
PHYSICAL REVIEW E 109, 045104 (2024)

Microscopic self-dynamics in liquid Ne-D2 mixtures:
Quantum features and itinerant oscillators reexamined
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In this paper, we report the results of a centroid molecular dynamics (CMD) study of the canonical velocity
autocorrelation functions (VACFs) in liquid Ne-D2 mixtures at a temperature of T = 30 K and in the full
D2-concentration range (0% � xD2 � 100%). This binary system was selected because of its moderate, although
sizable, quantum effects which, as far as its equilibrium properties are concerned, are fully described by the
path integral Monte Carlo (PIMC) simulations that have been also implemented. A comprehensive test of the
VACF spectral moments carried out using three physical quantities (namely, mean kinetic energy, Einstein
frequency, and mean-squared force) obtained from PIMC was performed revealing the potentialities, as well as
the limitations, of the CMD approach to the single-particle dynamics in these low-T liquid mixtures. Additional
physical information was extracted from the canonical VACFs by fitting their spectra via two distinct methods:
the Levesque-Verlet model (LV, very flexible but highly heuristic) and the itinerant oscillator model (IO, based
on the physical ground of a single particle rattling inside a short-lived diffusing pseudocage). Both provided good
fits of the CMD outputs, with LV being always more adequate than IO in the case of the Ne VACFs, while, as for
the D2 VACFs, the LV superiority is evident only at high xD2 values. However, a peculiar and systematic effect
was found after analyzing the IO-fitted parameters: the estimated pseudocage masses turned out to be at least
one order of magnitude lower than the corresponding values inferred from the PIMC simulations. This outcome
concerns both the Ne and the D2 rattling molecule and, as we also discovered, had already been observed (but
promptly forgotten) in purely classical simulations of liquid Ar. The possible physical origins of this finding have
been finally discussed in some detail, also in connection with the result of the more recent exponential expansion
theory (EET), which manages to shed more light on the concept of single particles rattling inside short-lived
pseudocages, ultimately demonstrating its untenability.

DOI: 10.1103/PhysRevE.109.045104

I. INTRODUCTION

Many of the current theories of liquid matter [1], even the
most advanced, are based on concepts mainly related to clas-
sical statistical physics, with the notable exception of liquid
helium [2–4]. This classical framework certainly originated
from the fact that the temperature (T ) range of existence of
most liquids (i.e., that between the triple point temperature Tt p

and the critical temperature Tc) is considered sufficiently dis-
tant from those low-T values where deviations from classical
physics are known to occur. However, some liquids exhibit
Debye temperatures [5], �D, considerably higher than those
of their respective triple points. For instance, in standard liquid
hydrogen (i.e., at T = 20.28 K and ambient pressure [6]), one
can roughly estimate �D ≈ 155 K [7], while Tt p = 13.80 K
[6]. Now, it is well-known that for T < �D a many-body sys-
tem cannot be considered as ruled by classical physics, since
a large fraction of its collective excitations are still in their
quantum ground state [8]. For this reason, various liquids,
ranging from noble gases like Ne [9] to lightweight diatomic
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systems like H2 [10] and even to water [11], obviously in-
cluding (when existing) their intermixtures, actually exhibit
a sizable quantum behavior affecting the equation of state,
the macroscopic thermodynamical properties, the microscopic
structure, as well as the transport coefficients and the related
microscopic dynamic properties.

In what follows we will focus our study on a simple
binary system (namely, the Ne-D2 liquid mixture at T =
30 K and saturated vapor pressure) investigating both its mi-
croscopic structural features via the static pair correlation
functions (SPCFs) [12], and its single-particle dynamic prop-
erties through the velocity autocorrelation functions (VACFs)
[12] using quantum simulation techniques. As mentioned in
a recent paper [13], the interest in this type of low-T liquid
mixture is also motivated by the fact that the molecular pa-
rameters (i.e., σ and ε) of the Lennard-Jones potentials of
deuterium and neon are very similar [14], so one can treat
the Ne-D2 solutions as “pseudoisotopic,” getting rid of all
the complications related to the variation of the interparticle
potentials and focusing on the mass (M) of the two molecular
species which influences the corresponding quantum proper-
ties. In this respect, since the mass ratio MNe/MD2 = 5.011
is quite big, it is possible to isothermally control the size of
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TABLE I. Thermodynamic conditions of the liquid samples simulated at T = 30.0 K and other details, including: simulation number
“No.,” total number of particles N , number of D2 molecules ND2 , deuterium concentration xD2 , total molecular density n, Ne mean kinetic
energy 〈EK 〉Ne per particle and D2 mean kinetic energy 〈EK 〉D2 per particle (both from PIMC), Ne Debye temperature �D,Ne and D2 Debye
temperature �D,D2 (both from PIMC), Ne self-diffusion coefficient DNe and D2 self-diffusion coefficient DD2 (both from CMD). Statistical
errors are reported in parentheses. See the main text for further details.

