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Extremely large water droplet impact onto a deep liquid pool
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Most studies of droplet impact on liquid pools focus on droplet diameters up to the capillary length (0.27 cm).
We break from convention and study extremely large water droplets (1 to 6 cm diameter) falling into a pool of
water. We demonstrate that the depth and width of the cavity formed by large droplet impact is greatly influenced
by the deformed shape of the droplet at impact (i.e., prolate, spherical, and oblate), and larger droplets amplify
this behavior by flattening before impact. In particular, the maximum cavity depth is a function of the Froude
number and axis ratio of the droplet just before impact. Further, the cavity depth is more dependent on the droplet
height than width, and the maximum cavity diameter is independent of the droplet height. In general, we observe
that more oblate droplets result in decreasing cavity depths for a fixed liquid volume. This is because an increase
in horizontal droplet diameter results in a reduced impact energy flux and therefore reduced cavity depth.

DOI: 10.1103/PhysRevE.109.045107

I. INTRODUCTION

A liquid droplet falling onto a deep liquid pool [Fig. 1(a),
t = −1.14 ms] leads to the formation of a thin liquid sheet
above the liquid surface known as a splash crown and a sub-
surface cavity (t = 15.4 ms). As the cavity retracts a liquid
jet is formed (t = 178 ms), also known as a Worthington
jet [2,3]. Droplet diameters smaller than the capillary length
(λ = 0.27 cm) where surface tension dominates gravitational
forces that fall into a deep pool of water tend to form hemi-
spherical subsurface cavities [4–8]. These smaller droplets are
assumed to be spherical, yet all droplets oscillate after release
in a fundamental mode as predicted by Rayleigh, whether
they are released by a needle or naturally disturbed by drag
forces [9–12]. Although small droplets have correspondingly
small axis ratios [b/a, b and a are the maximum vertical and
horizontal droplet dimensions respectively; see Fig. 1(b)], the
literature suggests that some impact cases can form cavities
deeper than the theoretical maximum (e.g., when b/a > 1).
Although evident in the literature, the reasoning behind the
discrepancy remains unstudied as most models assume spher-
ical droplets [4–7].

In this article, we show that droplet axis ratio variation
plays a large role in the depth of penetration, where pro-
late droplets (b/a > 1) penetrate deeper than oblate ones
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(b/a < 1). Axis ratios become larger and affect cavity for-
mation more if the droplet diameter (d0) is larger than λ.
The droplet size sets terminal velocity in free fall and b/a
becomes significant when a water droplet diameter in air is
d0 > 4.3 mm [13,14] (i.e., Weber number We = ρV 2d0/σ >

6.54, ρ is air density, V is velocity, and d0 is the spherical
droplet diameter). These oscillations lead to the breakup of
the droplet if b/a � π [13]. As droplets get larger they tend
to flatten and break up because of drag rather than oscillations
when We > 13 (e.g., d0 > 6.1 mm for water) [14–24,46]. This
is in fact the main reason why forming a water droplet much
larger than 2λ is so difficult and ignored by most studies
[34–45].

It is commonly held that the normalized maximum cavity
depth (hmax/d0) of a small droplet is a function of the droplet
impact Froude number (Fr)1/4 [4] where Fr = V 2/gd0. How-
ever, our study shows that this relationship is not generalized
enough for deformed droplets and deformed cavities. The
normalized maximum cavity depth (hmax/d0) can be scaled
properly by the Froude number and the axis ratio [Fr(b/a)]1/4,
including small droplets, and hmax is more strongly depen-
dent on b than a. Further, we show that the cavity width
(Dh) at the time of maximum cavity depth is independent of
droplet height (b). This means that the cavity shape of a large
droplet impact is not necessarily hemispherical as commonly
observed for smaller droplets (d0 � λ).

