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Numerical investigation of nonequilibrium electron effects on the collisional ionization
rate in the collisional-radiative model
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The interplay of kinetic electron physics and atomic processes in ultrashort laser-plasma interactions provides
a comprehensive understanding of the impact of the electron energy distribution on plasma properties. Notably,
nonequilibrium electrons play a vital role in collisional ionization, influencing ionization degrees and spectra.
This paper introduces a computational model that integrates the physics of kinetic electrons and atomic
processes, utilizing a Boltzmann equation for nonequilibrium electrons and a collisional-radiative model for
atomic state populations. The model is used to investigate the influence of nonequilibrium electrons on collisional
ionization rates and its effect on the population distribution, as observed in a widely known experiment [Young
et al., Nature (London) 466, 56 (2010)]. The study reveals a significant nonequilibrium electron presence
during XFEL-matter interactions, profoundly affecting collisional ionization rates in the gas plasma, thereby
necessitating careful consideration of the Collisional-Radiative model applied to such systems.
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I. INTRODUCTION

Recently, the examination of the interplay between kinetic
physics of electrons and atomic processes in the ultrashort
region of laser plasma has become possible through the devel-
opment of ultrafast laser technology [1–7]. This advance has
allowed for a direct and more comprehensive analysis of the
electron energy distribution and its impact on plasma prop-
erties, beyond the traditional approach of solely measuring
the temperature and density of free electrons. The electron
distribution undergoes a temperature process until it reaches
a specific distribution, with the presence of nonequilibrium
electrons during this process having a substantial effect on
the characteristics of plasmas. This necessitates an alternative
interpretation of existing plasma phenomena, with nonequilib-
rium electrons playing a crucial role in various laser heating
processes, such as inverse bremsstrahlung [5] and thermaliza-
tion [6]. These findings have significant implications for the
development of plasma-based technologies and applications.

In this context, researchers also have been exploring the
impact of nonequilibrium electrons on plasma properties in
the Collisional-Radiative (CR) model, commonly used to cal-
culate the ionization degree and spectrum. When calculating
the collisional ionization rate in the CR model, the electron en-
ergy distribution function of free electrons is required, and it is
typically assumed to follow a specific statistical distribution,
such as a Maxwell-Boltzmann or Fermi-Dirac distribution, for
calculation-costly efficiency. While this is a reasonable as-
sumption for high-density plasmas with short thermalization
times, the use of targets with various materials and densities
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necessitates a precise understanding of the effects of nonequi-
librium electrons in the ultrashort region. To address this
need, researchers have attempted to incorporate the effect of
nonequilibrium electrons in the CR model [3,8–11].

SCFLY, one of the widely used CR codes, has been suc-
cessful in revealing the main ion dynamics occurring in x-ray
free electron laser (XFEL) heated plasmas and modeling their
consequential transmission/emission spectrum [12–19]; how-
ever, most of the calculations assume a Maxwell-Boltzmann
distribution for the free electron energy, which may not accu-
rately reflect the behavior of low-density targets such as gas
targets. An experiment using an XFEL to heat a low-density
neon gas target is one of examples to use SCFLY for interpre-
tation [12], but the code did not sufficiently consider the effect
of nonequilibrium electrons, necessitating code improvements
to ensure accurate analysis of low-density plasma dynamics.

This paper presents a model for calculating nonequilibrium
electron distributions coupled with the SCFLY code, which is
used to reinterpret an XFEL heated neon plasma experiment
which has reported the difference between experiment and
theory [20]. The result of this work reveals the existence of
nonequilibrium plasma electrons, confirming that their impact
on the final ion distribution is not negligible. Here we find
that by including the calculated non-Maxwellian distributions
in the atomic modeling, much better agreement is found
for ionization balance of the neon plasmas. The module is
developed to solve the Boltzmann transport equation under
the assumption of spatially unform plasmas in cooperation
with a zero-dimensional CR philosophy and updating the
electron distribution function in time. Its impact on the tran-
sition rate, e.g., the collisional ionization rate, results in the
change of plasma characteristics such as the charge state
distribution, which closely approaches the experimental data.
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In addition, it also probes the differences between different
collision-ionization coefficient models and confirms that there
is no significant difference in the corresponding experimental
density. These findings demonstrate the accuracy and broad
applicability of SCFLY in interpreting low-density plasma
dynamics, improving our understanding of complex plasma
behavior.