xD2 n k−1
B 〈EK 〉D2 k−1

B 〈EK 〉Ne �D,D2 �D,Ne DD2 DNe

No. N ND2 (%) (nm−3) (K) (K) (K) (K) (105 cm2/s) (105 cm2/s)

I 256 0 0.00 34.44 — 54.27(1) — 62.40(4) — 2.0279(6)
II 256 38 14.84 30.71 72.40(1) 52.70(1) 112.46(2) 56.64(4) 3.227(7) 2.8916(7)
III 256 64 25.00 28.60 69.52(1) 52.04(1) 105.60(2) 54.06(4) 4.208(5) 3.5543(7)
IV 256 90 35.16 26.80 67.09(1) 51.29(1) 99.60(3) 51.00(4) 5.192(5) 4.2783(9)
V 256 115 44.92 25.34 65.48(1) 50.81(1) 95.51(3) 48.96(4) 6.217(4) 5.063(1)
VI 256 128 50.00 24.67 64.66(1) 50.53(1) 93.38(3) 47.73(4) 6.759(4) 5.418(1)
VII 256 141 55.08 24.07 63.98(1) 50.24(1) 91.59(3) 46.43(5) 7.212(3) 5.865(1)
VIII 256 192 75.00 22.33 62.10(1) 49.54(1) 86.51(3) 43.13(5) 9.160(3) 7.488(2)
IX 256 218 85.16 21.80 61.43(1) 49.40(1) 84.64(3) 42.44(5) 9.932(3) 8.203(2)
X 256 256 100.00 21.41 60.90(1) — 83.15(3) — 10.948(3) —

quantum effects by changing the deuterium concentration xD2

from 0 to 1, obtaining in this way an impressive molecular
volume change as large as 60.9% (see below for details).
This molecular volume increase, which can be qualitatively
explained through the more pronounced quantum delocal-
ization of D2 with respect to Ne, was already investigated
in Ref. [13] pointing out that the xD2 variation from 0 to 1
drives the VACF of the deuterium component from a sort of
“solidlike” scenario, where pseudophononic excitations are
clearly detectable, to a more “gaslike” situation, largely domi-
nated by diffusional mechanisms. However, the cited previous
characterization was essentially accomplished in a qualitative
way, as a byproduct of a neutron scattering experiment of
two Ne-D2 mixture samples, but no specific VACF model was
proposed to describe the quantum simulation data obtained.
By contrast, in the present work we aim at tackling the prob-
lem much more quantitatively, utilizing a larger number of
concentration values and, moreover, comparing the simulated
VACFs with some of the theoretical models present in the
literature. In particular, the mentioned “solidlike” scenario
(i.e., at low values of xD2 ) simulated with the advanced meth-
ods developed in the last twenty years, allows us to revisit
the physical problem of the so-called itinerant oscillators
(IOs), which was discussed by Sears [15] in 1965, from a
rigorous quantum perspective and fully including all the vari-
ous anharmonic vibrational effects. This aspect is particularly
interesting given the ubiquitous character of the IO model
which can be actually found in various research areas [16].
As for the general subject of the microscopic dynamics in
binary fluid mixtures with large mass differences between
the composing particles, we have to point out that in the
recent past various authors have investigated this topic, often
attracted by the paradigmatic examples of Li-Pb and Li-Mg
melted alloys [17–19] or gaseous He-Ne and liquid Kr-Ar
mixtures [20–23], always dealt with and simulated in a purely
classical framework. However, we have also to note that,
with few exceptions containing VACF simulations [24,25],
most of the mentioned work has been mainly focused on
the complex collective dynamics of these disordered systems,
rather than on their single-particle dynamical aspects, which

were generally limited to the evaluation of the self-diffusion
coefficients.