The contribution here is twofold: (1) oblate and prolate ex-
tremes, which all droplets have by the nature of the Rayleigh
condition [13], can alter cavity formation (see Fig. 1), and
(2) droplets larger than the capillary length tend to make
shallower cavities as they flatten, which they inevitably do as
they increase their speed. The relevance to the physical world
is that in large-splash small-velocity applications (i.e., wave
crashing) large droplets are formed and their behavior after
impact is not the same as a single small droplet impact. Small
droplets are dominated by surface tension while large droplets
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FIG. 1. Sequence of the extremely large droplet impact onto a deep liquid pool showing the difference in the cavity formed by a nearly
spherical (b/a ∼ 1) and a prolate (b/a > 1) droplet. Nearly spherical droplet, V–d = 4.200 ml, d0 = 2.00 cm, and H (release height) = 95 cm
(a). Prolate droplet, V–d = 37.0 ml, d0 = 4.14 cm, and H = 95 cm (b). The width a and height b of the droplet just before impact are marked in
(b) at t = −1.29 ms, and similar measurements are made for each case. The red dotted line outlines the two different cavity shapes at the event
of the maximum cavity depth (i.e., definition of hmax and Dh). For the corresponding videos, see videos 1 & 2 in the Supplemental Material [1].

are dominated by inertia. The findings are important for
applications where inertia dominates, ranging from primary
wave breakup over the ocean surface [25–27], dampening of
the sea wave motion [28,29], oil spills over the ocean surface
[30], and planetary impacts [31].

II. EXPERIMENTAL METHOD

The schematic of the experimental setup is provided in
Fig. 4 in Appendix A. Large water droplets are released onto
a water pool having a 40 cm × 40 cm cross section with a
water depth of 40 cm. Large droplets are made by a droplet
maker that minimizes the amplitude of oscillation at release
[12]. The droplet maker consists of an arm hinged at one end
and connected to a solenoid release at the other end (Fig. 4 in
Appendix A), allowing the arm to fall freely when released.
The center of mass of the arm is closer to the hinge, which
allows the rotational acceleration to be larger than g at the
droplet basket end. Various curved mesh surfaces coated with
a hydrophobic spray are used to hold the desired amount of the
liquid and clamped to the release end of the droplet generator
(Fig. 5 in Appendix A). Due to the slight difference in the
acceleration between the surface and the droplet, the droplet
smoothly separates from the release surface. The details of the
droplet volumes used, droplet equivalent diameters, Froude
number, and surfaces used for releasing the droplets are pro-
vided in Table I in Appendix A. The droplet release height (H)
is varied from 65 cm to 215 cm to cover a range of We from
2 to 40 and Fr from 20 to 385. The droplet shapes just before
impact and the underwater cavity shapes formed after impact
are visualized by a high-speed shadowgraphy technique.

III. RESULTS

Droplets on the order of the capillary length and smaller
form hemispherical cavities similar to the time series in

Fig. 1(a) and scale with Fr1/4 [4,6,7]. Figure 1 shows the
evolution of two cavities after the impact of (a) a 2.00 cm
nearly spherical droplet and (b) a 4.14 cm prolate droplet
both released from a height of 95 cm. The droplet forms a
splash crown and cavity. The cavity reaches a maximum depth
of penetration (hmax) and then retracts. The evolution of the
nondimensional cavity depth with the nondimensional time
t∗ = V t/d0 is shown in Fig. 2(a). As Fr increases the cav-
ity retraction time increases, but the maximum cavity depth
decreases, because the axis ratio changes from prolate to
spherical to oblate as release height is increased. The shape
of the droplets just before impact is shown in the inset of
Fig. 2(a). Therefore, the cause of the reduction in the cavity
depth with an increase in Fr is the shape of the droplet at
impact. The variation in the maximum cavity depth with the
Froude number is shown in Fig. 2(b). This implies that a more
oblate shape decreases the energy flux into the fluid medium
for a given droplet volume. For comparison, the theoretical
prediction from Pumphrey and Elmore [4] and least-square fit
from the work of Leng [6] are also shown. For extremely large
droplets (> 3 cm), as the droplet shapes change from prolate
to oblate, the maximum cavity depth decreases and the most
oblate cases fall outside the prediction (blue markers). For
extremely prolate droplets, the maximum cavity depths are
larger than the theoretical prediction as indicated by the red
markers. Thus, in the case of extremely large droplet impacts,
the maximum cavity depth is not merely a function of the
Froude number, but also dependent on the droplet axis ratio
(b/a).

