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Vortex polarization and circulation statistics in isotropic turbulence
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We carry out an in-depth analysis of a recently introduced vortex gas model of homogeneous and isotropic
turbulence. Direct numerical simulations are used to provide a concrete physical interpretation of one of the
model’s constituent fields: the degree of vortex polarization. Our investigations shed light on the complexity
underlying vortex interactions and reveal, furthermore, that despite some striking similarities, classical and
quantum turbulence exhibit distinct structural characteristics, even at inertial range scales. Crucially, these
differences arise due to correlations between the polarization and circulation intensity within vortex clusters.
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I. INTRODUCTION

Turbulence, a fascinating and intricate phenomenon, is
a natural state of fluid motion that pervades our world. A
deeper understanding of turbulence is expected to lead to
technological advancements in fields such as aircraft turbu-
lence prediction [1], turbulent combustion [2], and automotive
design [3]. A milestone in this endeavor is due to Kolmogorov
in 1941 (K41) [4], who, with a self-similar approach to the
velocity structure function, made predictions which found
experimental evidence decades later [5]. However, it is now
widely recognized that the K41 theory does not offer a defini-
tive representation of turbulence. This limitation arises from
significant non-Gaussian deviations of turbulent fluctuations
[6], often associated with the tendency exhibited by turbu-
lence to self-organize into thin elongated vortex structures
carrying a large fraction of the total fluid’s kinetic energy [7].

In spite of its central importance in fluid dynamics, ve-
locity circulation was historically overlooked in the context
of turbulence research. It was more than 50 years after the
publication of the K41 theory that the circulation variable was
first explored by Migdal [8] in the early 1990s. In the past
decade, a remarkable improvement in hardware and software
platforms enabled the exploration of high Reynolds num-
ber direct numerical simulations (DNS) of the Navier-Stokes
equations. This has naturally renewed interest in circulation
and the analysis of its statistical properties [9,10], which in
turn encouraged progress both from the theoretical [11] and
the modeling [12–17] points of view. The apparent simplicity
of this variable also pushed forward the computational and
experimental analyses of circulation in other systems such
as quantum [18,19] and quasi-two-dimensional turbulence
[20,21].

A promising phenomenological model of circulation statis-
tics, referred to as the vortex gas model (VGM) [12],
combines a mathematically formal model of the cascade na-
ture of turbulence through the Gaussian multiplicative chaos
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(GMC) [22] with the structural view of turbulence, seen as
an entangled gas of vortex filaments. The resulting statistical
model not only accurately reproduced the general statistical
behavior of velocity circulation observed in DNS, but moti-
vated the discovery of new phenomena, such as, for instance,
a statistical repulsion between vortex fluid structures at small
scales [14]. In the context of probability distribution func-
tions (PDFs), VGM gives a fundamental interpretation of the
behavior of extreme far tails through the breakdown of multi-
fractality [15,16], and offers a straightforward explanation of
the multifractal behavior of circulation in terms of a maximum
vortex packing fraction inside a fixed contour C where the
circulation is computed [23].

The VGM is described in terms of two statistically in-
dependent fields. One field entails the GMC framework
needed to model intermittent energy fluctuations, akin to
the Obukhov-Kolmogorov modeling (OK62) [24,25], and its
physical role has been scrutinized in [15]. The other field is
self-similar, targeting the K41 scaling exponents. The present
study aims to validate, from statistical analyses of DNS data,
this self-similar modeling field of the VGM. By adapting the
approach of cluster summation in quantum turbulence [19]
and investigating the spatial correlation function of detected
structures on DNS data, we unveil clear distinctions between
classical and quantum turbulence. Additionally, our findings
align with the GMC model and an analogous 4/5 law for
circulation statistics.

This paper is organized as follows. Section II outlines the
main ideas of the VGM and its consequences to the cluster
summation which are additionally strengthened in Sec. III
through the analysis of high Reynolds number DNS data. In
Sec. IV we summarize our findings and contrast them with the
current understanding of cluster summation in the context of
quantum turbulence.