The rest of the present paper will be organized as follows:
Sec. II will be devoted to the computational details concerning
the quantum simulations performed on the Ne-D2 mixtures
under investigation, to extract both the partial SPCFs and the
VACFs. In Sec. III, we will discuss the obtained results, and
some key physical quantities derived from the static structural
data will be related to their estimates obtained from the single-
particle dynamic ones. In addition, a comparison between the
VACF spectra of the present study and three selected theoret-
ical models will be also provided. Finally, Sec. IV will deal
with the conclusions of this study.

II. QUANTUM STATIC AND DYNAMIC SIMULATIONS

The starting point of the present study is the quantum
simulation data set concerning various Ne-D2 liquid mixtures
(all performed at T = 30.0 K and saturated vapor pressure
[26]) in the full range of concentrations. The related ther-
modynamic details are reported in Table I, where the sample
number “No.,” the total number of simulated molecules N ,
the number of D2 molecules considered ND2 , the deuterium
concentration, and the total molecular density n are pre-
sented. As for the last quantity, this has been estimated using
the thermodynamic data available in the literature, namely:
Refs. [27,28] for pure liquid neon, Ref. [29] for pure liq-
uid deuterium, and eventually Refs. [26,30] for the nonideal
behavior of the Ne-D2 liquid mixtures. In addition, the ther-
modynamic data presented in the last two references have
been checked and extrapolated via the path integral Monte
Carlo technique (PIMC) [31] performed in an isothermal-
isobaric ensemble estimating n and its variation with xD2 .
Subsequently, more accurate standard (isochoric) PIMC sim-
ulations have been carried out on all the samples in Table I
to extract the partial SPCFs, gα,β (r), and the single-particle
mean kinetic energies, 〈EK 〉α (i.e., the mean kinetic energies
per particle), with α, β = Ne or D2. The calculation of the
former functions has been implemented in the PIMC code as
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(a)

(c)

(b)

FIG. 1. Selected examples of the partial static pair correlation functions, gα,β (r) (with α, β = Ne or D2), obtained from path integral Monte
Carlo simulations on four of the samples reported in Table I, namely No. II (red full line), No. IV (blue dotted line), No. VII (green dashed
line), and No. VIII (black dot-dashed line). Panel (a) contains the gNe,Ne(r) plots, panel (b) the gNe,D2 (r) plots, and panel (c) the gD2,D2 (r)
ones.

follows [32]:

gα,α (r) = V

N2
α

Nα∑
i=1

Nα∑
j �=i

〈δ(r − ri + r j )〉,

gα,β �=α (r) = V

NαNβ

Nα∑
i=1

Nβ∑
j=i

〈δ(r − ri + r j )〉, (1)

where V is the volume of the simulation box and Nα (or
Nβ) represents the number of α-type (or β-type) molecules.
In both PIMC versions the value of the Trotter number P
(which in the “classical path integral isomorphism” replacing
each quantum particle by a classical, harmonically bound
ring polymer, represents the number of monomers) was set to
32. Tests with P = 64 showed no significant differences with
respect to the previous case (see Appendix A for details). As
for the total number of molecules, the PIMC simulations have
been mainly performed with N = 256. Duplicating the sim-
ulations of sample No. II with twice the number of particles
(N = 512) showed that there are only negligible finite-size ef-
fects on the quantities derived from the SPCFs as explained in
Appendix A. Some selected examples of gNe,Ne(r), gNe,D2 (r),
and gD2,D2 (r) are reported in Fig. 1, where it is worth recalling
that symbol “D2” always refers to the molecular center-of-
mass (CoM), rather than the individual nuclear positions, as
will be made clear below in this section. As for the estimates
of the mean kinetic energies, 〈EK 〉Ne and 〈EK 〉D2 , these values
are also reported in Table I.