We observe droplets that can be approximated into
three fundamental shapes: prolate, spherical, and oblate [see
Figs. 6(a)–6(f) in Appendix A]. Extremely large droplets
(d0 > 3 cm) can be deformed to such an extent that they show
the classical bag breakup regime [15] [e.g., see Fig. 6(c),
case d0 = 3.06 cm and Fr ∼ 141]. It is well known that the
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FIG. 2. (a) Evolution of the cavity depth versus non-dimensional
time for increasing Froude numbers, d0 = 4.14 cm. (b) Dimension-
less maximum cavity depth vs Froude number is compared against
the theoretical curve given by Pumphrey and Elmore [4] (hmax/d0 =
(Fr/3)1/4) and least-square fit [hmax/d0 = 0.727(Fr/3)1/4] to the
experimental data for small droplets given by Leng [6]. The red,
black, and blue colored markers in (b) show data points for prolate
(b/a > 1.1), spherical (0.9 � b/a � 1.1), and oblate (b/a < 0.9).
The release geometry and mesh type are abbreviated as mesh A
(mA), mesh B (mB), Mesh C (mC), sink mesh (SM), and SS20 with
more details presented in Fig. 5 in Appendix A.

droplets after release oscillate with a Rayleigh frequency [9].
We confirm that large droplets also oscillate with a frequency
predicted by the Rayleigh formula [Eq. (B1) in Appendix B],
however, extremely large droplets (d0 > 3 cm) show flatten-
ing behavior after one or two oscillations, resulting in the
droplet axis ratio increasing with an increase in velocity. Large
droplets tend to oscillate between prolate and oblate until
they reach a velocity where drag dominates, then they flatten
[as shown in Figs. 6(g) and 6(h) in Appendix A]. Although
droplets smaller than 2 cm appear to oscillate, once their ve-
locities increase above a critical Weber number (Wecr ∼ 13)
they will also flatten and eventually break up.

Droplet shape differences affect cavity shapes as illustrated
in the images of Figs. 3(a)–3(d). Prolate droplets (b/a > 1)

make deeper narrow cavities, while oblate droplets (b/a < 1)
make wider, more shallow shapes. The extreme case of a bag-
ging droplet forms a ring cavity with a jet forming in the center
before cavity retraction. This behavior is interesting and de-
serves further study but is out of the context of the current
work. The effect of the droplet shape on the cavity aspect ratio
for different droplet sizes is shown in Fig. 3(e). Bisighini et al.
[7] assumed that capillary droplets were spherical (b/a ≈ 1)
and produced hemispherical cavities with aspect ratios from
0.6 to 0.7, which also works well for large droplets in this
study when b/a = 1. The impact energy flux for a prolate
droplet is larger than the oblate droplets, which leads to deeper
penetration. A theoretical scaling based on the energy predicts
that the cavity aspect ratio (hmax/Dh) is a function of droplet
axis ratio (b/a) and is well fitted by the square root fitting law
as shown in Fig. 3(e). Note that the droplet shapes for b/a < 1
are not perfectly oblate, which increases the scatter in the data;
indeed, for a few cases droplets deform to a disklike shape due
to aerodynamic drag (see Fig. 6).

Pumphrey and Elmore [4] showed that the maximum cav-
ity depth for small, spherical droplet impacts can be obtained
by comparing the impact energy of the impacting droplet with
the maximum potential energy of the cavity. They assumed
the droplet shape was spherical and the cavity hemispheri-
cal. Following the same derivation we can write an energy
balance assuming the droplet shapes are ellipsoidal and the
corresponding cavity shapes as half ellipsoidal. We justify
an ellipsoid despite the nonuniformity of the droplets in a
comparison with a numerical estimate in Appendix C and
highlight the same physically by showing two very different
shapes in the inset of Fig. 3(e). Therefore, the kinetic energy
(Ekin) of the impacting droplet and the maximum potential
energy (Vpot) of the cavity formed can be expressed as (a
detailed derivation is provided in Appendix C)

