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Even when the partial differential equation underlying a physical process can be evolved forward in time, the
retrospective (backward in time) inverse problem often has its own challenges and applications. Direct adjoint
looping (DAL) is the defacto approach for solving retrospective inverse problems, but it has not been applied to
deterministic retrospective Navier–Stokes inverse problems in 2D or 3D. In this paper, we demonstrate that DAL
is ill-suited for solving retrospective 2D Navier–Stokes inverse problems. Alongside DAL, we study two other
iterative methods: simple backward integration (SBI) and the quasireversible method (QRM). As far as we know,
our iterative SBI approach is novel, while iterative QRM has previously been used. Using these three iterative
methods, we solve two retrospective inverse problems: 1D Korteweg–de Vries–Burgers (decaying nonlinear
wave) and 2D Navier–Stokes (unstratified Kelvin–Helmholtz vortex). In both cases, SBI and QRM reproduce
the target final states more accurately and in fewer iterations than DAL. We attribute this performance gap to
additional terms present in SBI and QRM’s respective backward integrations which are absent in DAL.

DOI: 10.1103/PhysRevE.109.045108

I. INTRODUCTION

Consider a retrospective inverse problem where the vari-
able of interest X is constrained by a partial differential
equation (PDE) involving space x and time t :

F[X (x, t )] = 0. (1)

We aim to determine the unique initial condition X (x, 0) cor-
responding to a given final state X (x, t f ) where the final time
t f is known. These “retrospective inverse problems” are often
ill-conditioned or ill-posed, even when the forward problem is
readily solvable.

Despite potential difficulties, retrospective inverse prob-
lems arise in a wide variety of contexts. Scientists and
engineers have documented numerous cases where retrospec-
tive inversion is feasible and practical. Reference [1] inverted
chemical reaction fronts governed by a one-dimensional
(1D) reaction-diffusion equation. Reference [2] inverts tumor
growth using biophysically motivated constraints on the ini-
tial condition. Reference [3] inverted supersonic supernova
expansions governed by the 1D compressible Navier–Stokes
equation. References [4,5] examined the history of buoyancy-
driven flows in Earth’s mantle by approximating palaeo
temperature distributions as well as variable parameters such
as the thermal diffusivity.

Although there are problem-specific details in their
methodologies, Refs. [1–5] use the same optimal control tech-
nique known as direct adjoint looping (DAL). Using DAL,

they minimize the cost functional

J X
f ≡ 1

2 〈|X ′(x, t f )|2〉 = 1
2 〈|X (x, t f ) − X (x, t f )|2〉, (2)

where the angled brackets 〈·〉 denote a spatial integral over the
problem domain and the trial solution X has some deviation
X ′ ≡ X − X . They construct sequences of trial solutions, such
as {Xn(x, t )}, where each element Xn is computed from a cor-
responding trial initial condition Xn(x, 0). Convergence to the
target initial condition X (x, 0) is seldom guaranteed because
the user provides an initial guess X0(x, 0).

Related two-dimensional (2D) Navier–Stokes inverse
problems have been studied analytically from several perspec-
tives. [6] uses boundary conditions as control inputs (with
a given initial condition) and verifies controllability of cer-
tain 2D fluid systems. Later, the existence of solutions to a
more demanding retrospective Navier–Stokes inverse problem
with final overdetermination was established by Ref. [7]. In
Ref. [7], the authors do not attempt to solve their inverse
problem. Instead they provide an analysis of the problem
where a separable source term (as well as the initial condition)
are left to be determined. Following this, the data-completion
problem of determining an unknown viscosity was studied
analytically by Ref. [8].

More recently, researchers extended these analytical stud-
ies of Navier–Stokes inverse problems by implementing
data assimilation algorithms. Reference [9] studies an in-
verse problem governed by the parabolized Navier–Stokes
(PNS) equation. Following this, Ref. [10] studies data as-
similation algorithms for nondeterministic Navier–Stokes
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inverse problems. They demonstrate several advantages of
using filters for numerical weather prediction. Yet more
recently, Refs. [11–14] used neural networks to solve analo-
gous Navier–Stokes data-completion problems. In particular,
Ref. [14] compares DAL with a physics-informed neural net-
work approach while solving inverse problems governed by
the viscous Burgers equation as well as 2D incompressible
Navier–Stokes.

In this paper, we will also compare the performance of
several iterative methods (such as DAL) by applying them to a
retrospective Navier–Stokes inverse problem. Various Navier–
Stokes inverse problems have been studied analytically and
numerically using optimal control. However, we will demon-
strate that conventional optimal control methods are ill-suited
for this class of inverse problems, even when a numerically
consistent dataset is available.

With DAL, we can minimize an arbitrary cost functional
such as J X

f . First, we must solve the forward problem on
t : 0 → t f . This forward problem is constrained by some
PDE (such as Navier–Stokes) which we express generally
as Eq. (1). At this point, we can evaluate J X

f and compare

the trial [X (x, t f )] and target [X (x, t f )] final states. Informa-
tion from time t = t f is then propagated backward, to time
t = 0, by solving the linear adjoint problem F†[χ, X ] = 0 on
t : t f → 0, where χ (x, t ) denotes the adjoint variable. Back-
ward integration of the adjoint equations allows us to compute
the gradient or functional derivative of J X

f with respect to
X (x, 0). Using this gradient, we adjust our trial initial condi-
tion by some amplitude γ : Xn+1(x, 0) = Xn(x, 0) + γχn(x, 0).

In practice, researchers often customize the DAL algo-
rithm to improve performance in specific cases. For example,
Ref. [15] used the conjugate-gradient method with a discrete
adjoint formulation to optimize initial conditions subject to
norm constraints. For the PNS inverse problem, Ref. [9]
combined principle orthogonal decomposition (POD) with
four-dimensional variational assimilation (4DVAR), an opti-
mal control technique analogous to DAL. In both examples,
researchers reduced the computational cost of each DAL
iteration by reformulating the adjoint while simultaneously
reducing the required number of DAL iterations by im-
plementing quasi-Newton minimization routines. For this
investigation, we take a different approach. Instead of refor-
mulating the adjoint or changing the way in which gradient
information is used, we will demonstrate that DAL’s short-
comings in the context of Navier–Stokes inversion can be
mitigated by appending the adjoint system with additional
advective terms.