Moving to the dynamic computational technique, we de-
cided to employ the so-called centroid molecular dynamics
(CMD) algorithm [33], which is based on an essentially exact

quantum mechanical static distribution, while its dynamics is
purely classical. In this approximation, the aforementioned
“classical isomorphism” of PIMC is taken literally and the
polymer centers (also known as “centroids”) are allowed to
evolve classically in a force field averaged over all the possi-
ble monomer positions. Observables and correlation functions
are evaluated at the centroids’ positions. From a practical
point of view, CMD is a computational tool able to provide
excellent approximations of the canonical (also known as
“Kubo-transformed”) correlation functions in many-body sys-
tems exhibiting mild quantum effects at nonzero temperature,
when these functions include operators which are linear either
in the coordinates or in the momenta of the particles com-
posing the system [34]. Fortunately, this is exactly the case
as far as canonical VACFs are concerned. Here it is probably
worthwhile to recall the concept of the Kubo transform [35],
c(K )

AB (t ), of a generic time correlation function cAB(t ) involving
quantum operators Â and B̂. This transform is given by

c(K )
AB (t ) = β−1

∫ β

0
cAB(t + ih̄λ)dλ, (2)

where β = (kBT )−1, with kB being the Boltzmann constant.
Our CMD simulations have been performed with a

timestep of 	t = 0.005 ps in the isokinetic ensemble where
our velocity correlation functions were calculated up to a
maximum time lag of 5 ps and averaged over 10 independent
runs of 500 ps each at every thermodynamic state in Table I.
For the total number of molecules and the Trotter number,
we chose N = 256 and P = 32, identically to the PIMC case.
Also in this case, tests with larger values of N and P (namely,
N = 1024 and P = 64) have been carried out on sample No.
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(a) (b)

FIG. 2. Selected examples of the canonical velocity autocorrela-
tion functions, u(K )

α (t ) (with α = Ne or D2), obtained from centroid
molecular dynamics simulations on four of the samples reported in
Table I, namely No. II (red full line), No. IV (blue dotted line), No.
VII (green dashed line), and No. VIII (black dot-dashed line). Panel
(a) contains the u(K )

Ne (t )/u(K )
Ne (0) plots and panel (b) the u(K )

D2
(t )/u(K )

D2
(0)

ones. Normalization to 1.0 for t = 0 has been introduced for graphic
reasons.

II showing no significant differences with respect to afore-
mentioned CMD calculations with N = 256 and P = 32 (see
Appendix A for details). The three interparticle interactions,
namely Ne-Ne, Ne-D2, and D2 − D2, have been assumed to
be pairwise additive according to the following simple scheme
(also used for the mentioned PIMC calculations):

(a) The Ne-Ne interaction was represented by an isotropic
Lennard-Jones potential using the parametrization by Morales
and Nuevo [36], which has already proved to effectively sim-
ulate the Ne-H2 mixtures [31].

(b) The Ne-D2 interaction, i.e., that between a D2 CoM
and a Ne atom, was modeled taking the spherical average of
the orientation-dependent potential developed by Faubel et al.
[37], following Challa and Johnson [31] in the case of Ne-H2

mixtures.
(c) The D2-D2 interaction, i.e., that between two molecular

D2 CoMs, was described using the isotropic Silvera–Goldman
potential [38].

As mentioned above, in our case the CMD technique pro-
duced two physical quantities, u(K )

α (t ) with α = Ne or D2,
which approximate the Kubo transforms of the exact quantum
VACFs, uα (t ):

uα (t ) = 1

3Nα

Nα∑
i=1

〈vi(0) · vi(t )〉, (3)

where vi(t ) is the velocity of particle i at time t . It is worth
recalling that the VACF definition above is slightly differ-
ent from what can be often found in the literature (e.g., in
Ref. [39]), where factor 1/3 is usually absent, but, however,
Eq. (3) follows the use of Ref. [40]. Some selected examples
of u(K )

Ne (t ) and u(K )
D2

(t ) are plotted in Fig. 2, while the cor-
responding self-diffusion coefficients DNe and DD2 , obtained
directly from a time integration (namely, Dα = ∫ ∞

0 u(K )
α (t )dt),

are reported in Table I. Since the inversion of Eq. (2) is

(a) (b)

FIG. 3. Selected examples of the spectra of the quantum velocity
autocorrelation functions, ũα (ω) (with α = Ne or D2), obtained from
centroid molecular dynamics simulations on four of the samples
reported in Table I, namely No. II (red full line), No. IV (blue dotted
line), No. VII (green dashed line), and No. VIII (black dot-dashed
line). Panel (a) contains the ũNe(ω)/uNe(t = 0) plots and panel (b) the
ũD2 (ω)/uD2 (t = 0) ones. In this way, spectra have been normalized
(i.e., their areas are set equal to 1.0) for graphic reasons.