II. VORTEX GAS MODEL AND CLUSTER SUMMATION

The VGM was first introduced in [12] and further devel-
oped in [13–15], where circulation is accounted for at planar
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domains by the use of Green’s theorem, as in

�r =
∫
Dr

ω d2x , (2.1)

where Dr is the surface delimited by some contour of typ-
ical linear size r and ω is the vorticity. A sum of dilute
space-localized vortices composes the statistical framework
of the model. Moreover, at inertial range scales, the statistical
properties of �r are encoded using two basic constituents, as
previously anticipated,

�r = ξr

∫
Dr

d2x �̃(x) . (2.2)

The variable ξr is the coarse-grained squared-root dissipation
rate,

ξr = 1

η2
K

∫
Dr

d2x

√
ε(x)

〈ε〉 , (2.3)

modeled as a bounded GMC field, while ε(x) is the local
energy dissipation rate, and ηK the usual Kolmogorov scale
[13,15]. In addition, �̃(x) is a Gaussian random field with zero
mean and pair correlation function

〈�̃(x)�̃(y)〉 ∼ |x − y|−α (2.4)

at inertial range scales (properly regularized for small scales
|x − y| � ηK ). Using Eqs. (2.2–2.4), it is not hard to show
that 〈|�r |p〉 ∼ rλp with

λp = (4 − α)

2
p + μ

8
p(1 − p) , (2.5)

where μ ≈ 0.17 is the intermittency parameter related to
the spatial decay of the dissipation correlation function [26].
Here, one identifies the self-similar contribution, (4 − α)p/2,
coming from the Gaussian field �̃(x), and the intermittent cor-
rection, proportional to μ, generated by the GMC modeling.
It is worth emphasizing that the above equation is only valid
for low-order exponents (p � 6). For higher-order statistics,
the linearization effect may be accounted for by imposing an
upper bound on the GMC field, see [13,15].

A deeper understanding of Eq. (2.3) was provided by [15],
where the authors showed that the number of vortices inside
the domain Dr is statistically equivalent to the squared-root
coarse-grained dissipation ξr for inertial range sized contours.
In this sense, the statistical repulsion among vortices at very
small scales is phenomenologically related to the breakdown
of multifractality as pointed out in [13].

Note that the 4/5 law for circulation, as conjectured
through extensive analysis of DNS data in [9], which suggests
〈|�r |3〉 ∼ r4, does not concur with the naive implementation
of the scaling exponent α = 4/3 in the VGM. This is due to
a technical difference between traditional cascade models and
the GMC approach. In the latter, the scaling exponents of the
pth-order moment do not follow the same expected relation
for simple cascade models: 〈(√εr )p〉 ∼ rτp/2 when 〈εp

r 〉 ∼ rτp .
In the GMC approach, the evaluation of the coarse-grained
dissipation rate εr is implicitly related to the intense local
fluctuation of ε(x). Consequently, the only compatible way to
use the GMC modeling for circulation statistics is by setting
α = 4/3 − μ/2, as already pointed out in [15].

The cluster summation procedure consists of character-
izing the circulation as the contribution of discrete and
countable neighboring vortical structures, which is achieved
by summing over the circulations of groups of n first neighbor-
ing vortices. It was first introduced in the context of quantum
turbulence [19], where the velocity circulation is quantized,
i.e., �i = ±nκ for some integer n, with κ being the quantum
of circulation [27]. This procedure is independent of the par-
ticularities of the local vortex distribution (or ξr in classical
turbulence) and replaces the notion of length scale by the num-
ber n of vortices in a cluster. This results in the appearance of a
self-similar behavior with respect to n, ultimately understood
as the degree of polarization of chains of quantum vortices
[19].