The additional advective terms not present in DAL
are present in two existing nonlinear backward integration
methods: simple backward integration (SBI) and the quasire-
versible method (QRM). SBI and QRM are designed to invert
the target final state by approximating the (ill-posed) in-
tegration of the original equations backward in time. SBI
accomplishes this by reversing the sign of the problematic
diffusion term, i.e., a∂2

x X → −a∂2
x X . In contrast, QRM is

a regularization framework which preserves the ill-posed
diffusion term [16]. With QRM, we append a small hyper-
diffusion term to the otherwise ill-posed constraint equation,
i.e., a∂2

x X → a(∂2
x + ε∂4

x )X where 0 < ε � 1.

We introduce these concepts as backward integration meth-
ods rather than iterative methods because their previous
implementations were rarely iterated. SBI (which has never
been iterated) was introduced by Ref. [17] to infer the history
of Earth’s convective mantle in the viscinity of the southern
African superswell. Following this, Refs. [4,5] used SBI to
construct initial guesses X0(x, 0), which they refined itera-
tively using DAL. SBI was also examined by Ref. [18] to
dismiss a time-reversibility hypothesis on subgrid-scale (SGS)
large-eddy simulations (LES).

Reference [19] applied iterative QRM to ill-posed linear
inverse problems and derives rigorous statements of con-
vergence. More recently, Ref. [20] used iterative QRM to
compute the unknown source in a nonlinear hyperbolic equa-
tion. Using Carleman estimates, they demonstrate QRM’s
convergence to the correct source at an exponential rate. While
an analysis involving Carleman estimates is outside the scope
of this paper, we refer to Ref. [21].

We compare DAL, SBI, and QRM by solving two ret-
rospective inverse problems, constrained by Korteweg–de
Vries–Burgers (KdVB) and incompressible Navier–Stokes,
respectively. We believe the novelty of our work lies in the
iterative application of SBI and QRM. At the start of itera-
tion n, we evolve some initial trial state Xn(x, 0) to its final
state Xn(x, t f ). Then, we initialize SBI and QRM using the
final deviation X ′

n(x, t f ) to approximate the initial deviation
X ′

n(x, 0). Finally, assuming we know X ′
n(x, 0), we refine the

trial state as Xn+1(x, 0) := Xn(x, 0) − X ′
n(x, 0) to conclude the

iteration. Equivalently, iterative SBI and QRM minimize the
inaccessible objective functional

J X
0 ≡ 1

2 〈|X ′(x, 0)|2〉 = 1
2 〈|X (x, 0) − X (x, 0)|2〉 (3)

by repeatedly approximating its gradient X ′(x, 0). J X
0 mea-

sures the trial state’s error at the initial time, whereas J X
f does

so at the final time.
The remainder of this paper is organized as follows: In

Sec. II we provide a conceptual description of our iterative
methods (DAL, SBI, and QRM). In Sec. III we illustrate these
methods by applying them to a retrospective KdVB inverse
problem. In Sec. IV we generalize these methods for mul-
tiple spatial dimensions, and compare their implementations
using a 2D incompressible Navier–Stokes inverse problem. In
Sec. V, we demonstrate that the adjoint equation which yields
the gradient of J X

0 is ill-posed, nonlinear, and equivalent to
the perturbed constraint Eq. (1). In Sec. VI we summarize our
results and discuss future applications for iterative SBI and
QRM.

II. OVERVIEW OF METHODS

The Korteweg–de Vries–Burgers (KdVB) equation

F[u(x, t )] ≡ ∂t u + u∂xu − a∂2
x u + b∂3

x u = 0 (4)

provides a concise context for demonstrating each method
(DAL, SBI, QRM). Let u(x, t ) denote to the target solution
where 0 � t � t f in a 1D periodic domain 0 � x < Lx. The
retrospective inverse problem is solved by recovering the tar-
get initial state u(x, 0) where the target final state u(x, t f ) is
given. The general strategy has us construct trial solutions
u(x, t ) satisfying Eq. (4), which we compute from trial initial
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states u(x, 0). We measure a trial state’s proximity from the
target using the cost functionals J u

0 and J u
f , which are defined

for an arbitrary variable X in Eqs. (2) and (3). Both J u
0 and

J u
f vary with respect to the trial initial state u(x, 0). However,

given that our knowledge of the target solution is limited to
the final time t f , it follows that we can only evaluate J u

0 if the
target solution is known a priori.

A. Direct adjoint looping

In general, we can cast an inverse problem into the form
of an optimization problem by defining and minimizing an
appropriate cost functional [22]. DAL provides an efficient
avenue for computing a cost functional’s gradient. For KdVB,
we minimize J u

f by computing its gradient with respect to
u(x, 0). Once this gradient is known, we refine the trial initial
state u(x, 0) by following the direction of steepest descent.

Using DAL, the gradient is computed as follows. We define
the Lagrangian L

L ≡
∫ t f

0
〈μ(x, t ) · F[u(x, t )]〉dt + J u

f , (5)

where μ is the adjoint variable corresponding to u. L’s varia-
tions with respect to u and μ must disappear at the optimum
u, yielding

0 < t < t f : 0 = ∂t u + u∂xu − a∂2
x u + b∂3

x u, (6)

t = t f : μ = −u′, (7)

0 < t < t f : 0 = ∂tμ + u∂xμ + a∂2
x μ + b∂3

x μ. (8)

The gradient of J u
f resides in the manifold of solutions sat-

isfying Eqs. (6), (7), and (8). Figure 1 illustrates how these
equations are solved sequentially. Given a trial initial condi-
tion, we start by solving the forward problem Eq. (6) from
t : 0 → t f (shown in blue). Next, we initialize the adjoint
variable using the compatibility condition Eq. (7). Finally, we
solve the adjoint Eq. (8) backward in time t : t f → 0 (shown
in yellow), yielding the desired gradient −μ(x, 0). The adjoint
involves the trial solution u, so we must store data from the
forward solve in memory. In practice this leads to redundant
computations (due to memory constraints), offering another
area for tangible improvement.

Once J u
f ’s gradient is known, we use gradient descent with

the popular Barzilai–Borwein method [23] to select step sizes.
In addition to gradient descent, we also minimize J u

f using the
second-order sparse L-BFGS algorithm [24] which utilizes
the gradient’s history over several iterations. We select these
two optimization routines for comparison after observing that
they converge faster than alternatives [25].