Ekin = ρπa2bV 2

12
, (1)

Vpot = gρπh2
maxD2

h

16
. (2)

Comparing the kinetic energy of the droplet and the maximum
potential energy of the cavity and including an energy conver-
sion factor (K4) yields

hmaxDh

2ab
= K2

(
V 2

3gb

)1/2

. (3)

Our first assumption is based on the work of Leng [6], who
showed that about 28% of the kinetic energy is converted into
the cavity potential energy for spherical droplet impacts. In the
present study, we test this energy argument by considering the
energy conversion factor K = ( Vpot

Ekin
)1/4 and find that K = 0.72

obtained by the ellipsoidal assumption. Equation (3) can then
be written as

hmaxdh

2ab
= 0.722

(
V 2

3gb

)1/2

. (4)

Simplifying Eq. (4) we get

hmax

Dh
= 0.722

√
4V 2a3

3gD4
h

√
b

a
. (5)
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FIG. 3. For a fixed volume (V–d = 15.0 ml), three distinct droplet shapes along with the bagging regime at impact and the corresponding
cavity shapes at the event of the maximum cavity depth, (a) prolate H = 65 cm, (b) nearly spherical H = 95 cm, (c) oblate H = 185 cm, and
(d) bag, H = 215 cm. For the corresponding videos see videos 3–6 in the Supplemental Material [1]. Time is shown with reference to the
impact event, and the scale shown in (a) is the same for all the images. (e) Variation of the cavity aspect ratio with the droplet axis ratio. Inset
highlights two similar b/a ratios but different droplet shapes: (left) b/a = 0.79, hmax/Dh = 0.49, and (right) b/a = 0.77, hmax/Dh = 0.48. (f)
Maximum cavity depth as a function of Froude number and droplet axis ratio [scaling relation Eq. (8)]. The red, black, and blue colored
markers in (e) and (f) show data points for b/a > 1.1, 0.9 < b/a < 1.1, and b/a < 0.9, respectively. A few data points colored in gray in (e)
and (f) do not obey the relationship in Eq. (6) (see Appendix C for more information). The light red inverted triangle in (f) corresponds to the
“inner empty volume” droplet shape.

In the present study, the experimental data show that the
value of the term

√
4V 2a3/3gD4

h = c (6)

can be approximated by a constant [see Fig. 10(a) in
Appendix C]. Thus, we can make a second assumption that
Dh depends on a and is independent of b [Fig. 10(b)]. The
mean value of c = 1.12, and using this value, the combined
constants in Eq. (5) become 0.58. Hence, Eq. (5) can be
rewritten as

hmax

Dh
= 0.58

√
b

a
. (7)

Figure 3(e) shows Eq. (7) as a blue line, and it is in good
agreement with the experimental data. By combining Eqs. (7)
and (6), and conservation of volume (i.e., a2b = d3

0 ), we can

derive the following scaling relationship:(
hmax

d0

)4

= 0.77Fr
b

a
. (8)

Equation (8) describes a key experimental result of this
study in terms of the Fr and predicts that the depth of the
cavity increases as the axis ratio b/a increases as shown in
Fig. 3(f). For nonspherical droplets, this scaling justifies and
explains the penetration of the cavity is a function of both
Fr and b/a. It captures all of the oblate and prolate data and
predicts penetration with much better accuracy using an ellip-
soidal assumption even for large droplets. Further, it reveals
that hmax depends more strongly on b than on a when we
manipulate the result to get h4

max = 0.12 ab2V 2

g . This is a direct
counterpart to the fact that the cavity diameter is influenced
only by a [Eq. (6) and Fig. 10(b)]. We can observe this most
notably in the impact of a prolate droplet (see video 3 in
[1]) where hmax is strongly dependent on b. In the video, the
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FIG. 4. Schematic of the experimental setup. A droplet release
mechanism holds a basket filled with a droplet volume. The solenoid
releases the mechanism which is connected to a hinge. The hinge
allows the mechanism to rotate. The droplet falls slower than the
rotation rate at the basket, thus separating the droplet from the basket.
The droplet falls to the surface of the water and impacts with an
aspect ratio b/a with velocity V . Images are taken above and below
the surface with a camera and an LED providing backlighting.

top part of the drop impacts the bottom of an already-formed
cavity, resulting in an even deeper cavity being formed (i.e.,
hmax). However, the impact of the top of the droplet on the
bottom of the cavity does not widen the cavity at the free
surface (i.e., Dh).