For classical turbulence, such a summation procedure is far
more involved than the quantum case. It can assume basically
any value, and there may be not only sign correlations but
correlations among circulation magnitudes of the vortices.
Moreover, the local vortex distribution is also supposed to be
correlated to the vortex circulation since, at small scales, there
can be decaying and/or reconnection processes occurring all
over the flow. Therefore, this kind of procedure is expected to
show a scaling behavior for a sufficiently large cluster.

Suppose one has a 2D slice of a 3D turbulent flow, with N
vortices at positions xi, each of which carries a circulation �i.
We define two types of cluster summations [19], labeled by a
function f , as

P( f )
i (n) =

n∑
j=1

f
(
�

(i)
j

)
, (2.6)

where n � N is the size of the cluster, spanning an area with
a typical size of r ∼ n1/2 due to the homogeneous behavior of
the GMC scaling exponents for p = 1. To generate the cluster
summation series, we choose a specific vortex, for instance,
the ith vortex. We label the circulation of each vortex as �

(i)
j

and sort them based on their relative distance ri j = |xi − x j |
from the selected vortex. Finally, we perform a summation
over the increasing j label. The ensemble average is then
defined by starting the series at different points xi,

〈Pn〉 = 1

N

N∑
i=1

P( f )
i (n) . (2.7)

As for the function f : R → R, first we refer to a “binarized”
summation when only the sign of the vortices is considered,
i.e., f (x) = sign(x). This basically measures the degree of
polarization of the vortex cluster, exactly as in the case of
quantum turbulence [19]. Lastly, we refer to the “continuum”
cluster summation when f (x) = x. Note that, however, the
choice of this function instead of |x| does not totally exclude
the polarization effects, and the scaling exponents of these
two different series must be connected in some way. For both
cases, we expect

〈|Pn|p〉 ∝ nβp . (2.8)

If β = 2/3 for f (x) = x, K41 scaling is achieved (since n ∼
r2). This result of disentangled scaling was observed in quan-
tum turbulence to have a K41-like property as shown by [19],
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but, as mentioned, the classical case can be more involved,
and a clear exploration of this scaling follows.

Let us assume the field �̃(x) is solely responsible for the
scaling of the cluster summation in the VGM. Then, by the
use of Eqs. (2.5) and (2.8), one expects for the second order
moment

4β = 4 − α → β = 2

3
+ μ

8
≈ 0.688 , (2.9)

so that the correction introduced in the Gaussian field �̃(x) to
reproduce the 4/5 law directly influences cluster summation,
i.e., the partial polarization of the vortices [19]. At this point,
we note an explicit phenomenological splitting between clas-
sical and quantum turbulence. Although the correction to α

makes the scaling exponents of Eq. (2.5) numerically indistin-
guishable from those of circulation in the quantum case [9,18],
it has completely different phenomenological bases. In the
case of quantum systems, the circulation can be thought of as
the product of partially polarized vortices [following Eq. (2.7)
with β = 2/3] by the local distribution of vortices which is,
to first order, related to εr as noted by [19]. In the case of
classical turbulence, [15] noticed that the vortex density is
more accurately described by (

√
ε)r , i.e., by ξr . In this sense,

an efficient analysis of turbulent data should elucidate the
structural differences between these two systems.

III. DNS DATA ANALYSIS

We now turn to DNS data in order to validate our inter-
pretation of the �̃ field and to explore the cluster summation
procedure in classical turbulence. In particular, we obtain the
scaling exponent β for the cluster summation procedure, as
defined in (2.8). In addition, we seek to validate the Gaussian-
ity of �̃ and to measure its correlation function (2.4) along
with its decaying exponent α.

The open-access database used in this work is maintained
by Johns Hopkins University (JHTDB) [28,29]. We extracted
2D slices from a 3D, fully dealiased Navier-Stokes DNS of
fully developed homogeneous and isotropic turbulence, per-
formed in a triperiodic box of linear size 2π divided into N =
4096 collocation points. The Taylor-based Reynolds number
is about Rλ ≈ 610 and the integral and Kolmogorov length
scales are, respectively, L = 1.3916 and ηK = 1.3844 × 10−3.