B. SBI and QRM setup

The KdVB retrospective inverse problem can be solved by
finding the initial deviation u′(x, 0) of some trial state u(x, 0).
u′ = u − u obeys a perturbation equation

0 = ∂t u
′ − a∂2

x u′ + b∂3
x u′ + u∂xu′ + u′∂xu − u′∂xu′, (9)

which is ill-posed over t : t f → 0. We cannot compute
u′(x, t < t f ) numerically due to the intrinsic loss of informa-
tion in diffusive systems. DAL circumvents this obstacle by

= 0 =

ത

forward problem

– ′

target 

trial

SBI

DAL

QRM 

= 0 =

backward integra�on

compa�bility
condi�on

update 
, 0

FIG. 1. Conceptual illustration of iterative methods. Purple: the
target solution u(x, t ) is known only at the final time t f . Blue: we
evolve a trial state u(x, 0) to u(x, t f ) where we then initialize one
of three backward integration systems using a single compatibil-
ity condition. Each backward integration gives a solution at t = 0
which we use to update our trial initial condition. We seek the trial
solution’s deviation u′ = u − u at the initial time t = 0. Yellow:
Direct adjoint looping (DAL) is a linear backward integration. For
advective systems such as KdVB and Navier–Stokes, DAL advects
the final deviation u′(x, t f ) by the trial solution u. Orange: Simple
backward integration (SBI) is a hybrid method, which supplements
the linear DAL system with two additional advective terms. Red:
Quasireversible method (QRM) aims to compute the deviation by
introducing a small hyperdiffusion term with coefficient ε. The QRM
backward integration is ill-posed when ε = 0 and numerically unsta-
ble as ε → 0.

computing a gradient, whereas SBI and QRM approximate the
deviation u′. Let μ̃ denote our SBI and QRM approximations
for −u′.

C. Simple backward integration

SBI is one method for approximating the ill-posed back-
ward integration, in which we reverse the sign of the
problematic diffusion term, i.e., a∂2

x μ̃ → −a∂2
x μ̃ such that

0 = ∂t μ̃ + a∂2
x μ̃ + b∂3

x μ̃ + u∂xμ̃ + μ̃∂xu + μ̃∂xμ̃. (10)

This backward integration is well-posed. Equation (10) con-
tains every term in Eq. (8) (DAL) with two additional
advective terms: μ̃∂xu and μ̃∂xμ̃.

For the KdVB inverse problem, we first initialize Eq. (10)
with μ̃(x, t f ) = −u′(x, t f ), just as with DAL. We then solve
Eq. (10) on t : t f → 0. Finally, SBI yields an approximation
μ̃(x, 0) ≈ −u′(x, 0). The SBI backward integration loop is
illustrated in orange in Fig. 1, where the additional SBI terms
cause μ̃ to deviate from the linear DAL calculation of μ. After
completing an SBI loop, we update the trial state un+1(x, 0) =
un(x, 0) + μ̃n(x, 0). This is analogous to performing gradient
descent with a fixed step size of unity [26].
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FIG. 2. Target KdVB solution u(x, t ) (left) plotted as a function of space x and time t . We aim to recover the initial condition of a nonlinear
wave which propagates right at an initial speed of one. The problem’s spatial domain is 1D periodic. We include diffusion (a = 0.04) such
that its speed decreases as the wave propagates. Beginning at t = 3π , SBI (center) evolves u(x, t f ) backward to t = 0 by reversing the sign of
the diffusive term. The wave diffuses during the forward and backward integrations, such that its amplitude and speed of propagation decrease
in both directions. We also perform the QRM backward integration (right) on t : 3π → 0. Unlike SBI, QRM repopulates small-scale modes
which are lost during forward integration. As the wave’s peak regains its former amplitude, its speed of propagation increases mimicking
u(x, t ).

In previous investigations, SBI was applied once to the tar-
get solution. Our iterative implementation differs, because we
apply SBI to the deviation equation. Despite the inaccuracies
introduced by reversing the sign of the diffusive term, we
will demonstrate that iterative SBI is an effective algorithm.
SBI has already been implemented to develop initial guesses
for retrospective inverse problems. We extend this work by
comparing SBI with DAL rather than using them separately
for different purposes.

D. Quasireversible method

QRM deals with the ill-posed diffusion term by introducing
a small, well-posed hyperdiffusion term: a∂2

x μ̃ → a(∂2
x μ̃ +

ε∂4
x μ̃). This method replaces Eq. (9) by

0 = ∂t μ̃ − a(∂2
x μ̃ + ε∂4

x μ̃) + b∂3
x μ̃ + u∂xμ̃ + μ̃∂xu + μ̃∂xμ̃.

(11)

0 < ε � 1 is a free parameter chosen according to the numer-
ical resolution as well as the solutions’ spatial scales. Notice
how the ill-posed term remains, but the equation becomes
well-posed because small-scale modes do not grow arbitrarily
fast.

The QRM loop is carried out using the same procedure as
SBI. We initialize Eq. (11) with μ̃(x, t f ) = −u′(x, t f ) and up-
date the trial state un+1(x, 0) = un(x, 0) + μ̃n(x, 0). In Fig. 1,
we illustrate how QRM (red) recovers the unknown devia-
tion precisely as ε → 0. However, this limit is numerically
unstable.

III. KDVB NUMERICAL EXPERIMENTS

We implement each iterative method (DAL, SBI, QRM)
to solve an inverse problem constrained by KdVB [Eq. (4)].
The target solution u(x, t ) (shown left in Fig. 2) consists of a

dissipating nonlinear wave where a = 0.02 and b = 0.04. The
spatial domain is 1D periodic x ∈ [0, 2π ] and we solve Eq. (4)
over t : 0 → 3π . The target initial condition

u(x, 0) = 3 cosh−2

(
x − π

2
√

b

)
, (12)

would propagate rightwards as a stable soliton with a constant
speed of one if diffusion were not present [i.e., if a = 0 in
Eq. (4)]. This retrospective problem is nontrivial, as the final
state cannot be evolved backwards in time via conventional
timestepping algorithms.

The target and trial solutions along with each backward
integration are carried out using the Dedalus open-source
pseudospectral python framework [27]. We represent u, μ,

and μ̃ as vectors of 128 real Fourier modes. While com-
puting u(x, t ), we store the solution vector at each timestep.
Linear (diffusive and dispersive) terms are treated implicitly
whereas the nonlinear advective term is evaluated explic-
itly by multiplying u’s grid data on a 3/2 dealiased grid.
The same holds when we perform backward integrations,
where terms such as μ∂xu must be treated explicitly to avoid
dense matrix operations at every timestep. Compared to DAL,
the SBI and QRM backward integration equations contain
more of these terms. Consequently, each SBI and QRM itera-
tion requires approximately 30% more computation time. For
every solve we use a second-order Runge–Kutta scheme with
a fixed timestep �t = 0.01. We verify the adjoint solver’s
accuracy by comparing its output to a gradient obtained via
finite-difference.

