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Induced-charge electrophoresis of a tilted metal nanowire near an insulating wall
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Electric fields are commonly used to control the orientation and motion of microscopic metal particles
in aqueous suspensions. For example, metallodielectric Janus spheres are propelled by the induced-charge
electro-osmotic flow occurring on their metallic side, the most common case in electrokinetics of exploiting
symmetry breaking of surface properties for achieving net particle motion. In this work, we demonstrate that a
homogeneous metal rod can translate parallel to a dielectric wall as a result of the hydrodynamic wall-particle
interaction arising from the induced-charge electro-osmosis on the rod surface. The applied electric field could
be either dc or low-frequency ac. The only requirement for a nonvanishing particle velocity is that the axis of the
rod be inclined with respect to the wall, i.e., it cannot be neither parallel nor perpendicular. We show numerical
results of the rod velocity as a function of rod orientation and distance to the wall. The maximum particle velocity
is found for an orientation of between ∼30◦ and ∼50◦, depending on the position and aspect ratio of the cylinder.
Particle velocities of up to tens of µm/s are predicted for typical conditions in electrokinetic experiments.
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I. INTRODUCTION

Electric fields are commonly used to induce the motion
of small particles immersed in water or other liquids. For
example, electrophoresis describes the motion of a particle
in an electrolyte due to the interaction of an electric field
with electrical charges in the electrical double layer (EDL)
at the particle-electrolyte interface [1,2]. Electrophoresis is
extensively used for the analysis and separation of colloids
[3], macromolecules such as DNA and proteins [4], and, in
general, any particle that carries a net surface charge when
suspended in an electrolyte. Particles that remain uncharged
when dispersed in water are not prone to electrophoretic
manipulation, but other electrokinetic phenomena can be
harnessed. For example, metallodielectric Janus spheres are
microscopic spheres with half of their surface covered by a
metal while the other half is of a dielectric material. When
these microspheres are dispersed in electrolytes, they are
translated in a direction perpendicular to the applied electric
field [5]. This motion has its origin in the electro-osmostic
induced charge flow (ICEO) [6,7] that occurs on the metallic
side of the Janus microspheres, a kind of electrokinetic flow
that does not appear on the dielectric side of the particle.
The net motion of the Janus sphere is named ICEP (induced-
charge electrophoresis) and has its origin in the action of
the electric field in the EDL due to induced charges on a
metal surface rather than on intrinsic charges, as in “classical”
electrophoresis. ICEP of Janus spheres is the most common
example of net motion that appears when symmetry is broken
in ICEO systems [8–11]. Another example of particle mo-
tion due to symmetry breaking of the electrokinetic flow was
recently reported by Katzmeier et al. [12], where dimers of
microparticles of different sizes are translated due to asym-
metric concentration polarization electro-osmosis [13,14].

In most experimental situations, particles are translated
adjacent to the bottom substrate of a microfluidic chamber as
a result of buoyancy mismatch. While the presence of a wall
is commonly seen as a nuisance, the wall-particle interaction
gives rise to a net motion of the particle, opening opportunities
for self-propulsion mechanisms. For example, it is shown
in [15] that a Janus sphere sitting on an electrode moves
in a direction opposite to the ICEP motion if the frequency
of the ac field is high (>10 kHz). This motion was termed
self-dielectrophoresis (sDEP) and it has been shown that this
dielectrophoretic-type force arises when the EDL induced at
the electrode-electrolyte interface is considered in the study of
the particle-electrode interaction [16] (i.e., a particle sitting on
a nonpolarizable electrode does not undergo sDEP motion).
The motion of Janus particles near an insulating wall was first
theoretically described by Kilic and Bazant [17]. Another ex-
ample of electrokinetic particle motion due to the interaction
with a wall was reported in [18], where dielectric colloidal
dimers with broken symmetry sit on an electrode and move
horizontally. The difference between the two colloidal parti-
cles can be in geometry, composition, or interfacial charges,
and it gives rise to unbalanced electrohydrodynamic flows,
which induce the motion of the dimer.