IV. CONCLUSION

In conclusion, the cavity shape of a water droplet-pool
impact is dependent on the shape of the droplet just before
impact. Here we focus on droplet diameters far beyond the
capillary length (up to 6 cm), which reveals that cavity depth
(hmax) is strongly dependent on the height of the droplet (b)
and cavity width at the free surface (Dh) is dependent only on
the droplet width (a). It is known that even small droplets os-
cillate as they fall [11,13]. We show that intermediate droplets
also oscillate and that the largest droplets we tested tend to
flatten as they fall. These extreme shapes allow us to formulate
a modified scaling based on potential and kinetic energy sim-
ilar to the past [4] but with droplet shape taken into account
and provide evidence that assuming the droplet is an ellipse is
a reasonable assumption. The experimental videos show that
prolate droplets form narrow and deep cavities, while oblate
droplets form wide and shallow cavities. The depth of the
cavity is a function of the Froude number as well as the droplet
axis ratio and increases as the droplet axis ratio is increased.
The result is a unified scaling for droplet-pool impact from

0.3 cm10 cm

mA

mB

mC

SM

SS20

Side View Top View Zoomed Cross Section

FIG. 5. Release geometries used in the present study. The left
column shows the side view, and the middle column shows the top
view of the mesh. The scale shown at the top is the same for all
the images in the left and middle columns. The right column shows
zoomed views of all the meshes, and the scale for images in the right
column is shown at the top.

small to very large droplets, allowing future researchers and
engineers to predict the cavity behavior of any size and/or
shape droplet.
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APPENDIX A: EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 4. A 64 watt LED light was used as a backlight. Images
were recorded at 7000 frames/sec having 1024×1024 pixels
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FIG. 6. Droplet shapes just before impact for different liquid volumes and release heights indicated by Froude number: (a) 1.00 cm SS20,
(b) 2.00 cm SM, (c) 3.06 cm mC, (d) 4.14 cm mesh B, (e) 5.04 cm mesh B, and (f) 6.04 cm mA. Measurements of a and b are indicated by
thin white lines. Case (c) Fr = 141 is not included in the rest of the data but is shown for reference. Each row has the same volume and uses
the same scale bar. Variation in the droplet axis ratio just before the impact for different nondimensional heights: droplet oscillation regime (g)
and flattening regime (h).

resolution and 1/7000 sec exposure time using the Photron
FASTCAM SA5. Droplet impact velocity (V ), axis ratio
(b/a), the evolution of the cavity depth (h) and width (D),
maximum cavity depth (hmax), and the cavity width corre-
sponding to the maximum cavity depth (Dh) were measured
by image processing.

Droplets are formed first by placing a volume from Table I
into an appropriate basket that is mounted to the release mech-
anism at the top of Fig. 4. The release mechanism is connected
on one side to a hinge and a solenoid on the other. When
the solenoid is released the whole mechanism rotates around
the hinge. Since the center of mass is closer to the hinge
than the basket, the rotational acceleration of the basket is

faster than gravity. Several baskets (Fig. 5) are used depending
on the droplet size as marked in Table I.

Table I lists all volumes of the water used for forming
large droplets and the corresponding equivalent spherical
droplet diameters with names of various surface geometries
for releasing the droplet. Actual photographs of the various
release geometries used are shown in Fig. 5. The zoomed
images of the mesh structures are also shown in Fig. 5.
The shape and the net type of mesh A (mA) and mesh B
(mB) are similar to the strainer meshes used in kitchen sinks
and are hemispherical. Mesh C (mC), sink mesh (SM), and
SS20 are specially designed release geometries (more details
of these meshes can be found in the work of Fonnesbeck [12]).
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TABLE I. Droplet volumes, equivalent diameters, Froude num-
bers, and droplet release geometries used in the present study.