II. COMPUTATIONAL MODEL

A. Collisional-Radiative model

The CR model provides population distributions and char-
acterizes the physical processes occurring in the plasma for a
given electron temperature and density. It can be considered
as the most general population kinetics calculational model
since it uses the fundamental physical quantities, e.g., the
transition rate of state kinetics to get population instead of
statistical, local thermodynamic equilibrium (LTE). The CR
model solves sets of rate equations to calculate the number
density of the ith atomic state Ni as a function of rates Aj→i

from the jth atomic state to the ith atomic state, where 1 �
i, j � m (the maximum number of atomic states) from the
following equation:

dNi

dt
=

∑
j �=i

A j→iNj − A∗
i Ni, (1)

where

A∗
i =

∑
k �=i

Ai→k .

For this work, the code uses the super-configuration model
with the screened hydrogenic levels, whose energy level is
based on principal quantum numbers considering the screened
nuclear charges seen by the electrons in each shell. This is a
linear function of the shell occupations using a set of screen-
ing coefficients. The transition rate Ai−> j is the transition rate
from level i to level j. Among them, the rate of a collisional
transition ACOL includes the collisional cross-section term
σ (E ) as a fundamental physical quantity, and, thus, the colli-
sional rate is obtained by integrating over the electron energy
distribution function fe(E ) as

ACOL = ne

∫ ∞

�E
vσ (E ) fe(E ) dE , (2)

where ne is the electron density, v is the electron velocity at
energy E , and �E represents the threshold energy for the
transition. The electron energy distribution fe(E ) in Eq. (2)
has been assumed to be the Maxwell-Boltzmann distribution,
which implies ionized-electrons thermalized instantaneously
in the code SCFLY. This work supplements that module with
the Boltzmann equation solver for non-Maxwellian electrons’
evolution in time and updates fe(E ) to reveal its effect on
the total ionization in XFEL-heated plasmas. The Boltzmann
equation solver is described in Sec. II B in detail.

Another important term in the collisional rate is the colli-
sional cross section σ (E ) derived as a few different models
for plasmas. For the collisional ionization and recombination
process, the collisional ionization cross section in the code is
used as a semiempirical formula. Burgess-Chidichimo (BC)

models have been generally used as a basic option whose
collisional ionization (CI) cross section is given by

σ BC (E ) = πa2
0Cξ

(
IH

�I

)2(
�I

E

)
log

(
E

�I

)
W

(
E

�I

)
, (3)

where

W

(
E

�I

)
=

[
log

(
E

�I

)] β�I
E

and

β = 0.25

[(
100z + 91

4z + 3

)1/2

− 5

]
.

When the plasma is ionized from an initial level I for an
electron with energy E > �I (where �I is the ionization
potential) [21], z represents the charge of the ion and ξ is
the effective number of equivalent electrons in a shell. a0

represents the Bohr radius, the constant C is often assigned
a suggested value of 2 [22], and IH is the Rydberg constant
in the formula. Several CI cross section models are avail-
able, such as the Lotz model [23], the BCF model [19], and
others. It is known that these models yield similar values in
the density region of approximately 1019 cm−3. This indicates
that the result is insensitive to the choice of the collisional
cross-section model [19]. Thus, we have chosen to use the BC
model for this work.

For the three-body recombination rate ARC with an arbi-
trary electron distribution, one must consider the differential
collisional recombination (DCR) cross section, denoted as
σ DCR( f → i)(E ′, E ′′ → E ). This cross section is derived
from the detailed balance with the differential collisional ion-
ization cross section, known as the Fowler relation [24,25].
Thus, the three-body recombination rate using the DCR cross
section can be expressed as

ARC = n2
e

∫∫∫ (
2E ′

me

) 1
2
(

2E ′′

me

) 1
2

fe(E ′) fe(E ′′)

× σ DCR( f → i)(E ′, E ′′ → E ) dE ′ dE ′′ dE ,

where me is the electron mass, and the energy E refers to in-
coming electron energy, while the energies of the ejected and
outgoing electrons are represented as E ′ and E ′′, respectively.