In this work we study the interaction of ICEO flows around
a metal nanowire and a nearby insulating flat wall. We show
that the nanowire is translated when it is inclined with respect
to the wall, in contrast to the case of a nanowire in the liquid
bulk, which aligns with the direction of the electric field but
does not translate [19,20]. The experimental results in these
works show that the orientation time is very short (less than
1 s). Thus we expect negligible displacement of the nanowire
unless its orientation is fixed by an external torque (see
Appendix B). In the present work, we assume that the
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FIG. 1. Model particle consisting of two metal spheres connected
by a thin metal wire. The electro-osmotic velocities induced on the
spheres give rise to an interaction with the wall that leads to a
net particle velocity UICEP. The sphere closest to the wall leads the
motion. Note that this is the direction of the motion regardless of the
sign of the applied electric field, as expected for the ICEP.

orientation of the cylinder axis does not change during its
translation. For example, Haque et al. [21] used magnetic
fields to fix the orientation of magnetic colloidal chains, simi-
lar to cylindrical rods, to induce electrokinetic particle motion
near electrodes.

The electrokinetic manipulation of metal and semiconduct-
ing nanowires in suspension has been extensively studied by
our group [20,22–24] and others [25–32]. As happens for
conducting particles [33–36], their electrokinetic behavior is
determined by the polarization of the EDL at the particle-
electrolyte interface, which is induced by the applied electric
field. This polarization mechanism gives rise to the ICEO
flows around the nanowire and, as mentioned above, in this
work we show that the interaction of these flows with a wall
can result in translation of the nanowire.

In the next section of this paper, we show a heuristic model
that predicts the net motion of an elongated metal particle
near a wall. Then, the theoretical analysis for the ICEP of a
metal cylinder is presented. We show numerical results for the
velocity of the cylinder at a distance of a wall and as a function
of its orientation. The maximum velocity of the nanowire is
found for an orientation between ∼30◦ and ∼55◦, depending
on the position and aspect ratio of the cylinder.

II. HEURISTIC MODEL FOR THE ICEP MOTION
OF AN ELONGATED PARTICLE NEAR A WALL

The ICEP motion of an elongated metal particle can be
qualitatively understood if we consider a model particle con-
sisting of two metal spheres of radius R connected by a thin
and long conducting wire with length d � R (see Fig. 1)—
this approximation allows us to neglect any hydrodynamic
interaction between spheres. The ICEP motion of composite
particles formed by two spheres with different radii and away
from the wall was considered by Squires and Bazant [8].
We assume that the spheres are initially uncharged and, upon
application of an electric field, charges of opposite signs are
induced on the two spheres. These charges are screened by
ions in the electrolyte, building electrical double layers (EDL)

around the metal particles. In this situation, the voltage drop
across the EDL can be written as ζ1 = dE cos(θ )/2 for sphere
1 and ζ2 = −dE cos(θ )/2 for sphere 2. This voltage drop is
known as zeta potential (ζ ) and is of crucial importance in
electrokinetics since the electrophoretic velocity is given by
the Helmholtz-Smoluchowski equation [1]:

vHS = −(εζE )/η, (1)

where ε and η are, respectively, the electrical permittivity and
the viscosity of the electrolyte. Expression (1) is valid when
the thickness of the EDL is much smaller than the size of the
particle.