We initialize each iterative method using an initial guess
u0(x, 0) = 0. (See Appendix A for the same comparison be-
ginning with an SBI initial guess.) The first SBI iteration is
shown in the center panel of Fig. 2. Diffusion of the non-
linear wave causes its amplitude and speed of propagation
to decrease such that the wave’s peak does not return to
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FIG. 3. Evolution of the KdVB trial initial conditions un(x, 0) using an initial guess u0(x, 0) = 0 (shown in green). We compare two DAL
runs (top row) with SBI (bottom left) and QRM (bottom right). (Top left) gradient descent approaches the target initial state gradually. (Top
right) DAL minimization of J u

f using L-BFGS approaches the target state more rapidly, but this method introduces undesired medium-scale
features. SBI captures the target state faster and more directly than DAL. QRM resembles the target state immediately (n = 1). However, this
method introduces low-amplitude small-scale errors which do not subside at n = 200.

its original position. The first QRM iteration (shown right
in Fig. 2) reconstructs the wave by inverting the advection
alongside diffusion. In this case, the wave’s peak returns to
its approximate initial position. For QRM we use ε = 0.01
whereas SBI involves no free parameter.

The top row of Fig. 3 illustrates the evolution of DAL trial
initial states un(x, 0). We minimize J u

f using gradient descent
(top left) and L-BFGS (top right). For advective systems such
as KdVB, the amplitude of each feature is proportional to its
speed of propagation. Consequently, gradient descent gives a
sequence of initial states which increase in amplitude while
shifting leftwards. u10(x, 0) contains a shallow peak centered
near x = π/2. u50(x, 0) is centered near x = 0 with approxi-
mately twice the amplitude of u10(x, 0). Similarly, u200(x, 0)
is centered near x = 3π/2 with approximately triple the am-
plitude of u10(x, 0). Their respective final states [u10(x, 3π ),
u50(x, 3π ), and u200(x, 3π )] all contain peaks which approxi-
mately align with the target’s [u(x, 3π )].

Rather than following the direction of steepest descent,
L-BFGS anticipates changes in the gradient by constructing
a sparse Hessian representation. Although this quasi-Newton
method recovers the target initial state better than gradient
descent at n = 200, L-BFGS still does not yield a quality ap-
proximation of u(x, 0). This case introduces additional wave
features in u10(x, 0), u50(x, 0), and u200(x, 0) which do not
appear in the target.

To locate the target state, we introduce additional advec-
tive terms in the backward integration. The bottom row of
Fig. 3 illustrates the evolution of trial initial states un(x, 0)
refined via SBI (bottom left) and QRM (bottom right) over
200 iterations. SBI does not effectively approximate the initial

deviation u′
n(x, 0) (as shown for n = 0 in Fig. 2), nor does it

follow the direction of steepest descent of J u
f . This algorithm

smoothly guides the initial states’ peaks directly toward the
target. In this case, u50(x, 0) is indistinguishable from u(x, 0).
QRM loosely captures the target’s structure in a single iter-
ation by approximating the initial deviation u′

n(x, 0). In this
case, u10(x, 0) is nearly indistinguishable from u(x, 0).

After one iteration, the SBI and QRM initial states’ peaks
are centered rightwards of the target feature (see u1(x, 0) in
Fig. 3, bottom left and right panels). These nonlinear back-
ward integrations couple the deviation’s amplitude with the
resulting direction of our update for un(x, 0). SBI refines each
trial initial state by advecting the final deviation backward
in time as it continues to diffuse. This decreases the speed
of backward advection such that each update does not return
to the position of the initial deviation. This is illustrated by
u10(x, 0) and u50(x, 0) in the bottom left panel of Fig. 3.
Their peaks shift leftward, approaching the target with each
iteration. When the trial final state intercepts the target, the
deviation shrinks and SBI’s backward diffusion has less in-
fluence on the direction of each subsequent update. QRM
refines each trial state by advecting the final deviation while
simultaneously inverting diffusion. The hyperdiffusion term
slows backward advection to a lesser extent than SBI, yielding
smaller rightward misalignments. These updates approximate
the initial deviation as it shrinks with each iteration, such
that iterative QRM behaves like a one-shot method (e.g.,
Ref. [28]).

For QRM and SBI, we plot the deviation u′(x, 0) =
u200(x, 0) − u(x, 0) at iteration n = 200 in Fig. 4. Both curves
have relatively large features coinciding with the target initial
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FIG. 4. Deviation of SBI and QRM trial initial conditions, plot-
ted as a function of x at iteration n = 200. Both curves have
prominent peaks which overlap near x = π . The SBI deviation has
a slightly larger magnitude while the QRM deviation oscillates at a
particular wave number.

condition’s peak at x = π . The SBI deviation has a larger
maximum magnitude while the QRM deviation oscillates at
a particular wave number. When we increase ε, these oscil-
lations subside, but it requires more iterations to obtain a
comparable result. We select ε = 0.01 to illustrate the pres-
ence of these oscillations, while still achieving the desired
outcome in a small number of iterations.

Errors from each optimization study are plotted in Fig. 5.
DAL does not effectively minimize J u

0 or J u
f . In similar in-

vestigations, L-BFGS has received significant attention thanks
to its DAL-compatible features [5]. It converges faster than
gradient descent which is also reflected in our experiment.
However, the SBI and QRM iterative methods both outper-
form DAL by several orders of magnitude. QRM minimizes
both J u

0 and J u
f more rapidly than SBI, as shown in Fig. 5.

At n ≈ 100, SBI stalls and QRM approaches floating-point
precision in terms of J u

f . We attribute this gap to an energy
discrepancy between the SBI and QRM updates. For QRM
applied to a highly diffusive system, the energy 〈|μ̃(x, t )|2〉

FIG. 5. Initial errors (J u
0 , top) and final errors (J u

f , bottom) for
the 1D KdVB inverse problem plotted as a function of iteration n. We
compare DAL, SBI, and QRM. DAL performs slightly better when
paired with the second-order sparse minimization routine L-BFGS
(LB J u

f ), whereas gradient descent (GD J u
f ) performs the worst. Our

iterative applications of SBI and QRM minimize J u
0 and J u

f more
effectively than DAL. QRM minimizes both J u

0 and J u
f more rapidly

than SBI.

increases during backward integration (provided ε is suffi-
ciently small) such that 〈|μ̃(x, 0)|2〉 ∼ 〈|u′(x, 0)|2〉. This is
illustrated in the first QRM iteration (Fig. 2, right). In con-
trast, SBI diffuses during backward integration (Fig. 2, center)
such that 〈|μ̃(x, 0)|2〉 < 〈|u′(x, 0)|2〉. We can eliminate this
energy discrepancy and often accelerate SBI by increasing
the step sizes of the updates [e.g., un+1(x, 0) = un(x, 0) +
1.1μ̃n(x, 0)].