Auger ionization and its inverse process, dielectronic re-
combination, are pivotal phenomena in plasma environments.
The CR model approximates the rates of these processes us-
ing a detailed balance approach. The Auger ionization rate
Aaug(k → i), which describes the transition from state k—an
excited state of an ion plus its outermost excited electron—to
a bound state i of the subsequent ion is given by

ne
∫

σ EC (i → k)v fe(E ) dE

Aaug(k → i)

= gk

gi

ne

2

(
h2

2πmekBTe

)3/2

e− (Ek −Ei )
kBTe ,

where gk and gi denote the degeneracy factors of states k and
i, respectively, h is the Planck constant, kB is the Boltzmann
constant, and Te represents the electron temperature. The term
σ EC(i → k) refers to the electron-capture cross section from
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state i to k, and fe(E ) is the electron energy distribution
function (EEDF), indicating the influence of free electron
distribution on Auger ionization and its reverse process. This
equation highlights the intricate relationship between electron
dynamics and ionization mechanisms within plasmas, based
on the principle of detailed balance. Detailed explanations for
the theory of CR model and the code SCFLY itself are found
in Refs. [22,24,26–29].

B. Boltzmann solver under the rate formalism

The time evolution of the electron distribution function
used for the collisional rate calculation is calculated from the
well-known kinetic model, the Boltzmann transport equation.
The general form of the Boltzmann transport equation is
given by (

∂

∂t
+ v · ∇r + eE

m
· ∇r

)
f (r, v, t )

= Celas
ee ( f ) + Celas

ei ( f ) + Qinelas( f ), (4)

where the function f (r, v, t ) is the distribution function for
electrons at time t , and spatial location r with velocity v. For
the consistency with the zero dimensionality in the CR code, it
is assumed that the electron energy distribution f is spatially
uniform. Also, the velocity term v in the distribution can be
simplified with a two-term spherical harmonic expansion [30],
and the effect of the external electric field E on the change
of the electron distribution is assumed to be minor in XFEL
heated plasmas. It results in the second and third terms in the
left-hand side turning out to be zero. The term Celas

ee represents
electron-electron elastic collisions, which account for changes
in the distribution resulting from the collisional processes of
free electrons themselves, while preserving the total energy of
the free-electron system. The term Celas

ei describes electron-ion
elastic collisions, acting as a momentum transfer operator.
During these collisions, electrons transfer energy to ions. Fi-
nally, the term Qinelas

ei signifies the alteration of the distribution
function due to inelastic collisions, covering atomic kinetic
processes such as collisional ionization/three-body recombi-
nation, and autoionization/electron capture. These processes
either contribute to or deduct from the electron distribution
function. Additionally, the model incorporates excitation and
de-excitation events associated with free electrons, inducing
shifts within the energy spectrum that correspond with the
transition energies of bound electrons in ions, thus ensuring
energy conservation.

Accordingly, Eq. (4) can be reformulated into a rate equa-
tion with these considerations, defined by the electron number
density n(ε):

∂ne
k

∂t
= −∂Jee

∂ε
− ∂Jei

∂ε
+ S( f ) + I ( f ). (5)

Here Jee and Jei represent the electron flux along the energy
axis, influenced by electron-electron and electron-ion colli-
sions, respectively. The terms S( f ) and I ( f ) serve as source
and sink terms, respectively, for inelastic processes involving
ionization, excitation, and their inverse processes, effectively
replacing Qinelas( f ) in Eq. (4). These two terms, representing
the number of electrons added and subtracted from the EEDF,
are derived from atomic transitions at that particular time step,

as determined by the rate equation [Eq. (1)]. Consequently,
S( f ) and I ( f ) highlight the discrete, stepwise nature of these
changes, while the descriptions of Jee and Jei capture the
continuous evolution of the electron distribution.

Note that this model does not account for the distribution
changes directly induced by photons, given that the driving
photon energy falls within the x-ray regime, which corre-
sponds to a significantly lower cross section. Furthermore, the
scope of this work does not require the consideration of the
self-generated radiation field from plasma, attributed to the
system’s brief timescale. However, should the driving photon
be derived from an optical laser, or should the system oper-
ate over a longer timescale (> a few hundred picoseconds),
incorporating this aspect into the model becomes essential for
accurate analysis.