The vortex identification method we choose is the stan-
dard swirling strength criterion which selects connected spots
where |Im(λ)| � 0.125σλ, with λ(x) being any of the complex
eigenvalues of the 2D velocity gradient tensor at position x
(λ = 0 if they are all real), and σ 2

λ its variance [30,31]. The
resulting procedure gives rise to connected regions which are
interpreted as individual vortices [14,15]. The circulation of
the ith vortex is computed by summing the vorticity inside
its area Ai detected by the swirling strength criterion, that is,
�i = ∑

j∈Ai
ω(x j )dx2.

A. Cluster Summation

Figure 1 shows a particular realization of the processes
defined by Eq. (2.6) as functions of the cluster size n.
Despite showing similar large-scale behaviors, small-scale
peculiarities are noticeably different between the binarized
and continuum cases. The effects of intensity correlations

0 2000 4000 6000 8000 10000

−2

0

2

P
(f )
i

σP

Binarized

Continuum

FIG. 1. Typical cluster summation as functions of the cluster
size for both binarized (darker) and continuum (lighter) cases, for
the same �

(i)
j realization. Each realization is normalized by its own

standard deviation to ease comparison. The shaded area highlights
different properties of the summation methods.

are markedly seen by taking a closer look at, for instance,
the shaded region in Fig. 1: one notes that, in this particular
case, the binarized polarization fluctuates around zero, mean-
while, the continuum summation has a clear tendency to
decrease. This fact indicates that in this cluster there is a
strong correlation among vortices with high negative intensity.

In Fig. 2, we show the statistical moments of cluster sum-
mation in both the binarized and continuum cases, in the
spirit of Eq. (2.8). The binarized processes show a distinct
scaling in the whole cluster size range studied (n � 104),
resulting in a general scaling exponent given by Eq. (2.8) with
β = 0.56 ± 0.01. This suggests that the tangle of point vor-
tices in classical turbulence is less polarized than in quantum
turbulence (β = 2/3). This could be due to the fact that clas-
sical vortices may not directly correspond to single quantum
vortices, but rather to polarized clusters, in the spirit of coarse-
grained descriptions, as in the HVBK model of superfluid
dynamics [32]. As it stands, not only the vortices polarization
but also their circulations are important for the K41 scaling,
so that the full scaling of the continuum process may be more
fundamental than the sole polarization of the vortices.

In striking contrast to its binarized version, the continuum
cluster summation presents no clear scaling in the whole

100 101 102 103 104
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1012

〈|P
n
|p 〉

p = 1

p = 8

100 101 102 103 104

10−1

104

〈|P
n
|p 〉

p = 1

p = 8

FIG. 2. Statistical moments of cluster summation for the bina-
rized process (upper panel) and the continuum process (lower panel)
as functions of the cluster size n. Statistical moments are shown from
p = 1 (lighter colors) to p = 8 (darker colors).
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cluster size range. However, for very large clusters one can
identify a scaling regime depending on the moment order,
such that the higher the moment order, the shorter the scaling
range. The determination of the power law exponent in the
large cluster scaling range is difficult because of the substan-
tial contamination due to the slow crossover between small
and large-scale behaviors. Moreover, a range of about 104

vortices has, in general, a spanning area comparable to inte-
gral length scales, so the statistics can start to be affected by
the energy pumping mechanism, again, affecting the scaling
region by further shortening it, now from the right side of
Fig. 2.

B. Small Cluster Regularization

One can try to understand the scaling range by noting that
the behavior of the cluster summation at very small contours
is affected by the regularization of �̃(x → 0). Indeed, this was
the leading mechanism used in [12] for the saturation of the
kurtosis for r ∼ ηK .