Volume Equivalent Release
V–d (ml) diameter d0(cm) Fr geometry

0.525 1.00 123–385 SM, SS20
4.200 2.00 52–192 SM, SS20
15.0 3.06 40–134 mA, mB, mC
37.0 4.14 29–100 mA, mB
67.0 5.04 24–121 mA, mB
115.0 6.04 20–66 mA

All the meshes were coated with the superhydrophobic coat-
ing (Glaco Mirror) having a contact angle greater than 160◦.
Figures 6(a)–6(f) show various droplet shapes at impact and
the variation in the droplet axis ratio for oscillating and flat-
tening droplets for different heights in Figs. 6(g) and 6(h),
respectively.

APPENDIX B: SMALL AND LARGE DROPLET
OSCILLATION FREQUENCY

Figure 7 [12] shows the comparison of the measured
droplet oscillation frequencies with the predicted fundamental
frequencies (2,0 mode) using the Rayleigh et al. [13] theory
for droplets less than the capillary length as well as droplets
up to 2 cm in diameter. The Rayleigh frequency is

f 2
n = 8n(n − 1)(n + 2)σ

ρd3
eq

. (B1)

Here n is the mode shape, σ is the surface tension, ρ is the
density of the water, and deq = d0 is the spherical equivalent
droplet diameter. The schematic of the (2,0) mode is shown as
an inset in Fig. 7, blue shows the nondeformed shape of the

FIG. 7. Measured fundamental frequencies (2,0 mode) of the
droplet oscillations for diameters below the capillary length (λ <

0.27 cm) up to 2 cm from the work of Fonnesbeck [12]. Inset shows
the deformed droplet shapes of mode 2,0.

FIG. 8. Schematic of the cavity showing the parameters used
for the measurement of the maximum cavity potential energy by
(a) ellipsoidal assumption [Eqs. (C2) and (C4)] blue curve and (b) nu-
merical integration [Eq. (C6)] red curve.

droplet, and the two-mode shapes of the droplet are shown in
red and yellow. We refer the reader to Fonnesbeck’s work [12]
for other mode-frequency comparisons, where there is good
agreement with the predictions of Raleigh.

APPENDIX C: ENERGY BALANCE

Pumphrey and Elmore [4] obtained the maximum cavity
depth by comparing the kinetic energy of the droplet to the
potential energy of the cavity. In the present study, we follow
a similar approach as in the work of Pumphrey and Elmore
[4]; however, we consider the droplet and the cavity shape to
be ellipsoidal. The kinetic energy of the impacting droplet is

Ekin = 1
2ρV–dV 2. (C1)

Let a and b be the horizontal and vertical diameter of the
ellipsoidal droplet just before impact (see Fig. 8), then the
volume can be formulated as V–d = (πa2b)/6. The kinetic
energy then becomes

Ekin = ρπa2bV 2

12
. (C2)

The potential energy of the cavity is easily written as

Vpot = ρπD2
hhmaxgz̄

6
, (C3)

where z̄ = 3hmax
8 is the distance of the center of mass of the

half-ellipsoid from the interface (see Fig. 8). The potential
energy of the cavity becomes

Vpot = gρπh2
maxD2

h

16
. (C4)
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FIG. 9. Droplet kinetic energy at impact and the corresponding maximum potential energy of the cavity. Potential energy is calculated
using (a) theory [Eqs. (1) and (2)] and (b) numerical integration of the cavity shape. Least-square fit to the data: (a) K = 0.72 for theory and
(b) K = 0.74 for numerically integrated potential energy.

