

1

r2

∂

∂r
[r2C2(r, t )] + 2

C3(r, t )

r

}
δi j = 0. (G6)

Since both brackets in (G6) have to vanish identically to
satisfy the equation, we obtain two equations along with (F13)
for the three prefactors C1(r, t ), C2(r, t ), and C3(r, t ). This
system of equations is solved by

C1(r, t ) = − r2

2

∂

∂r

(
Cr r r (r, t )

r

)
, (G7)

C2(r, t ) = −Cr r r (r, t )

2
, (G8)

C3(r, t ) = 1

4r

∂

∂r
[r2Cr r r (r, t )]. (G9)

Therefore, the third-order correlation function can be written
in terms of Cr r r (r, t ) only,

C(i j)k (r, t ) = − r2

2

∂

∂r

(
Cr r r (r, t )

r

)
rir jrk

r3

+ 1

4r

∂

∂r
[r2Cr r r (r, t )]

(
ri

r
δ jk + r j

r
δik

)

−Cr r r (r, t )

2

rk

r
δi j . (G10)

APPENDIX H: STRUCTURE FUNCTIONS
OF INCOMPRESSIBLE, ISOTROPIC,

AND HOMOGENEOUS FIELDS

We consider the corresponding moments of velocity incre-
ments to calculate the structure functions introduced in Sec. II.
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1. Structure functions of second order

The second-order longitudinal structure functions are
defined as

Suu
r r (r, t ) =

〈{
[u(x + r, t ) − u(x, t )] · r

r

}2
〉
, (H1)

Shh
r r (r, t ) =

〈{
[h(x + r, t ) − h(x, t )] · r

r

}2
〉
. (H2)

These longitudinal structure functions can be related to
the longitudinal correlation functions, which will be shown
here based on the longitudinal velocity correlation function
Cuu

r r (r, t ) defined by Eq. (F2). We obtain〈{
[u(x + r, t ) − u(x, t )] · r

r

}2
〉

= ri

r
〈ui(x + r, t )u j (x + r, t ) + ui(x, t )u j (x, t )〉 r j

r

− ri

r
〈ui(x + r, t )u j (x, t ) − ui(x, t )u j (x + r, t )〉 r j

r
.

(H3)

Due to homogeneity and isotropy, we obtain

〈ui(x, t )u j (x, t )〉 = 〈ui(x + r, t )u j (x + r, t )〉 = Cuu
i j (0, t ),

〈ui(x, t )u j (x + r, t )〉 = 〈ui(x + r, t )u j (x, t )〉 = Cuu
i j (r, t ).

Hence, we obtain

Suu
r r (r, t ) = ri

r

[
2Cuu

i j (0, t ) − 2Cuu
i j (r, t )

] r j

r
(H4)

= 2
[
Cuu

r r (0, t ) − Cuu
r r (r, t )

]
. (H5)

The same treatment applies to the magnetic structure function
of the second order.

2. Structure Functions of Third Order

The third-order longitudinal velocity structure function,

Suuu
r r r (r, t ) =

〈{
[u(x + r, t ) − u(x, t )] · r

r

}3
〉
, (H6)

can be related to the third-order longitudinal correlation
function as

Suuu
r r r (r, t )

= 〈[ui(x + r, t ) − ui(x, t )][u j (x + r, t ) − uj (x, t )]

[uk (x + r, t ) − uk (x, t )]〉 rir jrk

r3

= 2
[
Cuuu

(i j)k (r, t ) + Cuuu
( jk)i(r, t ) + Cuuu

(ik) j (r, t )
] rir jrk

r3

= 6Cuuu
r r r (r, t ). (H7)

Here, we used statistical homogeneity and isotropy and the
relation 〈ui(x, t )u j (x, t )uk (x, t )〉 = 0.
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