Specifically, the first term describes the impact of electron-
electron (ee) collisions on the distribution function. The
work of Rosenbluth et al. demonstrates that the fundamental
two-body force, described by an inverse square law, can be
formulated as a simple potential term in the Fokker-Planck
equation for the distribution [30,31]. If the continuous func-
tion ne

k (ε) is put in finite difference form as n(εi ), the flux can
be discretized by projecting it onto a finite-difference energy
axis. The derivative of Jee with respect to ε turns out to be
a transition rate from mth to kth energy grids, Rkm

ee , times the
population nm at the mth energy grid. If one utilizes a time step
that is small enough to assume transitions take place between
adjacent energy grids, then this term results in the following
expression:

Ree
kmnm ∼ Ik−1nk−1 + Ok+1nk+1 − (Ik + Ok )nk, (6)

where the rate coefficients I and O are

Ik =
∑

j

wk jn j, Ok =
∑

k

wk jnk

and

wk j = [w′
k jw

′
j−1,k+1(ε j−1εk+1)1/2(ε jεk )−1/2]1/2,

where w′
k j is given by

w′
k j=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
[
ε

−1/2
k+1 + ε

−1/2
k

](
ε jεk − 3

4

)
k > j

α[εk+1 + εk]ukε
−1/2
j k < j − 1

α
[
ε

−1/2
k+1 + ε

−1/2
k

](
ε jεk− 3

4

)+εkukε
−1/2
j k = j

α
[(

ε juk− 3
4

)
ε

−1/2
k+1 +(εk+1+εk )ukε

−1/2
j

]
k = j − 1

0 k=1 or kmax

.

Here α is a coefficient that encapsulates the information
regarding the collisional frequency between electrons and
given by

α = 2

3
πe4

(
2

m

)1/2

ln 
, (7)

and e is the charge of electron, m is the electron mass, and
ln 
 is the Coulomb logarithm. The detailed derivation from
the continuous equation is shown in Refs. [30,32,33]. For
reference, the code uses the Coulomb logarithm derived from
the Spitzer formula for electrons with lower energy than the
plasma frequency, and it employs an empirical formula, based
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on the work of Zollweg and Liebermann [34], for other cases.
This is necessary because the Spitzer formula may not yield
accurate results for nonideal plasmas, particularly when the
electron kinetic energy approaches the Coulomb potential. In
such scenarios, only a few electrons, or even a fraction of
an electron, occupy a Debye sphere, and this phenomenon
typically occurs at relatively low temperatures but relatively
high electron densities.

The second term of Eq. (5) is the momentum transfer oper-
ator, calculating the energy loss of electrons due to the elastic
collision with the ions. Similar with the electron-electron col-
lision term, it can be converted to the finite difference form
with the rate equation form as

Rei
kmnm ∼ rk−1nk−1 + dk+1nk+1 − (rk + dk )nk, (8)

and rk and dk+1 are given by

rk = ν̄k

2�ε

(
kTi

2
− ε+

k + 2kTi

�ε
ε+

k

)
,

dk+1 = ν̄k

2�ε

(
− kTi

2
+ ε+

k + 2kTi

�ε
ε+

k

)
,

where ε+
k = kB�ε, ν+

k
N = ( 2ε+

k
m )1/2 ∑

s qsσs(ε+
k ), and ν̄+

k =
2mN ( 2ε+

k
m )1/2σs(

qsσs (ε+
k )

Ms
) [32]. The matrix R, having dimen-

sions of s−1, represents the collision frequencies for the flow
of electrons up and down the energy axis due to elastic col-
lisions with ions. The excitation rate rk corresponds to the
excitation rate of electrons in the electron energy distribu-
tion, and dk corresponds to the de-excitation rate of electrons.
The constant kB is the Boltzmann constant, and Ti is the ion
temperature. One of the key assumptions for converting the
electron flux into a discretized form for both electron-electron
and electron-ion elastic collisions is the use of a short calcu-
lation time step. This time step must be short enough to allow
the majority of the electron population at energy k to move
to adjacent energy bins. As a result, the R-matrix should be
diagonally dominant.

Also, this formalism requires the temporal development
of the distribution function that will be represented accu-
rately only for “small” δt . The source S( f ) and sink terms
I ( f ) in Eq. (5) describe changes in the number of electrons
associated with bound-free transitions in ions. These transi-
tions occur due to the ionization and recombination processes
resulting from electron collisions with ions. The ionization
or recombination process involves the conversion of bound
electrons to free electrons and vice versa, which cannot be
solved using the rate equation formalism alone. To address
this challenge, the source and sink terms are incorporated
after solving the rate equation. By utilizing the ionization (or
recombination) information calculated within the rate equa-
tion of the collisional-radiative model, it becomes possible to
determine the number and energy of electrons emitted during
the transition. This information is then used to formulate the
corresponding source (or sink) term. Note that using a very
small-time step is necessary to prevent divergence. Increasing
the time step leads to a significant amount of addition or
subtraction occurring at once. If the value to be added exceeds
the density of electrons’ states at the corresponding energy

or the value to be subtracted becomes smaller than zero, the
calculation will halt.