To further illustrate this point, we assume that, within the
VGM framework, the cluster summation is solely determined
by the contribution of �̃(x), viz.,

Sn =
n∑

i=1

�̃(xi ) . (3.1)

Writing the variance of Sn, one can split the contributions into

〈
S2

n

〉 =
n∑

i=1

〈�̃2(xi )〉 + 2
n∑

i=1

n∑
j=i+1

〈�̃(xi )�̃(x j )〉. (3.2)

Assuming now that the �̃ field is regularized, i.e.,
〈�̃(xi )�̃(x j )〉 = �2

0 for i = j and 〈�̃(xi )�̃(x j )〉 = �2
0 |xi −

x j |−α for i �= j, and writing the (large) number of vortices
inside a disk of radius R as n = σ̄πR2, then, by taking the
continuum limit, one may interpret the sums as integrals over
the disk area to show that〈

S2
n

〉 = �2
0

(
n + 4

2 − α
(πσ̄ )α/2n(4−α)/2

)
, (3.3)

where σ̄ = N/L2 is the mean vortex density, whose value, ob-
tained numerically, is σ̄ ≈ 3 × 10−3 in units of Kolmogorov
length scale. By the usage of Eq. (2.9), the asymptotically
dominant scaling exponent is (4 − α)/2 = 2β, as expected.
For our purposes, we need a sufficiently large cluster, say,
n � n0 with

n0 =
(

4

2 − α
(πσ̄ )α/2

)2/(α−2)

≈ 27 , (3.4)

for the self-similar exponent to dominate, since (4 − α)/2
> 1. Unfortunately, with distances measured in units of Kol-
mogorov length, the structures are expected to be less dense
for higher Reynolds numbers, which brings several difficulties
for the scaling of cluster summation. One may expect, for
instance, that the cross-over point np between small-scale
and large-scale behavior of the cluster summation statistical
moments should grow with the moment order p. This can be
grasped by assuming a Gaussian behavior for �̃(x) in such a
way that its high order statistical moments may be factorized

10−2 100 102 104

10−2

102

106

1010

1014

1018

〈|P
n
|p 〉

1 2 3 4 5 6 7 8

1

2

3

4

5 ζ(p|2) — Binarized

ζ(p|2) — Continuum

p/2 — Gaussian

FIG. 3. ESS approach for the cluster summation scaling on the
binarized (dashed) and continuum (solid) cases. Colormaps are as in
Fig. 2. Inset: ESS exponents found on both cases compared to the
Gaussian values p/2 (dashed).

as combinations of lower order ones with the application of
Isserlis’ theorem [33], leading to

〈
S2p

n

〉 ∼
(

n + 4

2 − α
(πσ̄ )α/2n(4−α)/2

)p

, (3.5)

which reduces to

〈
S2p

n

〉 ∝ n2βp

[
1 +

(
np

n

)(2β−1)

+ O
((

1

n2β−1

)2
)]

, (3.6)

with np ≡ n0 p1/(2β−1). Considering Eq. (2.9), one has np =
n0 pξ , with ξ = 12/(4 + 3μ) ≈ 2.66. In short, this crossover
would grow as a power law due to the presence of the
small-scale regularization. However, the presence of highly
correlated small-scale clusters plays an important role in the
crossover and the Gaussian behavior over the whole range of
n′s is known to be false. Indeed, the prediction for the eighth-
order moment n8 ≈ 6800 is unrealistic, as seen in Fig. 2, and
hence this analysis is simply suggestive.

C. Scaling Exponents and Asymptotic Gaussianity

An extended self-similarity (ESS) [34] analysis was carried
out for both the binarized and continuum scalings, and results
are shown in Fig. 3. In the ESS approach, one expects that
although the scaling of the statistical moments as a function
of n may not be clear-cut, the pth order moment has the same
small-scale behavior as the qth order moment, such that, for
the particular case q = 2, there should be a scaling exponent
ζ (p|2) such that 〈|Pn|p〉 ∝ 〈|Pn|2〉ζ (p|2). This is a usual strategy
of the ESS approach to extend the scaling region and get
better-resolved exponents. Nonetheless, as shown in Fig. 3,
the continuum process does not exhibit this property due to the
collapsing moments for n → 0 as emphasized by Eq. (3.5).