IV. TWO-DIMENSIONAL NAVIER–STOKES
NUMERICAL EXPERIMENTS

Consider 2D flow with spatial coordinate x = xx̂ + yŷ.
The velocity u(x, t ) obeys the incompressible Navier–Stokes
equation

∂t u + u · ∇u + ∇p = ν∇2u and ∇ · u = 0, (13)

where p is the pressure and Re ≡ ν−1 = 50 000. The domain
is doubly periodic with x ∈ [0, 1] and y ∈ [−1, 1], such that its
boundary conditions are given by u|x=0 = u|x=1 and u|y=−1 =
u|y=1.

For our inverse problem, we use divergence-cleaning to
construct the target initial condition u(x, 0). First, consider the
following velocity field which has a nonzero divergence

v(x) · x̂ = 1

2

[
tanh

(
10

(
y − 1

2

))
− tanh

(
10

(
y + 1

2

))]
,

v(x) · ŷ = 1

10
sin(2πx)

[
exp

(
− 100

(
y − 1

2

)2)

− exp

(
− 100

(
y + 1

2

)2)]
. (14)

Next, we perform divergence cleaning on v by solving the
boundary value problem ∇2 pv + ∇ · v = 0. The divergence-
free target initial condition is then given by u(x, 0) = v(x) +
∇pv (x).

For our inverse problem, we run a target simulation
by evolving u(x, 0) according to Eq. (13) until t f = 20.
The target initial condition has two thin layers of positive
and negative vorticity concentrated near y = 1/2 and y =
−1/2. Advection causes these vortex sheets to wind counter-
clockwise and clockwise while viscosity smooths its small
scales.

Given the final velocity field u(x, t f ), we develop trial
solutions u(x, t ) [also obeying Eq. (13)] which are meant to
approach the target solution u(x, t ). All PDE solves (except
the GD J u

f double-resolution study) are performed on a 128
by 256 grid of real Fourier modes using the Dedalus pseu-
dospectral framework [27]. We timestep with �t = 0.002
using a second-order Runge–Kutta scheme. Nonlinear opera-
tions are evaluated on a 3/2 dealiased grid. We plot the upper
half of the domain (unit square) because the solutions have
an approximate symmetry about y = 0. The target solution’s
vorticity evolution is illustrated in the top row of Fig. 6.

A. DAL

Let μ and 	 be the adjoint variables corresponding to u
and p, respectively. The Navier–Stokes adjoint equations are
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FIG. 6. Target (top row) and trial vorticity snapshots in the upper
half of the domain at simulation times t = 0, 5, 10, 20. The second,
third, and bottom row trial solutions are obtained by applying DAL
over 200 iterations. GD J u

f (second row) uses gradient descent to
minimize J u

f . For this case, we use double resolution in space and
time (256 by 512 modes, �t = 0.001) to ensure that each simula-
tion is resolved. Despite this extra resolution, we observe symmetry
breaking when t � 5 due to numerical errors. LB J u

f (third row)
uses L-BFGS to minimize J u

f with the default resolution. Although
the initial condition is under-resolved in this case, we still recover
a final state which resembles the target. GD J ω

f (bottom row) uses
gradient descent to minimize J ω

f . The DAL trial initial conditions
(bottom three rows) have small-scale banded features with high
concentrations of positive vorticity. Their final states have varying
degrees of resemblance to the target at t = 20.

then given by

0 = ∇ · μ,

0 = ∂tμ + u · ∇μ − μ · (∇u)T + ∇	 + ν∇2μ. (15)

Reference [29] provides a detailed derivation of Eq. (15).
Using DAL, we minimize two objective functionals with as-
sociated compatibility conditions

J u
f ≡ 1

2 〈||u′(x, t f )||2〉 → μ(x, t f ) = −u′(x, t f ), (16)

J ω
f ≡ 1

2 〈(ω′(x, t f ))2〉 → μ(x, t f ) = ∇⊥ω′(x, t f ). (17)

The skew-gradient ∇⊥ ≡ (−∂y, ∂x ) and the vorticity ω ≡
∇⊥ · u. As with KdVB, a prime denotes the deviation of a
trial variable from its target, e.g., ω′ ≡ ω − ω and so on. J u

f
quantifies the trial states’ proximity to the target at the final
time t f in terms of velocity whereas J ω

f does so using vor-
ticity. We implement the gradient descent (GD) and L-BFGS
optimization routines to minimize these two cost functionals.
We verify the accuracy of the adjoint solver by using the
finite-difference approximation to reproduce the gradient at
low resolution.

B. SBI and QRM

Our iterative procedures for SBI and QRM are analo-
gous to those described in the previous section. The ill-posed
backward integration of u′ obeys the nonlinear perturbation
equation

0 = ∇ · u′,

0 = ∂t u′ + u · ∇u′ + u′ · ∇u − u′ · ∇u′ + ∇p′ − ν∇2u′.
(18)

Next we substitute the approximations −μ̃ for u′ and −	̃ for
p′. For SBI, we reverse the sign of the viscous term ν∇2μ̃. Its
corresponding approximation for Eq. (18) is given by

0 = ∇ · μ̃

0 = ∂t μ̃ + u · ∇μ̃ + μ̃ · ∇u + μ̃ · ∇μ̃ + ∇	̃ + ν∇2μ̃

(19)

For QRM, we introduce a small hyperdiffusion term, approx-
imating Eq. (18) as

0 = ∇ · μ̃,

0 = ∂t μ̃ + u · ∇μ̃ + μ̃ · ∇u + μ̃ · ∇μ̃ + ∇	̃

− ν(∇2 + ε∇4)μ̃. (20)

For this problem, we set ε = 0.001, because the oscillatory
errors described in Sec. III trigger a numerical instability
when ε � 0.001.