difficult to handle [41], it is much more convenient to work in
the frequency domain of standard Fourier transforms, where
the relationship for obtaining the partial VACF spectra ũα (ω)
from the respective canonical counterparts ũ(K )

α (ω) is the
following [35,41]:

ũα (ω) = h̄ωβ

1 − exp (−h̄ωβ )
ũ(K )

α (ω)

= h̄ωβ

2

[
coth

(
h̄ωβ

2

)
+ 1

]
ũ(K )

α (ω). (4)

Examples of ũNe(ω) and ũD2 (ω) are reported in Fig. 3 for some
selected Ne-D2 mixtures after normalizing their area to unity.

III. DISCUSSION

Once the CMD VACFs had been positively tested against
the PIMC simulations as shown in detail in the Appendix B,
where we made use of the sum rules reported in Eq. (B1),
it was possible to proceed analyzing these functions further
to extract the other physical information contained therein.
Rigorously speaking, since a thorough theory for the quantum
VACFs is still missing, in the rest of the present paper we
will focus our attention on the canonical VACFs and their
spectra [i.e., u(K )

α (t ) and ũ(K )
α (ω)] rather than their fully quan-

tum counterparts [i.e., uα (t ) and ũα (ω)]. Keeping in mind
what has been seen in Appendix B, the reason for such a
choice is straightforward since u(K )

α (t ) resembles a classical
VACF in many respects (for example, it is real-valued and
time-symmetric), so that its Fourier spectrum turns out to be
real, positive and symmetric in ω. This fact allowed us to
carry out a careful analysis of the various canonical VACF
estimates exploiting the formalism usually employed in the
study of classical liquids, e.g., that based on the so-called
Mori-Zwanzig approach [39]. This method, which assumes
that any classical time-correlation function is the solution of

045104-4



MICROSCOPIC SELF-DYNAMICS IN LIQUID Ne-D2 … PHYSICAL REVIEW E 109, 045104 (2024)

a generalized Langevin equation containing a kernel Kα (t ),
also known as first-order memory function, might be applied
to our direct CMD outputs, even though we preferred to
deal with their Fourier spectra. A rigorous solution of such a
generalized Langevin equation can be simply devised in the
Laplace space, where a function f (t ), originally expressed
in the time domain, is represented by f̂ (s) in the domain
of the conjugate variable, i.e., the complex frequency s, via
a Laplace transform: f̂ (s) = ∫ ∞

0 dt exp(−st ) f (t ). In addi-
tion, due to the ω-symmetry of the Fourier spectrum, f̃ (ω),
one can directly relate it to its Laplace counterpart: f̃ (ω) =
π−1 Re[ f̂ (iω)]. So, in our case one can write the Langevin
equation solution as

û(K )
α (s) = u(K )

α (t = 0)

s + K̂α (s)
. (5)

Naturally, the idea behind the Mori-Zwanzig approach is
the hypothesis that a memory function is generally simpler
than the corresponding time correlation function, so that it is
mathematically easier to model the former than the latter, for
example, in the framework of a fitting procedure.

A. The Levesque-Verlet model

In our case, we have begun to perform such fits making
use of the Levesque-Verlet (LV) model [42] for Kα (t ), which
is quite flexible although still retaining a certain heuristic
character:

Kα (t ) = Kα,bc(t ) + Kα,lt (t )

= �2
E ,α exp

(
−Bα

2
t2

)
+ Lα

24
f 5
α t4 exp(− fαt ). (6)

Here the total Kα (t ) is written as the sum of two terms:
Kα,bc(t ), the Gaussian part, representing a binary collision
term, plus Kα,lt (t ), the t4-part, which is meant to describe in
an effective way the long-time many-body processes. After
performing a Laplace transform on the formula above [42], it
reads

K̂α (s) = K̂α,bc(s) + K̂α,lt (s)

= �2
E ,α

√
π

2Bα

exp

(
s2

2Bα

)
erfc

(
s√
2Bα

)
+Lα

f 5
α

(s+ fα )5
,

(7)

which, using Eq. (5), directly provides û(K )
α (s) and, subse-

quently, ũ(K )
α (ω) that can be used as a fitting function. The LV

model as such contains four free fitting parameters, namely
�E ,α , Bα , Lα , and fα , which, however, might be reduced to a
single parameter (i.e., fα) by imposing the correct short-time
and long-time behaviors of u(K )