We aim to calculate the ICEP velocity (UICEP) of the com-
posite particle in Fig. 1 that arises from the electro-osmosis on
the surface of the two spheres. We assume that the orientation
of the particles is kept fixed by an external torque. The ICEP
motion is a force-free motion with a fluid velocity field that
can be decomposed into the following two problems: (i) the
velocity field due to a stationary particle (U = 0) with slip
velocities on the spheres vslip(i), i = {1, 2}, and (ii) the ve-
locity field due to a particle moving with velocity U = UICEP

and zero slip velocity on the spheres. To keep the particle
stationary in problem (i), there must be an applied external
force corresponding to the sum of the forces required to keep
the two spheres stationary. According to Keh and Anderson
[37], including a first-order correction to the electrophoretic
velocity of a sphere moving parallel to a wall results in the
following expression:

Uelpho = (1 − λ3/16)
εζ

η
E, (2)

where λ = R/h, with h the distance of the center of the
sphere to the wall. Thus the electrophoretic velocities of the
two spheres of Fig. 1 can be written as Uelpho(i) = εζiE

η
(1 −

λ3
i /16); i = {1, 2}. Also, the viscous friction coefficient γ for

a sphere moving parallel to a wall in the leading order in λ

is [38]

γ = 6πηR/[1 − (9/16)λ]. (3)

Here, we have neglected the hydrodynamic interaction be-
tween spheres. This holds as long as hi � d .

The external force to keep the composite particle stationary
is Fexternal = −∑

i γiUelpho(i). Likewise, the viscous force in
problem (ii) is FICEP = −(γ1 + γ2)UICEP. Since the problem
is force free (FICEP + Fexternal = 0), the leading term of the
ICEP velocity is

UICEP ≈ γ1 − γ2

γ1 + γ2
[εd cos(θ )/2η]E2

≈ 9(λ1 − λ2)

32
[εd cos(θ )/2η]E2. (4)

If sphere 1 is closer to the wall than sphere 2, λ1 > λ2,
and the model predicts the motion of the composite particle
with sphere 1 leading. Note that this is the direction of the
motion regardless of the sign of the applied electric field, as
expected for the ICEP motion. This result can be explained by
considering that the force exerted by the wire is the same on
each particle. The perturbation in their velocities is not sym-
metric since the correction to the drag coefficient due to the
presence of the wall scales as (R/h). Thus the sphere closest
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FIG. 2. Schematics of the physical problem. A metallic cylinder
with length 2a and diameter 2b lies at a distance h over a flat
wall. The top wall is very far from the cylinder. There is a dc or
low-frequency applied electric field in the horizontal direction.

to the wall has a higher drag coefficient and, consequently, it
is less affected by the presence of the other particle.

Additionally, we can use this model to calculate the
external torque required to fix the particle orientation.
Since λi � 1, the magnitude of the external torque is N =
(3/2)πR d2ε E2 sin(2θ ).

III. THEORETICAL ANALYSIS FOR A METALLIC
CYLINDER

Consider a metallic cylinder immersed in an aqueous elec-
trolyte. The center of the cylinder is at a distance h over the
bottom wall of the electrolyte container and its axis forms an
angle θ with respect to the horizontal; see Fig. 2. The length
and diameter of the cylinder are, respectively, 2a and 2b. Thus
the aspect ratio of the cylinder is β = b/a.

The metallic cylinder is subjected to a homogeneous ac
electric field with amplitude E0ux and angular frequency ω,
E = E0 cos(ωt )ux. We assume that the metal-electrolyte in-
terface is perfectly polarizable, i.e., it blocks the passage of
ions or electrons. In this situation, the electrical current in
the electrolyte induces an electrical double layer (EDL) on
the surface of the particle [39]. The characteristic thickness
of the EDL is given by the Debye length [1], which ranges
around tens of nanometers for typical values of the electrolyte
conductivities used in experiments. Therefore, it is common
to make the approximation of thin EDL for metal rods with
diameters of hundreds of nanometers [40]. In this approx-
imation, the system can be described as an electroneutral
electrolyte in contact with the surface of the particle that be-
haves as an ideal capacitor [41,42]—with a value for surface
capacitance determined by the EDL capacitance. Then, the
electric field in the liquid can be derived from an electric
potential [E(r, t ) = −∇φ(r, t )], with φ(r, t ) = φ0(r) cos(ωt )
and φ0(r) the solution of the Laplace equation. For simplicity,
we assume that the frequency of the applied electric field is
low and that the EDL is fully charged. This means that the cur-
rents surround the particle and, therefore, we impose n · J = 0
on the surface of the particle, where J is the current density
and n is a normal vector to the surface. This transforms into
the following boundary condition for the electric potential on
the surface of the particle: n · ∇φ0 = 0. The same boundary
condition applies to the top and bottom walls of the electrolyte
container, which are insulating (see Fig. 2). We consider that
the top wall is very far from the bottom, ideally infinitely far.