III. NUMERICAL STUDY OF THE IMPACT
OF NONEQUILIBRIUM ELECTRONS

A. Time evolution of EEDF

These methods were applied to the study of ultrafast elec-
tron response of atoms to the intense x-ray with Ne plasma
heated by XFEL, which was conducted by Young et al. [20].
The neon gas target has low density enough to get slow ther-
malization of free electrons compared to the pulse duration
of XFEL, resulting in the accumulation of the effect of hot
electrons with a long lifetime in the plasmas rather than the
solid target. Also, the major measurement of the experiment
is the charge state distribution (CSD), which can be simu-
lated by the new code in this work. Young et al. illustrate
three different systems with three XFEL photon energy cases
(800, 1050, 2000 eV) representing the different ionization
mechanisms, but this work focuses on the case of the XFEL
photon with the energy of 2000 eV since (1) all the collisional
ionization process of both L-shell and K-shell electrons in all
charge states, even including H- and He-like ions of Ne, is
possible to be analyzed in detail, and (2) the other noncolli-
sional atomic processes, e.g., the direct multiphoton process
and resonance absorption, are possible to be neglected in the
analysis [35,36].

In order to check the effect of hot electrons, we simulate the
electron energy distribution function in time. In these simula-
tions, several variables affect the results, such as x-ray pulse
duration, x-ray intensity, and gas density, but their exact values
are unknown. Thus, we based the simulation on commonly
used values from previous studies. The previous numerical
studies have used a single density of 1.6 × 1019 cm−3 for
neon gas corresponding to a gas pressure of 500 torr used
in the experiment [8,10,11]. This gas has been heated with a
XFEL pulse with a Gaussian temporal profile and whose pulse
duration is set to 230 fs as reported in Ref. [20]. Its use in the
simulation and the temporal spikes of the intensity profile due
to the Self-Amplified Spontaneous Emission (SASE) process
can be ignored as its effect is expected to be negligible [12,37].

The absorption of a 2000 eV XFEL photon by the neon
plasma results in changes in the EEDF, as demonstrated in
Fig. 1. The Boltzmann solver, the our calculation module,
tracks the evolution of electrons in response to the ionization
processes initiated by the XFEL-plasma interaction. At the
start of the simulation, the target is a neutral gas plasma, so
the EEDF exhibits a flat shape. Upon XFEL exposure to the
neon plasma, ionization begins, with photoionization as the
dominant mechanism. During this process, electrons in the K
shell absorb photons and are ionized to be free electrons with
energy of approximately 1020 eV. The KLL Auger process
then fills the resulting K-shell hole with electrons, ionized at
an energy of approximately 800 eV (K-shell binding energy ∼
980 eV and L-shell binding energy ∼ 90 eV). The simulation
accurately captures the EEDF at early time steps, showing
sharp peaks at the corresponding energies for the neutral neon
plasmas. As time goes on, higher charge ions are produced
through photoionization and Auger decay, resulting in satellite
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FIG. 1. (a) The calculated electron energy distribution function in cm−3 eV−1 as a function of electron energy (eV) in time during irradiation
by 2.5 × 1018 W/cm2 XFEL laser pulse with the pulse duration of 230 fs. The pulse center is in 300 fs and the density of neon plasma is
2 × 1019 cm−3. (b) The representative electron energy distribution for four different time steps. Two major peaks from KLL Auger decay
(∼770 eV) and photoionization (∼1130 eV) process are observed first early, followed by other satellite peaks associated with those processes.
(c) The evolution of EEDF in a longer timescale. Eventually it ends up with the Maxwell-Boltzmann (MB) distribution with Te ∼ 100 eV,
which is the same value estimated by the population kinetic calculation part. Modeling beyond the collisional-radiative model, such as the
hydrodynamic expansion, conductive energy loss, etc., must be incorporated to accurately describe EEDF in this region, so simulations are
conducted to test whether the approach is limited solely to equilibrium conditions.

peaks of lower energy than the initial photoionization and
Auger electron peaks. These satellite peaks can be seen as
multiple electron peaks observed in the EEDFs after 150 fs.