C. Results

We initialize each iterative method using an initial guess
u0(x, 0) = 0. For DAL, we minimize the velocity error using
gradient descent (GD J u

f ) and L-BFGS (LB J u
f ). We run

GD J u
f at double resolution to ensure that the trial state’s

evolution is well-resolved. We also minimize the vorticity
error via gradient descent (GD J ω

f ). L-BFGS minimization
of J ω

f frequently gives unstable trial initial conditions which
cannot be evolved without additional resolution. Figure 6
consists of vorticity snapshots belonging to the target solution
and trial solutions at t = 0, 5, 10, 20. The trial solutions in
these cases are obtained using DAL until iteration n = 200.
GD J u

f (second row) contains highly concentrated bands
of positive vorticity encompassing a larger, lower-amplitude
vortex. Although this case is resolved, we observe symmetry
breaking when t � 0. This trial solution adequately captures
the target at t = 20, but not as well as LB J u

f . LB J u
f (third

row) is clearly under-resolved at t = 0, with the same highly
concentrated features as GD J u

f along with small-scale ring-
ing throughout the domain. These ringing features subside
after a brief interval (t � 5), after which, the trial solution
approaches the target as t → 20. GD J ω

f (bottom row) is
well-resolved, but its vortex’s amplitude is appreciably lower
than that of the target. In this case, we still observe band-like
regions of concentrated vorticity encompassing a larger low-
amplitude vortex. The DAL trial initial conditions (illustrated
in the left column, lower three rows) do not share similar
structures with the target (top left). Despite this, advection
sweeps the concentrated vorticity bands into a single coherent
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FIG. 7. Same as Fig. 6 using the SBI and QRM iterative methods.
Despite the ill-conditioning which hinders DAL in Fig. 6, SBI and
QRM both recover the target initial condition (top left) to a greater
extent. SBI1 and SBI200 (middle two rows) denote SBI trial states
after 1 and 200 iterations, respectively. The QRM initial state (bottom
left) loosely resembles the target initial condition at n = 200.

vortex after 20 advective times. This process illustrates ill-
conditioning of the Navier–Stokes inverse problem.

Figure 7 illustrates the analogous trial vorticity snapshots
using SBI and QRM. In the top row, we reproduce the target.
The second row (SBI1) denotes the trial state after a single
SBI iteration. Its initial state resembles the target’s better than
any of the DAL runs in Fig. 6. Its final state is nearly indistin-
guishable from the target. The third row (SBI200) denotes the
SBI trial solution after 200 iterations. The bottom row (QRM)
denotes the trial solution after 200 QRM iterations. This case
shares the most resemblance with the target throughout the
time domain. At t = 0, QRM has curved arm-like features
which mimic the target’s initially confined shear layer. At
t � 5, this trial solution resembles the target. In general, SBI
and QRM capture the target state better than DAL without
introducing the undesired features shown in Fig. 6.

Figure 8 shows the time-dependent velocity error J u(t ) ≡
1
2 〈|u(x, t ) − u(x, t )|2〉 for the trial solutions GD J u

f , LB
J u

f , SBI, and QRM at iteration n = 200. Due to the
inverse-problem’s ill-conditioning, all trial states begin with
substantially larger errors than their respective final states.
These errors decrease nonmonotonically on t : 0 → 20. The
DAL trial solutions’ (GD J u

f and LB J u
f ) errors increase

on 0 < t < 2 as their small-scale vortex bands (illustrated in
the left column of Fig. 6) rapidly disappear. LB J u

f performs
significantly better than GD J u

f throughout most of the time
domain, especially near the final state. In contrast, the velocity
errors of SBI and QRM decrease immediately after initial-
ization. Throughout the time domain, SBI and QRM perform
better than either DAL case.

Figure 9 plots the initial (J u
0 , top) and final (J u

f , bottom)
velocity errors versus iteration n for each iterative method
until n = 20. Every method’s performance is comparable in
terms of J u

0 except GD J ω
f which does not appreciably

FIG. 8. Velocity error J u(t ) ≡ 1
2 〈|u(x, t ) − u(x, t )|2〉 vs time of

Navier–Stokes trial solutions at iteration n = 200. GD J u
f and LB

J u
f denote DAL minimization of J u

f via gradient descent and L-
BFGS, respectively. SBI200 and QRM denote the trial solutions
refined by SBI and QRM, respectively. Every trial solution’s error
decreases nonmonotonically with respect to time. QRM has the
smallest error at the initial and final times, though SBI200 has less
error over large intervals in the time domain.

decrease this error. In terms of J u
f , SBI (light blue solid) and

QRM (dark blue dotted) both outperform every DAL case by
several orders of magnitude.

Figure 10 extends Fig. 9 to iteration n = 200. Both DAL
gradient descent algorithms (GD J u

f and GD J ω
f ) stall after

n = 20, whereas LB J u
f continues to minimize the final error

J u
f . The relative success of LB J u

f indicates that the gradient
of J u

f has large curvature. SBI and QRM continue to outper-
form all DAL runs, with QRM decreasing J u

0 slightly more.
With QRM, the errors decrease nonmonotonically whereas
SBI exhibits a smooth decline.

Whereas previous work used SBI and QRM to perform
a single loop, we demonstrate in Figs. 9 and 10 that these
methods can be iterated. SBI and QRM both decrease the

FIG. 9. Initial (top, J u
0 ) and final (bottom, J u

f ) velocity errors
for the 2D Navier–Stokes inverse problem over 20 iterations starting
with an initial guess u0(x, 0) = 0. We compare how direct adjoint
looping (DAL), simple backward integration (SBI), and the quasire-
versible method (QRM) minimize these errors. For DAL we compute
the gradients of J u

f and J ω
f (shown black and gray). Using the

gradient of J u
f , we implement gradient descent and L-BFGS (solid

black and solid gray, respectively). J u
f decreases rapidly when SBI

and QRM are used. Their respective performances are comparable in
the first 20 iterations.
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FIG. 10. Same as described in the caption of Fig. 9 extended over
200 iterations. DAL minimization of J ω

f (dotted black) is ineffective
in terms of both J u

0 (top) and J u
f (bottom). After the initial 20

iterations, every other method decreases J u
0 by less than an order of

magnitude. DAL minimization of J u
f using L-BFGS (gray, LB J u

f )
is the most effective DAL case in terms of both errors. At n = 200,
LB J u

f does not minimize J u
f to the same extent as SBI and QRM do

in very few iterations. Figures 6 and 7 illustrate their corresponding
trial vorticities, where it is clear that LB J u

f is under-resolved and
does not approximate the target initial state.

errors by more than an order of magnitude in a single it-
eration. For n > 150 in Fig. 10, SBI and QRM continue to
gradually minimize J u

f . This prolonged minimization of J u
f

using iterative SBI is a surprising result of our study. In terms
of J u

0 , every method fails to recover the target state due to
ill-conditioning of this inverse problem. QRM surpasses the
other methods in this respect, as illustrated in Fig. 10.

V. DERIVATION OF ILL-POSED
NONLINEAR ADJOINT EQUATION

Consider the KdVB inverse problem from Secs. II and III.
Throughout this investigation, we assert that SBI and QRM
perform better than DAL because they approximate the ini-
tial deviation rather than computing a gradient. In fact, the
gradient of J u

0 taken with respect to u(x, 0) is the unknown de-
viation u′(x, 0) = u(x, 0) − u(x, 0). J u

0 measures the squared
distance between the trial and target initial states. Its levelsets
form hyperspheres centered around u(x, 0) and its paths of
steepest descent are radial [pointing directly at u(x, 0)]. The
gradient of J u

0 embeds global information, whereas the gra-
dient of J u

f gives local information in the space of trial initial
conditions.