A. Induced-charged electro-osmosis on a metal particle

Following the description above, the applied electric field
builds an EDL on the surface of the metal particle. The electric
field, which is tangent to the particle surface, acts on the
charge of the EDL and gives rise to an electro-osmotic slip ve-
locity. This flow is known as induced-charge electro-osmosis
(ICEO) [6], and the slip velocity is given by the following
expression:

vs = − ε

4η
∇t |φ0 − V |2, (5)

where η is the viscosity of the electrolyte, ∇t is the component
of the gradient operator tangential to the particle surface, and
V is the amplitude of the electric potential of the floating metal
particle. For simplicity, we choose the particle potential as the
origin of the electric potential. Thus V = 0 and the ICEO slip
velocity is written as

vs = − ε

4η
∇t |φ0|2. (6)

B. Particle velocity and reciprocity theorem

Since we have fixed the orientation of the cylinder, the ve-
locity of the fluid on its surface can be written as v = vs + U,
where U is the velocity of the center of mass of the particle.
In this work, we are interested in calculating U, which arises
from the hydrodynamic interaction of the ICEO flows with the
nearby walls. Since we fixed the particle height, the particle
motion is restricted to the horizontal direction and its velocity
can be written as UICEP = UICEPux, where ICEP indicates
induced charge electrophoresis. Knowing the slip velocity on
the particle, UICEP can be calculated if we make use of the
Lorentz reciprocity theorem [43–46]:

UICEP = −
∫

S (n · T · vs)dS∫
S (n · T · ux )dS

, (7)

where T is the hydrodynamic stress tensor in the liquid due
to the cylinder moving with a certain speed in the horizontal
direction, S is a closed surface bounding the fluid, and n is
a unit vector normal to S. Since the velocity of the liquid is
zero at all boundaries except the surface of the particle, S in
Eq. (7) reduces to the surface of the particle. The denominator
in Eq. (7) corresponds to the horizontal component of the vis-
cous force acting on the cylinder when moving with velocity
U = 1ux.

Equation (7) provides a way to calculate the velocity of the
ICEP of the particles without solving the fluid velocity field
(Stokes problem) induced by the slip velocity. Instead, we
only need to know the hydrodynamic stress tensor associated
with the velocity field induced by a particle moving within the
fluid. We chose this method because of its elegance and for
maintaining the formulation of previous works with arbitrary
frequency ac fields, where we used the reciprocity theorem to
reduce the workload of numerical calculations [23,47,48].

IV. NUMERICAL RESULTS

For evaluating (7), we have to find the electric potential
in the problem domain and the value of the viscous coef-
ficient as a function of the orientation of the nanowire and
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FIG. 3. Numerical results for γ /ηa as a function of the nondi-
mensional distance to the bottom wall (h/a) for different orientations
of the cylinder and aspect ratios β = 0.04, 0.01, 0.5. The cylinder
aspect ratio is β = b/a.

the distance from the wall. We have used COMSOL MULTI-
PHYSICS to solve these two problems for cylinders with aspect
ratios β = {0.04, 0.10, 0.50}. To this end, the equations are
made nondimensional according to the following scales: a
for distances, aE0 for the electric potential, and εaE2

0 /η for
velocities.