The simulation results reveal that the commonly assumed
instant thermalization in the collision-radiative model is not
valid within the low-density environment of this experiment.
While the collisional frequency in normal solid density targets
allows the electron distribution to reach equilibrium within a
few femtoseconds, caution is necessary when dealing with
femtosecond dynamics in low-density targets like gas tar-
gets. In this specific case, the simulation demonstrates the
presence of energetic nonequilibrium electrons generated by
photoionization and Auger decay, persisting for several hun-
dred femtoseconds during the interaction between the x-ray
pulse and the target. These electrons possess higher energy
levels than thermal electrons and constitute a substantial por-
tion of the population, significantly influencing the calculation
of the collisional rate. Consequently, for accurate descriptions
of such interactions, it is imperative to go beyond the CR
model and consider nonequilibrium effects.

The creation of a thermalized electron population in EEDF
is mainly attributed to electron-ion and electron-electron colli-
sion processes. Upon incidence of the XFEL on neon plasma,
photoionization and Auger decay processes are identified as
the primary causes of EEDF change, followed by collision
processes that result in peak broadening and electron pop-
ulation accumulation at low energy. The EEDF ultimately
converges to the MB distribution with Te ∼ 100 eV after
approximately 20 ps, indicating the thermalization time of
neon plasma at the density in the simulation. It is based on the
collisional frequency formula derived from the Spitzer model
[38] mainly contributing to this density regime. Also, note that
the calculation later (∼ picosecond regime) is considered only
as the verification of a sanity check of the simulation. This
code has the nature of a zero-dimensional calculation that does
not consider spatial relevant physics, such as hydrodynamic
expansion of target, spatial dissipation of heat, etc., which
may affect the evolution of EEDF in the longer timescale.

Nevertheless, the Boltzmann solver effectively depicts the
evolution of free electron distribution in XFEL-heated plasma
over time and represents an advancement over the instanta-
neous thermalization assumption employed by existing CR
models.

B. Population changes due to nonequilibrium electrons

Taking into account the influence of nonequilibrium elec-
trons, the fractional yield of each a charge state undergoes
changes. A previous study by Ciricosta et al. utilized SCFLY
to simulate the charge state yield in detail [12]. In order to
compare these results with the experimental findings of Young
et al., which measured the fractional yield of the charge state,
simulations were conducted while considering the XFEL’s
intensity beam profile. The simulation assumed an elliptical-
Gaussian shape for the XFEL intensity beam profile, with axes
in the ratio of 1:2 [12,20]. Moreover, to facilitate comparison
with the experimental ion population over time, the fractional
yield was determined for the charged states, excluding neutral
ions, based on the initial ion density condition.

Figure 2 represents the results obtained from experimental
and calculated fractional yield of the charge state. The distri-
bution is an integrated value of each charge state for the entire
time (up to 20 ns in this work) and has been performed in
the same way as by the previous works. Detailed calculation
methods are introduced in Ref. [12]. Based on Fig. 2, the
yields of the +3, +5, and +7 charged ions show an evident
difference between the experiment and simulations with the
instant thermalization assumption, aligning with findings by
Young and Ciricosta and their colleagues. Further research
identified various issues, such as the double Auger process and
cross section, as contributing factors, supported by calculation
[35,36]. However, accounting for nonequilibrium electrons
resulted in the fractional yield closely matching the exper-
imental data for populations +2 to +7, especially for the
charged ions of +3, +5, and +7. The significance of col-
lisional ionization due to nonequilibrium electrons has not

045207-5



CHO, CHUNG, FOORD, LIBBY, AND CHO PHYSICAL REVIEW E 109, 045207 (2024)

FIG. 2. Experimental and simulated charge state populations for
neon plasma heated by a 2000 eV XFEL pulse. The experimental
data are depicted in the black bar [20], and the simulation results are
represented by the various color bars. The red bar corresponds to a
simulation that includes nonequilibrium electrons, and the blue bar
reflects the same calculation assuming instant thermalization of free
electrons. This instant thermalization scenario closely aligns with the
theoretical estimations presented by Young et al. (purple) [20] and
Ciricosta et al. (green) [12] as expected.

been emphasized in previous studies, possibly due to their
low collisional ionization rates stemming from the typically
low density [39]. Nonetheless, our results demonstrate that
considering a substantial number of nonequilibrium electrons,
as opposed to relying solely on the Maxwell-Boltzmann dis-
tribution, can significantly impact the final outcomes.