We can now compare the kinetic energy to the potential en-
ergy. Leng [6] showed that only 28% of the kinetic energy
is converted into the cavity potential energy for a spheri-
cal droplet impact. In the present study, we test this energy
argument by considering the energy conversion factor K =
( Vpot

Ekin
)1/4 for the nonspherical droplet impacts, and comparing

Eqs. (C2) and (C4) we get

hmaxDh

2ab
= K2

(
V 2

3gb

)1/2

. (C5)

We can determine the value of K from an ellipsoidal approxi-
mation or a numerical integration of the experimental images
of the cavity shapes (Fig. 8). The potential energy of the cavity
is calculated numerically as

V NI
pot = lim

δz→ 0

i∑
ρgzi

�D2
i

4
δzi. (C6)

We find that the least-square values of the energy conversion
factor K = 0.72 for the ellipsoidal approximation and 0.74
for the numerically integrated cavities as shown in Fig. 9.
These values of K indicate that 29% and 31% of the droplet
kinetic energy is getting converted into the cavity poten-
tial energy when calculated theoretically and numerically,
respectively. Numerically integrated energy does not show
much increase in energy conversion, and the difference be-
tween the two methods is only 2%; therefore we continue to
use the ellipsoidal approximation throughout the paper. Al-
though the droplets are nonspherical the value of K = 0.72
obtained by ellipsoidal assumption is very close to the value
(0.727) reported for spherical droplet impacts [6]. Hence, we
choose the value of K = 0.72.

Equation (C5) can now be written as

hmax

Dh
= 0.722

√
4V 2a3

3gD4
h

√
b

a
. (C7)

Our experimental data show that the value of the term√
4V 2a3/3gD4

h is a constant [see Fig. 10(a)]. The mean value

of this term is c = 1.12 when we remove a few of the ex-
treme data points. We justify this removal approximation by
noting that it is valid only for cases that obey the relationship
Dh = (4V 2/3gc)1/4a3/4, which we show in Fig. 10(b). The
upper and lower bounds of this behavior show that a few
data points fall outside the expected relationship, which can
then be removed from the approximation of the mean value
in Fig. 10(a), grayed values). The values that fall outside are
the largest droplets that have odd shapes [Fig. 6(e) Fr = 80,
Fig. 6(f) Fr = 51, Fr = 60, and Fr = 66). We notice that in
cases where the bottom most portion of the droplet creates a
splash crown or forms a cavity before the maximum a value
can impact the cavity. There seems to be a cushioning effect
that diminishes the ability a to form a proper value for Dh, thus
these extreme cases do not form large enough cavity diameters
given their a at impact (see videos 7 and 8 in [1]). Based
on these information, the combined value of the constants in
Eq. (C7) now become 0.58:

hmax

Dh
= 0.58

√
b

a
. (C8)

In addition, the value of the constant obtained from the
least-square fit to hmax/Dh vs b/a in Fig. 3(e) is also 0.58
independently.

APPENDIX D: A NOTE ON DROPLET SHAPES AT IMPACT

During the cavity retraction of the cases where a jet is
formed [Fig. 3(d)], we observe the bubble pinch-off phe-
nomenon similar to the single capillary droplet impacts of Ray
et al. [32] and Xu et al. [33]. In their cases the bubble is formed
when the Worthington jet falls back into the bulk fluid. In
our cases, the rim portion of the disklike or bagging droplets
impacts first on the pool which leads to the generation of an in-
ward crown. The inward motion of the crown merges together
at the center of the cavity making an upward jet. Collapsing
of the bottom of the cavity onto the inner jet pinches off a
large bubble at the cavity bottom during the retraction of the
cavity. This phenomenon of the bubble pinch-off is illustrated
in video 6 in [1].

045107-8



EXTREMELY LARGE WATER DROPLET IMPACT ONTO A … PHYSICAL REVIEW E 109, 045107 (2024)

FIG. 10. (a) The constant term for the calculation of the mean value of the constant. (b) Dependence of Dh on a. A few data points fall
outside the expected relationship in (b), which are shown in gray, and are not considered for the calculation of the mean value in (a). For the
gray points the bottom-most portion of the droplet creates a splash crown or forms a cavity before the maximum a value can impact the cavity.
There seems to be a cushioning effect that diminishes the ability for a to form a proper value for Dh.
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