A. Viscous friction coefficient

For calculating the nondimensional viscous friction co-
efficient γ /ηa, we have solved the nondimensional Stokes
equations (∇2v − ∇P = 0; ∇ · v = 0) in the problem domain
with boundary conditions of v = 1ux on the surface of the
particle and v = 0 on all other boundaries. In other words,
we have found the flow field due to a cylinder moving with
velocity U = 1ux. From this solution, we have found the
force on the particle by integrating the surface stress on the
particle surface S, F = ∫

S (n · T )dS. This force has, in gen-
eral, nonzero vertical and horizontal components. We are only
interested in the horizontal component, which corresponds to
the denominator in Eq. (7).

Figure 3 shows the numerical results for γ /ηa as a function
of the nondimensional distance to the bottom wall (h/a) for
different orientations of the nanowire from parallel to the wall
(θ = 0◦) to perpendicular (θ = 90◦). We show the results of
γ /ηa for the three values of the aspect ratio that we will con-
sider in the ICEP velocity. As expected, the viscous coefficient
is highest when the particle is vertical and increases as the

FIG. 4. UICEP as a function of the cylinder orientation for differ-
ent heights over the insulating wall.

particle approaches the wall. Also, thicker rods have larger
values of the nondimensional viscous coefficient. As a check
of our numerical results, we have included Appendix A with
a comparison with analytical approximations for the viscous
coefficient of a cylinder in the liquid bulk.

B. Particle velocity as a function of its orientation

As described in the theory section, we use the reciprocity
theorem [Eq. (7)] to calculate the ICEP velocity of the
nanowire. First, the solution of the electric potential is used
to evaluate the slip velocity on the surface of the cylinder
[Eq. (6)]. Then, the solution of the Stokes equations men-
tioned above is used for evaluating the hydrodynamic stress
tensor and calculating the numerator of Eq. (7). Figure 4
shows the results of UICEP as a function of the orientation of
the nanowire for different positions on the insulating wall. As
expected, the ICEP velocity is zero when the particle is either
parallel or perpendicular to the insulating wall. Otherwise, the
numerical results predict the movement of the nanowire so
that its side closest to the wall leads, in accordance with the
heuristic model above.

C. Particle velocity as a function of distance to the wall

In order to show the dependence of the particle velocity
with its height, Fig. 5 shows the results of UICEP as a function
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FIG. 5. UICEP as a function of the nondimensional distance to the
bottom wall (h/a) for different orientations of the cylinder.

of the position over the insulating wall for different orienta-
tions. As expected, the ICEP velocity increases as the particle
approaches the wall. Again, the ICEP velocity is zero when
the particle is either parallel or perpendicular to the wall.

D. Fluid velocity field around the cylinder

The velocity field in the electrolyte can be found by solving
the Stokes equations with boundary condition for the fluid ve-
locity on the particle surface given by v = vs + UICEP, where
vs is given by (6) and UICEP is the ICEP velocity of the
cylinder obtained in previous sections (IV B and IV C). Zero
slip velocity (v = 0) is imposed on all other boundaries.

Figure 6 shows the streamlines in a vertical plane that
contains the cylinder axis. In this case, the aspect ratio of the
cylinder is β = 0.5 and its height and orientation are, respec-
tively, (h/a) = 1.3 and θ = 45◦. The streamlines asymmetry
due to the presence of the wall leads to a net horizontal motion
of the particle.

V. DISCUSSION

We can compare the numerical results with the predic-
tion of the heuristic model in Sec. II if we write the ICEP
velocity of the composite particle [Eq. (1)] as a function
of the height of the middle point of the composite particle,
h = h1 + (d/2) sin θ = h2 − (d/2) sin θ :

UICEP
d
2 εE2

0 /2η
= 9

32

2β sin 2θ

(2h/d )2 − (sin θ )2
, (8)

FIG. 6. Streamlines around a cylinder with aspect ratio β = 0.5.
The height and orientation of the cylinder are, respectively, (h/a) =
1.3 and θ = 45◦.

where we have defined the aspect ratio of the composite par-
ticle as β = 2R/d , in analogy with the case of the cylinder.