Nevertheless, this simulation diverged significantly from
the experimental values previously well matched for the
+1 ion population. This discrepancy is attributed to the
assumption that the electron distribution follows the Maxwell-
Boltzmann distribution, which tends to concentrate more
electrons in lower energy regions. This leads to increased
collisional ionization and a greater population of lower charge
states. It is a phenomenon that has been observed to be con-
sistent in other cases, such as with 800 eV. Therefore, to
improve the charge state distribution, it would be necessary
to extend the simulation time until sufficient generation of
low-energy electrons occurs or thermalization takes place.
However, such refinement must take into account the effects
of hydrodynamic expansion, radiative, and conductive losses
in the region, demanding a code capable of incorporating this
dimensional information while calculating the nonequilibrium
electron distribution. Moreover, the current code needs to
account for simulating the double Auger process and cross
section, which previous research has identified as problematic
areas [40].

C. Collisional ionization rate enhanced
by nonequilibrium electrons

The thermalization time in neon plasma spans sev-
eral picoseconds, leading to significant implications for the
collisional ionization rate in the presence of nonequilib-
rium electrons. In high-density plasmas, the assumption of
a Maxwellian electron distribution is valid due to rapid

thermalization. However, neon plasma, with its lower den-
sity, experiences longer thermalization timescales, allowing
energetic electrons to persist longer than in cases assuming
instantaneous thermalization. Consequently, the collisional
ionization rate is significantly enhanced when nonequilibrium
electrons are considered.

Figure 3 illustrates the collisional ionization rate over time,
with the left panel assuming instantaneous thermalization and
the right panel demonstrating the impact of nonequilibrium
electrons on collisional ionization rates. In Fig. 3(a) we ob-
serve that, under the assumption of a Maxwellian electron
distribution, the collisional ionization rate for most ions is
smaller than the photoionization rate. However, the +1 ion,
exhibiting the fastest crossover, is predominantly influenced
by photoionization for approximately 300 fs. It is evident
that photoionization plays a significant role in the ionization
process during the XFEL-material interaction.

However, the presence of nonequilibrium electrons sub-
stantially enhances the ionization degree, resulting in a 1–2
order-of-magnitude increase in the collisional ionization rate,
shown in Fig. 3(b). The effect is pronounced across all charge
states, with lower charge states, such as +1 ions, experiencing
a particularly significant impact. The collisional-ionization
rate surpasses the photoionization rate during the middle of
the simulation time frame, becoming the dominant process.
Nonequilibrium electron effects enhance the collisional ion-
ization rate by a factor of ten for the lower charge states in
later stages of the process. Note that the nonequilibrium elec-
trons alter the Auger and its inverse rates in this simulation.
However, we have confirmed that their magnitudes are smaller
by an order of magnitude than those of the collisional rates
across all charge states, both with and without nonequilibrium
electrons. This difference does not significantly impact the
charge state distributions.

As a result, nonequilibrium electrons alter the pattern of
ionization, making collisional ionization rates dominant from
the peak of the pulse, while under thermalization without the
consideration of nonequilibrium electrons, collisional ioniza-
tion rates typically dominate over photoionization rates during
the latter half of the process. The presence of nonequilibrium
electrons proves to be crucial in understanding and modeling
the collisional ionization dynamics in neon plasma.

IV. CONCLUSION

The CR model characterizes physical processes in plasma
based on electron temperature and density, emphasizing colli-
sional processes for dense plasmas. However, its assumption
of instantaneous electron thermalization has been shown not
to be accurate for low-density plasmas exposed to XFEL. To
address this, a Boltzmann equation solver has been introduced
to monitor the time evolution of the electron distribution
function. This solver accounts for various types of collisions
and atomic kinetic processes. By transforming the Boltzmann
transport equation, the solver updates the electron distribution,
highlighting nonequilibrium effects in XFEL-heated plasmas.
Despite some complexities, the integration of the CR model
and the Boltzmann solver improves the precision of plasma
models, especially for low-density XFEL-plasma interactions.
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FIG. 3. Comparison of collisional ionization rate between without (a) and with (b) nonequilibrium electron contributions during the XFEL
pulse for charge states +1 to +10. The dotted line represents the photoionization rate for each ion, and it is consistent in both graphs. These
plots are presented side by side to facilitate a comparison of collisional ionization rates. The XFEL pulse has the pulse duration of 230 fs
whose pulse center is on 300 fs.