Using optimal control, we will demonstrate that the ill-
posed backward problem [Eq. (9)] is equivalent to the adjoint
which minimizes J u

0 . First we multiply Eq. (9) by u′ and
integrate over the space-time domain, yielding J u

0 in terms
of u′, u, and J u

f :

J u
0 = J u

f −
∫ t f

0
〈au′∂2

x u′ − u′∂x[uu′]〉dt . (21)

Equation (21) amounts to an energy equation for the deviation
between our target and trial states. Notice how terms which
are conservative of the L2 norm cancel (u′∂xu′ and b∂3

x u′)
whereas terms with nonzero energy flux (∂x[uu′] and a∂2

x u′)

persist. Using Eq. (21) we construct a new Lagrangian,

L̂ =
∫ t f

0
〈μ̂(x, t ) · F[u(x, t )]〉dt + J u

0

=
∫ t f

0

〈
μ̂

[
∂t u + u∂xu − a∂2

x u + b∂3
x u

]

− au′∂2
x u′ + u′∂x[uu′]

〉
dt + J u

f , (22)

with a corresponding adjoint variable μ̂. Taking the variation
of L̂ with respect to μ̂(x, t ) still returns the original constraint
Eq. (4) (on 0 < t < t f ) and compatibility condition Eq. (7)
(at t = t f ). However, varying L̂ with respect to u(x, t ) along
0 < t < t f gives a new adjoint equation,

0 = −∂t μ̂ − u∂xμ̂ − a∂2
x μ̂ − b∂3

x μ̂

− 2a∂2
x u′ + u′∂xu − u′∂xu′. (23)

Finally, by summing Eqs. (9) and (23), it is evident that
μ̂(x, t ) + u′(x, t ) = 0 not just at t = t f , but throughout the
time domain. We substitute μ̂ → −u′ in L̂’s adjoint, yielding

0 = ∂t μ̂ − a∂2
x μ̂ + b∂3

x + u∂xμ̂ + μ̂∂xu − μ̂∂xμ̂. (24)

This new adjoint [equivalent to Eq. (9)] is ill-posed and
effectively nonlinear. The same demonstration can be applied
for any retrospective inverse problem with an advective con-
straint, including the Navier–Stokes inverse problem outlined
in Sec. IV. If Eq. (24) could be solved, we would obtain the
exact deviation in our trial initial condition by performing a
single adjoint loop. For example, the nondiffusive Korteweg–
de Vries equation and the inviscid Euler equation admit
well-posed nonlinear adjoints as these equations are time-
reversible. However, when a > 0 (diffusive forward problem),
Eq. (24) cannot be solved backwards using conventional nu-
merical solvers. The ill-posed backward integration problem
motivates the SBI and QRM modifications. As ε → 0, QRM
backward integration approaches the ill-posed nonlinear ad-
joint which minimizes J u

0 . From this perspective, QRM is a
regularized form of DAL. SBI backward integration combines
the linear adjoint which minimizes J u

f with the additional
terms appearing in the ill-posed nonlinear adjoint.

Given that the SBI and QRM backward integrations re-
turn approximations for the gradient of J u

0 , it follows that
we can repeatedly apply the approximate gradients to refine
our trial state. Taking the dynamical systems perspective, we
can treat these iterative methods as discrete maps where the
target state is a fixed point. Our results demonstrate that these
fixed points are generally attracting for advection–diffusion
systems. Potential difficulties might arize in future investiga-
tions due to limit-cycles or even strange attractors. We have
simultaneously highlighted an important limitation of using
gradients to optimize initial conditions: gradients can have
large curvatures, even when the trial state is in close proximity
to the extremum (see Appendices A and B). By including
additional terms in our backward integrations, we relax the
gradient’s sensitive dependence on the trial initial condition by
replacing the gradient with a smoother discrete map. Higher-
order algorithms for finding fixed points could also be paired
with SBI and QRM to further accelerate convergence.
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VI. DISCUSSION AND CONCLUSIONS

A. Summary of results

In this investigation, we extend several previous studies
involving direct adjoint looping (DAL), simple backward in-
tegration (SBI), and the quasireversible method (QRM) by
applying them to a pair of retrospective inverse problems.
DAL has been used previously to solve inverse problems and
optimize simulation inputs, as it allows us to compute the
gradient of an arbitrary functional. This gradient can be used
to refine the trial initial condition toward a local extremum.
However, the number of iterations required to approximate
said extremum depends on the user’s initial guess.

The SBI and QRM methods are designed to approximate
the trial solution’s deviation rather than taking a gradient.
Using the approximate deviation at the initial state, we up-
date the trial initial condition using a “step size” of unity. In
practice, we cannot compute the initial deviation because the
necessary backward integration is ill-posed. SBI and QRM
provide well-posed approximations for the ill-posed backward
integration.

SBI has been used to make coarse approximations and
generate initial guesses for further refinement via DAL. We
extend this use by developing an iterative algorithm which
acts on the trial state’s deviation. With this method, we evolve
the trial state’s final deviation u′(x, t f ) backwards in time
using a modified constraint equation. This modified constraint
equation is well-posed because we reverse the sign of the
diffusive term.

Iterative QRM has previously been implemented. With
this backward integration, we preserve the ill-posed diffusion
term by introducing a small hyperdiffusion term to relax the
numerical instability. We must also tune this hyperdiffusion
term’s coefficient ε according to the problem’s dynamics and
numerical resolution.

Our first inverse problem is constrained by the Korteweg–
de Vries–Burgers (KdVB) equation. The target solution
consists of a nonlinear wave whose advective velocity decays
due to diffusion. We demonstrate that the gradient of J u

f ,
obtained via DAL or otherwise, is not an efficient means
of recovering the target initial state. DAL performs poorly
when coupled with gradient descent as well as the L-BFGS
optimization routine. When following the direction of steepest
descent in the space of trial initial conditions, we accumulate
undesired wave features. This is due to high curvature in the
path of steepest descent. QRM captures the target final state
almost immediately while SBI does so more gradually.