Figures 7 and 8 show the predictions of the heuristic model
for UICEP as a function of, respectively, the height and ori-
entation of the composite particle. For a closer comparison
with the numerical results, we show in Figs. 9 and 10 the
predictions of the heuristic model for two different heights
and the numerical results for two cylinders with aspect ratios
β = 0.04 (as in experiments of Ref. [40]) and β = 0.5, which
corresponds to a thick cylinder. Note that β has been included
in the scale of the ICEP velocity. This comparison confirms
that the heuristic model is not only useful for predicting
the qualitative behavior of the metal rods, it also provides a
very good approximation to UICEP for metal rods close to the
bottom wall.

FIG. 7. UICEP as a function of orientations for the heuristic model.
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FIG. 8. UICEP as a function of height for the heuristic model.

It is also interesting to estimate a dimensional value of
UICEP for typical experimental conditions. For a nanowire with
β = 0.04 as in Ref. [40], the maximum velocity is obtained
when θ ≈ 45◦. We observe in Fig. 4 that [UICEP/(εaE2

0 /η)] ≈
5.0 × 10−3, for h/a = 1.3 and θ ≈ 45◦. Considering that the
typical maximum value for the amplitude of the electric field
in electrokinetic experiments is E0 ≈ 100 kV/m and consid-
ering that a = 3.5 µm for nanowires in [40], the maximum
value for the ICEP velocity is UICEP ≈ 120 µm/s. However, it
is well known that the ICEO velocity on real metal-electrolyte
interfaces is lower than the value predicted by Eq. (6), some-
times by one order of magnitude [49]. Several possible causes
have been proposed in the literature for the reduction of slip
velocity: a dielectric oxide layer on the metal [50,51], ion
adsorption [50,52], counterion crowding [49], surface rough-
ness [53], surface conduction [54], and/or residual Faradaic
reactions [55,56]. All these phenomena can lead to a reduction
of the effective ζ potential and therefore it is more reasonable
to expect maximum velocities on the order of tens of micron/s
in experiments.

VI. CONCLUSIONS

We have shown theoretically that a metal microscopic
cylinder immersed in an electrolyte and subjected to an elec-
tric field translates parallel to an insulating wall. The origin

FIG. 9. UICEP as a function of orientation for the heuristic model
and for two cylinders with aspect ratios β = 0.04 and β = 0.5,
h/a = 1.300.

FIG. 10. UICEP as a function of orientation for the heuristic model
and for two cylinders with aspect ratios β = 0.04 and β = 0.5,
h/a = 4.105.

of this motion is the wall-particle interaction that arises from
the ICEO on the cylinder surface. The applied electric field
could be dc or low-frequency ac and a net motion of the
particle is expected as long as the cylinder axis is inclined
with respect to the wall. To develop a physical intuition of
the phenomenon, we have included analytical results for a
heuristic model consisting of two metal spheres connected
by a thin metal wire. The predictions of this model are in
qualitative agreement with numerical simulations of a metal
cylinder. The model predicts that the cylinder side closest to
the wall leads the particle motion. Also, the heuristic model
is used for obtaining quantitative predictions of the particle
velocity, which are close to the exact numerical solutions.

We have shown numerical results of the velocity of the
cylinder as a function of its orientation and distance from
the wall. In general, the velocity decreases with distance and
its maximum value is found for an orientation that depends
on the particle aspect ratio, β. For example, for a nanowire
with β = 0.04, the maximum particle velocity is found for an
inclination of ≈45◦. For such slender nanowires with lengths
around 6 or 7 micron, we have estimated that particle veloci-
ties of tens of microns per second can be expected in realistic
conditions, i.e., considering the reduction of ICEO velocities
in real metal-electrolyte interfaces. Even larger velocities are
expected for thicker nanowires if the particle orientation is
controlled.
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APPENDIX A: VISCOUS FRICTION COEFFICIENTS OF A
CYLINDER IN THE LIQUID BULK: COMPARISON

BETWEEN NUMERICAL AND ANALYTICAL RESULTS

In this section, we compare our numerical results for the
nondimensional viscous coefficient (γ /ηa) of cylinders far
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TABLE I. Comparison between numerical values for the viscous friction coefficients and the predictions of analytical approximations
found in the literature for cylinders with β = 0.04, 0.1, 0.5.