To investigate the influence of nonequilibrium electrons
on plasma dynamics, we studied the dynamics of ultrafast
electron response in neon plasma exposed to intense XFEL
x-ray pulses. The XFEL interaction with the low-density
(ne ∼ 1019 cm−3) neon plasma requires the development
of code that merges the collisional-radiative model with the
Boltzmann solver. This code successfully tracks the EEDF’s
time evolution, revealing nonequilibrium electrons from pho-
toionization and Auger decay. Comparison of simulation
results with experimental data highlights discrepancies when
nonequilibrium electrons are ignored. Nonequilibrium elec-
trons substantially enhance the collisional ionization rate,
surpassing the photoionization rate at certain simulation
points. Considering nonequilibrium effects in neon plasma’s
interaction with XFEL pulses is crucial for accurately depict-
ing collisional ionization dynamics.

In conclusion, we present a comprehensive study on the
effect of nonequilibrium electrons in XFEL-heated plasma
interactions. By introducing a Boltzmann equation solver into
the CR model, we accurately represent the time evolution
of the electron distribution function, revealing nonequi-
librium electrons with longer lifetimes. The consideration

of nonequilibrium effects is vital for accurately modeling
XFEL-plasma interactions in low-density environments. Our
combined approach of the CR model and the Boltzmann
solver improves our understanding of collisional ionization
dynamics and provides valuable insights for interpreting
experimental results. This code will serve as a power-
ful tool for researchers investigating plasma interactions
with intense x-ray pulses in various low-density plasma
scenarios.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Research Foundation of Korea (NRF-2019R1A2C2002864,
RS-2023-00218180). This work also was performed un-
der the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. We extend our deepest gratitude to
Richard W. Lee and William L. Morgan, whose pioneering
work two decades ago laid the foundation stones for our
exploration into the impact of nonthermal electrons on NLTE
kinetics.

[1] T. Ditmire, E. T. Gumbrell, R. A. Smith, A. Djaoui, and
M. H. R. Hutchinson, Phys. Rev. Lett. 80, 720 (1998).

[2] S. B. Hansen, A. S. Shlyaptseva, A. Y. Faenov, I. Y. Skobelev,
A. I. Magunov, T. A. Pikuz, F. Blasco, F. Dorchies, C. Stenz, F.
Salin et al., Phys. Rev. E 66, 046412 (2002).

[3] H. P. Le, M. Sherlock, and H. A. Scott, Phys. Rev. E 100,
013202 (2019).

[4] N. Medvedev, U. Zastrau, E. Förster, D. O. Gericke, and B.
Rethfeld, Phys. Rev. Lett. 107, 165003 (2011).

[5] A. L. Milder, J. Katz, R. Boni, J. P. Palastro, M. Sherlock, W.
Rozmus, and D. H. Froula, Phys. Rev. Lett. 127, 015001 (2021).

[6] J.-W. Lee, M. Kim, G. Kang, S. M. Vinko, L. Bae, M. S. Cho,
H.-K. Chung, M. Kim, S. Kwon, G. Lee et al., Phys. Rev. Lett.
127, 175003 (2021).

[7] W. Bang, B. Cho, M. Cho, M. Cho, M. Chung, M. S. Hur, G.
Kang, K. Kang, T. Kang, C. Kim et al., J. Korean Phys. Soc. 80,
698 (2022).

[8] A. G. de la Varga, P. Velarde, F. de Gaufridy, D. Portillo, M.
Cotelo, A. Barbas, A. González, and P. Zeitoun, High Energy
Density Phys. 9, 542 (2013).

[9] S. Ren, S. Vinko, and J. S. Wark, Phil. Trans. R. Soc. A 381,
20220218 (2023).

[10] J. Abdallah, J. Colgan, and N. Rohringer, J. Phys. B: At., Mol.
Opt. Phys. 46, 235004 (2013).

[11] C. Gao, J. Zeng, and J. Yuan, High Energy Density Phys. 14, 52
(2015).

[12] O. Ciricosta, H.-K. Chung, R. W. Lee, and J. S. Wark, High
Energy Density Phys. 7, 111 (2011).

[13] S. Vinko, O. Ciricosta, B. Cho, K. Engelhorn, H.-K. Chung, C.
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