The second inverse problem is constrained by the 2D
incompressible Navier–Stokes equation. The target solution
is a symmetric Kelvin–Helmholtz vortex with Re ≡ ν−1 =
50 000. We evolve the target state over 20 advective time units,
then use the final state to recover its associated initial con-
dition. The problem domain is doubly periodic which likely
reduces the ill-conditioning of our retrospective inverse prob-
lem. We apply each iterative method until iteration n = 200.
Here we utilize the flexibility of DAL by minimizing the
velocity error J u

f as well the vorticity error J ω
f . DAL min-

imization of J ω
f performs poorly as illustrated in Figs. 6, 9,

and 10. Using L-BFGS to minimize J u
f , we produce an

initial condition whose final state resembles the target after
200 iterations (Fig. 6). This L-BFGS case successfully mini-
mizes J u

f , as illustrated in Fig. 10. However, the trial initial
condition is under-resolved because L-BFGS accumulates
small-scale features. This highlights severe ill-conditioning in
the Navier–Stokes inverse problem, as we are able to mini-
mize the final error without approximating the target initial
condition. We implement gradient descent with double reso-
lution to demonstrate this more clearly. This gradient descent
case does not approximate the target final state as well as
L-BFGS, even though the simulations are well-resolved.

FIG. 11. Same as described in the caption of Fig. 3 using the SBI initial guess (shown in green).
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Just as with KdVB, SBI and QRM outperform DAL by
every metric in the Navier–Stokes inverse problem. Although
every method decreases J u

0 with a similar trend (Figs. 9
and 10), SBI and QRM (Fig. 7) approximate the target initial
state better than DAL (Fig. 6) at n = 200. The methods’
respective behaviors differ in close proximity to their target,
as illustrated in Fig. 10. Specifically, QRM exhibits nonmono-
tonicity in both J u

0 and J u
f , whereas SBI decreases these

quantities with each iteration.

B. Future work

Optimal control via DAL is the most common approach
for retrospective inverse problems. However, SBI and QRM
are more effective than DAL when applied to the 2D Navier–
Stokes inverse problem. In future work, we will implement
SBI and QRM for 3D Navier–Stokes inverse problems. Chaos
and the direct-energy cascade (as opposed to the inverse en-
ergy cascade in 2D) will likely present additional challenges.
We will also use SBI and QRM to solve other optimal control
problems, such as the mantle convection inverse problems
studied by Refs. [4,5]. Numerical weather prediction (NWP)
could also be enhanced by implementing these nonlinear
methods. SBI and QRM are well-suited for this application
because NWP models are increasingly nonlinear. Predictions
are limited by our ability to incorporate real-time observations
in a reasonable number of iterations [30].

Another relevant study is Ref. [31], which computes time-
periodic solutions of vortex sheets with surface tension. Using
DAL, they minimize a cost functional which resembles J u

f .
Although they are not afforded a target final state, we can
interpret their adjoint loop as a dynamic inversion where
the target state changes with each iteration. Conceptually,
any properly constrained optimal control problem has a cor-
responding retrospective inverse problem. The compatibility
condition may differ (e.g., Ref. [31] initializes their adjoint
with the deviation between their trial initial and final states),
but in general the adjoint evolution equations remain the same.
Given that our SBI and QRM loops tend toward the mutual
extremum of J u

0 and J u
f , it is reasonable to suggest that these

methods might also have attracting extrema when seeking
periodic solutions. Efficient algorithms for computing time-
periodic solutions would have direct applications in studying
cyclic dynamos and anticipating nonlinear resonances in en-
gineering systems such as turbines.
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guess u0(x, 0) generated via SBI.
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APPENDIX A: KDVB INVERSE PROBLEM
OBJECTIVES USING SBI INITIAL GUESS

For the KdVB inverse problem described in Sec. III, we
initialize u0(x, 0) using an initial guess constructed via SBI.
This SBI initial guess is computed by evolving u(x, t f ) back-
wards using a modified constraint equation [Eq. (4) with the
diffusive term’s sign reversed]. For DAL, this implementation
mimics [4,5] who demonstrated that their SBI initial guess
converges more rapidly compared to a neutral guess of zero.

Using the SBI initial guess does improve our DAL approxi-
mations of u(x, 0), as shown in the top row of Fig. 11. L-BFGS
(top right) continues to outperform gradient descent (top left),
though both cases have significant deviations from u(x, 0).
SBI and QRM both outperform the DAL cases, converging
in approximately the same number of iterations as in Sec. III.

Figure 12 plots the initial (top) and final (bottom) errors
for the KdVB inverse problem using the SBI initial guess.
LB J u

f (shown in gray) performs appreciably better than in
Fig. 5. However, SBI and QRM both surpass DAL, with
QRM performing best by several orders of magnitude in terms
of J u

f .

FIG. 13. Same as described in the caption of Fig. 9 using initial
guess u0(x, 0) generated via SBI.
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FIG. 14. Same as described in the caption of Fig. 10 using initial
guess u0(x, 0) generated via SBI.

APPENDIX B: NAVIER–STOKES INVERSE PROBLEM
OBJECTIVES USING SBI INITIAL GUESS

For the Navier–Stokes inverse problem described in
Sec. IV, we compare each method (DAL, SBI, and QRM)
starting with an initial guess generated via SBI. This case
mimics [4,5], who began by rewinding their target state from
t : t f → 0 using SBI. They subsequently refined their SBI
initial guess by using DAL to minimize an error functional

(analogous to DAL J u
f , shown in black). Figures 13 and 14

plot the initial (J u
0 , top) and final (J u

f , bottom) velocity errors
as functions of iteration n. Figure 13 shows the first 20 itera-
tions while Fig. 14 terminates at n = 200. In the black curve
(GD J u

f ), we use DAL with gradient descent to minimize J u
f .

First, we confirm that using an SBI initial guess with DAL
does approach the target final state faster than in Sec. IV.
Next we implement SBI and QRM as before. Just as with
the previous initial guess u0(x, 0) = 0, we find that SBI and
QRM outperform DAL, albeit by a narrower margin (ranging
from less than one to two orders of magnitude in terms of
J u

f ). Crucially, SBI and QRM both outperform DAL in very
few iterations, suggesting that the efficacy of these methods is
somewhat robust to the initial guess. Every iterative method
increases the initial error J u

0 (top) compared to the SBI initial
guess, except for QRM which eventually decreases J u

0 below
its original value near n ≈ 190 (shown in dotted dark blue).
Iterative SBI appears to follow a similar trend at a slower pace,
whereas GD J u

f shows no such trend. This behavior with GD
J u

f indicates that our Navier–Stokes inverse problem is highly
nonconvex, even in close proximity to the extremum. In this
case, L-BFGS minimization of J u

f gives unstable trial initial
conditions. We obtain similar results by initializing each iter-
ative method using the QRM trial initial state at n = 200.
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