Cylinder aspect ratio β = 0.04 β = 0.1 β = 0.5

Viscous friction coefficient γ‖/ηa γ⊥/ηa γ‖/ηa γ⊥/ηa γ‖/ηa γ⊥/ηa

Numerical results 4.12427 6.32339 5.79246 8.15949 13.86325 15.5594
Tirado et al. [57] 4.11896 6.18173 5.73217 7.94733 13.3274 14.9342
Broersma [58] 4.6396 6.64978 7.2332 9.0610 9.1222 16.156

from the wall with the predictions of analytical approxima-
tions. Tirado et al. [57] report the following expressions for
the viscous coefficient of a slender cylinder moving in either
the direction of its symmetry axis (γ‖) or perpendicular to
it (γ⊥):

γ‖ = 4πηa

ln(1/β + ν‖)
, γ⊥ = 8πηa

ln(1/β + ν⊥)
, (A1)

with ν‖ = −0.207 + 0.980β − 0.133β2 and ν⊥ = 0.839 +
0.185β + 0.233β2.

Before the work of Tirado et al., Broersma [58,59] reported
the same equations (A1) but with different expressions for
the coefficients ν‖ and ν⊥. The coefficients reported in
Ref. [58] are ν‖(Broersma) = −0.114 − 0.15/ ln(2/β ) −
13.5/ ln2(2/β ) + 37/ ln3(2/β ) − 22/ ln4(2/β ) and
ν⊥(Broersma) = 0.886 − 0.15/ ln(2/β ) − 8.1/ ln2(2/β ) +
18/ ln3(2/β ) − 9/ ln4(2/β ).

Table I shows a comparison between our exact numerical
results for γ /ηa and the predictions of the two analytical
approximations. The agreement between the approximation of
Tirado et al. and the numerical results is excellent for slender
cylinders (β = 0.04) and it remains very good for cylinders as
thick as β = 0.5.

APPENDIX B: DYNAMICS OF A FREELY ROTATING
AND TRANSLATING CYLINDER

In this Appendix, we describe how to tackle the study of
the dynamics of a cylinder immersed in a viscous liquid. The
fluid velocity on the cylinder surface can be written as v =
vs + U + � × r, where U is the translational velocity of the
center of mass, � is the angular velocity, and r is the position
vector from the center of mass. For simplicity, we restrict the
motion of the cylinder center to the xz plane of Fig. 2, that
is, U = Uxux + Uzuz, � = 
uy. Let us consider the following
velocity fields: the flow induced by the slip velocity on a
stationary cylinder near the wall (problem 1) and the flow
generated by the translating and rotating cylinder with zero
slip velocity at the same position and orientation (problem 2).
The cylinder velocity is V and its angular velocity is �. The
Lorentz reciprocal theorem reads [46,60]

∫
S

n · [T1 · (V + � × r)]dS =
∫

S
n · (T2 · vs)dS, (B1)

where T1 and T2 are, respectively, the hydrodynamic stress
tensors that arise from the flow fields of problem 1 and prob-
lem 2. The integrals are carried out only on the particle surface
since the velocity is zero at the plane wall. Let problem 2 be

the one generated by V = 1ux and � = 0. Thus we have∫
S

n · (T1 · ux )dS =
∫

S
n · (TX · vs)dS, (B2)

where T2 = TX , the hydrodynamic stress tensor correspond-
ing to the cylinder moving along the x direction. In the same
manner, we define TZ and T
, respectively, as the hydrody-
namic stress tensors for problem 2 with translation along z
(V = 1uz, � = 0) and rotation around y (V = 0, � = 1uy).
On the left-hand side of Eq. (B2), we can recognize the x
component of hydrodynamic force on the cylinder generated
by the slip velocity. The balance of forces along the x direction
together with the linearity of Stokes solutions allows us to
write