A signature of Gaussian behavior in the binarized summa-
tion can be found on the inset of Fig. 3, where the measured
ESS exponents are depicted. Despite a slight curvature for
high-order moments, the Gaussian behavior for the continuum
cluster summation is restored at larger cluster sizes. One may
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100 101 102 103 104

10−2

10−1

100

101

102

〈P
2 n
〉

∝ n1.23

103

n

10−1

100

101

〈P
2 n
〉−

〈P
2 1
〉n

∝ n1.372

FIG. 4. Continuum cluster summation’s variance is shown in the
upper frame, while its subtracted version is shown in the bottom
frame. Dashed lines are power-law fits while the shaded region
represents a 2σ -confidence interval of the data.

note, as suggested by Fig. 3, that the scaling of the continuum
process tends asymptotically to the binarized one, such that
self-similarity is restored for sufficiently big clusters.

As a next step in fully characterizing the self-similar behav-
ior of the cluster summation, it is necessary to determine the
scaling exponent of one of its statistical moments, which we
do for p = 2, for simplicity, since ζ (p|2) was already com-
puted. Furthermore, if one interprets the cluster summation
as Eq. (3.1) in the VGM, caution must be taken due to the
fact that the curve obtained from Eq. (3.3) with the parameters
σ̄ , α, and �0 in our data does not clearly exhibit a transition
between two power laws, but rather resembles one power law
with an exponent close to 1.25. This indeed would roughly fit
the variance behavior as it may be inferred from Fig. 4 (upper
panel), where a similar scaling is depicted (∼n1.23).

The lower panel of Fig. 4 shows a properly subtracted
scaling, following Eq. (3.3). The scaling of the observables
(〈P2

n 〉 − 〈P2
1 〉n) and 〈P2

n 〉 are compatible with power laws pro-
portional to n2β , with β = 0.686 ± 0.018 and β = 0.615 ±
0.011, respectively.

Further evidence supporting the Gaussian behavior of the
large-scale continuum summation is found in Fig. 5. Clusters
achieve nearly Gaussian PDFs in the range n ≈ 700–2000
where the exponents were fitted.

D. Spatial Correlation Function

To further validate the cluster summation methodology,
we show in Fig. 6 the vortex circulation two-point correla-
tion function, 〈�̃(xi )�̃(x j )〉, as a function of the intervortex
distance ri j = |xi − x j |, directly measured from DNS data.
To achieve this, we measured individual vortices circulations,
then took pairwise products �̃(xi )�̃(x j ) on each snapshot
and computed averages over bins organized according to ri j .
Results are considerably robust with regard to bin size, so we
choose it as twice the lattice parameter dx of the DNS data,
corresponding to dx ≈ 1.1ηK . Error bars on the figure corre-
spond to one standard error of the mean.

−6 −4 −2 0 2 4 6
Pn/σ

10−6

10−4

10−2

100

σ
ρ
(P

n
)

n = 64

n = 512

n = 768

n = 1024

n = 2048

n = 3192

Gaussian

FIG. 5. Standardized circulation PDFs of cluster summation for
various cluster sizes.

While the high amount of fluctuations prevents a precise
determination of the scaling, a fitting of the exponent, giving
α = 1.3 ± 0.1, turns out to be compatible with the VGM
prediction (shown as a solid line). While the result is not
able to distinguish between a K41 behavior and the correction
brought by the VGM, it shows evidence for the power law
assumption which is in the basis of the model.