Fx =
∫

S
n · (T1 · ux )dS + Ux

∫
S

n · (TX · ux )dS

+ Uz

∫
S

n · (TZ · ux )dS + 


∫
S

n · (T
 · ux )dS, (B3)

where Fx is the x component of the external force. On the
right-hand side, we can recognize the x component of hydro-
dynamic force on the cylinder with v = vs + U + � × r on
its surface. Inserting this into Eq. (B2), we arrive at

Fx −
∫

S
n · (TX · vs)dS = Ux

∫
S

n · (TX · ux )dS

+ Uz

∫
S

n · (TZ · ux )dS

+ 


∫
S

n · (T
 · ux )dS. (B4)

The process is repeated for problem 2 with V = 1uz, � = 0,
and we obtain

Fz −
∫

S
n · (TZ · vs)dS = Ux

∫
S

n · (TX · uz )dS

+ Uz

∫
S

n · (TZ · uz )dS

+ 


∫
S

n · (T
 · uz )dS. (B5)

Finally, taking as problem 2 a rotation around y (V = 0, � =
uy) and equilibrium of torques, we arrive at

N −
∫

S
n · (T
 · vs)dS

= Uxuy ·
∫

S
r × (TX · n)dS + Uzuy ·

∫
S

r × (TZ · n)dS

+ 
uy ·
∫

S
r × (T
 · n)dS, (B6)

where N is the external torque along the y direction.
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The system of equations (B4)–(B6) allows us to obtain
the cylinder velocities (Ux,Uy,
). In our case of a cylinder
subjected to an electric field, (Fx, Fy, N ) are the components
of the electrical force and torque applied to the particle and
we computed them using integration of the Maxwell stress
tensor.

As an example we have obtained (Ux,Uy,
) for the
case of a nanowire with the following parameters: β =
0.1, θ = 45◦, and h/a = 2. The velocities are (Ux,Uy) =
(0.00307,−0.00163)εaE2

0 /η, 
 = −0.224 εE2
0 /η and these

values are almost coincident with those without consider-
ing the external electrical force and torque. In this case of
β = 0.1, the cylinder is slender and the electric field lines
are only slightly perturbed and, hence, the electric field
generates negligible stresses [19,23]. In other words, the mo-
tion is mainly due to ICEP. The nondimensional angular
velocity is much greater than the nondimensional transla-
tional velocity. This means that the nanowire aligns with
the electric field much faster than it moves. In addition, the

faster rotation gives rise to a negative velocity along the z
direction, i.e., the cylinder center of mass approaches the
wall.

In this situation, if the nanowire is not allowed to rotate
(Ux,Uy) = (0.00342, 0.00417)εaE2

0 /η, it turns out that there
is hydrodynamic repulsion from the wall as well as horizontal
motion. Also, if the nanowire can only move along the x direc-
tion as in the main text of this paper, Ux = 0.00429εaE2

0 /η.
We consider another example for the same nanowire

but closer to the wall (β = 0.1, θ = 45◦, and
h/a = 1). The result in this case is (Ux,Uy, a
) =
(0.0142,−0.0137,−0.218)εaE2

0 /η. Again, the nanowire
is aligned with the electric field much faster than
it moves. If the nanowire is not allowed to rotate
(Ux,Uy) = (0.0190, 0.0107)εaE2

0 /η. Finally, if the nanowire
can only move along the x direction Ux = 0.0217εaE2

0 /η.
The velocities of translation are higher because the nanowire
is closer to the wall, while the angular velocity is slightly
lower.
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