IV. DISCUSSION

Previous explorations of the building blocks of the VGM
have revealed important structural properties of the gen-
eral statistical behavior of circulation statistics in classical
fully developed turbulence [15,16]. The mostly unexplored
phenomenological field introduced in the VGM, �̃(x), was
considered in this work. By exploring the degree of vortex
polarization through the binarized cluster summation method,
we found clearly incompatible scaling exponents for these
two systems, where 〈P2

n 〉 ∼ n1.120±0.022 stands for the clas-
sical case, while 〈P2

n 〉 ∼ n4/3 to the quantum one. However,
when including the vortices’ circulations through a continuum
cluster summation procedure, one finds exponents that are
similar to those evaluated in the quantum case. Moreover,

102 103

rij/ηK

10−4

10−3

10−2

〈Γ̃
(x

i)
Γ̃
(x

j)
〉

∝ r
−(4/3−μ/2)
ij

FIG. 6. Two-point correlation of the detected vortex circulation
as a function of the intervortex distance.
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the obtained power laws are compatible with the corrections
predicted by the GMC approach, introduced in the VGM
as 〈�̃(x)�̃(y)〉 ∼ n2β with β = 2/3 + μ/8 ≈ 0.688, which
agrees well with the measured value β = 0.686 ± 0.018.

The main structural similarities and differences between
the modeling constituents of quantum and classical turbulence
have been recently discussed through the analysis and mod-
eling of the circulation variable [12–15,18,19]. Based on the
present results, as well as on previous investigations of the
VGM, we highlight the following points: (i) both systems can
be modeled through the product of the partial polarization
(measured by the cluster summation) and the spatial distribu-
tion of vortices (which brings the intermittency of circulation
through the energy dissipation ratio); (ii) vortex distribution
in the classical system is related to the field σ ∼ ξr ∼ (

√
ε)r ,

while, to first approximation, in the quantum system it is
related to σr ∼ εr ; (iii) the partial polarization of the quantum
system displays K41 behavior, which is broken in the classical
system due to strong fluctuations in individual vortex inten-
sities, while remaining self-similar for big cluster sizes; (iv)
circulation in both systems displays, within small error bars,
the same overall scaling λclassical

p = λ
quantum
p at inertial range

scales. At this point, the rationale brought by the combination
of points (i), (iii), and (iv) is that the spatial distribution
of vortices must be different when comparing both systems,
a fact that points out that classical vortices are not exactly
analogous to the quantized ones, but could be associated to
polarized clusters of the latter. The connection of this con-
clusion to point (ii) evokes a deeper understanding of the
specific roles of the underlying dynamics of Navier-Stokes
and Gross-Pitaevskii equations on the spatial distribution of
vortices and how this is connected to the local energy dissipa-
tion mechanisms.

For the models based on the standard machinery of random
cascades, such as the mOK62 introduced by [19], the correc-
tion to the cluster summation is not present since the scaling
exponents of the coarse-grained dissipation exactly vanish for
p = 3. On the other hand, the best bifractal fit achieved by [9]
for low order moments λp ≈ (1.367 ± 0.009)p was referred
to as 1.4 scaling, since the exponent 1.4 collapses the circula-
tion PDFs cores. In the present work, we associate this value
not only to the VGM’s prediction but to the correction intro-
duced by the GMC field, λp→0 ≈ (4/3 + 3μ/8)p = 1.397p.

Recently, experimental measures of the circulation scaling
exponents in quasi-two-dimensional turbulence were reported
in [20]. Under the inverse energy cascade regime, circula-
tion shows very similar—not to say equal—scaling behavior
as standard three-dimensional homogeneous and isotropic
turbulence. These different systems, having similar overall
statistical properties when analyzed through the magnifying
glass of the circulation variable, call attention to the possibil-
ity of a broader unifying theory for circulation statistics. The
latter motivates the search for an extension of the VGM at dif-
ferent phenomenological systems such as rotating turbulence
or magnetohydrodynamics, where the existence of a preferen-
tial direction breaks isotropy. In this sense, the VGM setting
and the role of a bounded GMC in the vortex distribution can
shed some light on the problems of clustering, coalescence,
and polarization of structures at different turbulent systems.
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