α (t ). The first and the second
parameters may be obtained via a Taylor expansion [42] ex-
tending a relationship already used in Eq. (B1):

u(K )
α (t )

u(K )
α (0)

= 1 − 1

2
�2

E ,αt2 + 1

24
�2

E ,α (�2
E ,α + Bα )t4 + · · · ;

(8)

the third by exploiting the definition of Dα in terms of û(K )
α (s)

and K̂α (s):

Dα = û(K )
α (s = 0) = u(K )

α (t = 0)

K̂α (s = 0)

= M−1
α kBT

(
�2

E ,α

√
π

2Bα

+ Lα

)−1

. (9)

However, during the actual LV fitting procedure, we have
decided to make use of all the four free parameters, since a
single-parameter fit would have been too rigid. Final results
for the LV fits are plotted in Fig. 4 for some selected spectra
of both species, while all the numerical values for �E ,αBα

(squared binary collision frequency), Lα (long-time memory
function intensity), and fα (long-time frequency) are reported
in Table II.

The agreement between CMD simulations and LV
fits is generally very good for both species at all
concentration/density values investigated, even though a
zoom on the low-ω range (say, ±1 ps−1) would show some
small discrepancies which have a limited impact on the Dα

estimates produced by the fit, as shown in Fig. 5. Such a
low-ω range is connected with the long-t tail of u(K )

α (t ) which
might be not perfectly fitted by the LV model, even though one
should also note that our CMD correlation functions were cal-
culated up to a maximum time lag of 5.00 ps, an interval which
implies a minimum ω binning of 0.628 ps−1. This means that
only two or three data points in the −1 ps−1 < ω < 1 ps−1

range are really significant. The �E ,α values obtained from
the LV fits (see Table II) compare quite satisfactorily with the
original CMD values reported in Fig. 6, although the former
slightly underestimate the latter, especially in the D2 case at
high n values. Unsurprisingly, as we have already seen before,
this physical quantity exhibits a strong increase along with
the system density, quite differently to what Bα actually does.
In fact, Fig. 7 clearly shows that the estimates of the latter
increase as the D2 concentration grows (and n decreases) for
both molecular species. However, one can also observe a shift
(almost rigid) between the Bα data sets derived directly from
the CMD VACFs via Eq. (8) on one side, and the LV fit outputs
in Table II on the other: the LV fitting procedure generally
tends to underestimate this physical quantity, so that the com-
parison between the two approaches is less satisfactory here
than in the �E ,α case. In addition, it is worthwhile to note that
looking at the aforementioned equation, one can finally give a
precise meaning to Bα: if ũ(K )

α (ω)/u(K )
α (t = 0) is interpreted

as a symmetric probability density distribution, then �2
E ,α

represents the variance of such a distribution and Bα is simply
related to the corresponding coefficient of kurtosis [43] γα:
Bα = �2

E ,α (γα + 2).
However, the trends of the other two fitting parameters, Lα

and fα , are less simple to be interpreted: while LD2 seems to
decrease as n grows, its Ne counterpart does not show a clear
tendency and remains more or less constant. Similarly, the two
fα sets do not exhibit a definite trend as a function of the
concentration/density. However, what is slightly unexpected
is the sign change of LD2 when n decreases, and the fact that
LNe is always negative except for sample No. I. As a matter
of fact, if Lα < 0 then one obtains that also Kα,lt (t ) < 0 for
all t values, while Kα (t ) becomes negative for t larger than a
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(a) (d)

(b) (e)

(c) (f)

FIG. 4. Selected examples of the canonical VACF spectra, ũ(K )
α (ω) (with α = Ne or D2), obtained from CMD simulations (blue full lines),

together with their best fits using the LV memory function approach (red dotted lines). Four concentrations have been selected from those
reported in Table I, namely No. I [panel (d)], No. III [panels (a) and (e)], No. V [panels (b) and (f)], and No. X [panel (c)]. Panels (a), (b), and
(c) contain the ũ(K )

D2
(ω)/u(K )

D2
(t = 0) plots and panels (d), (e), and (f) the ũ(K )

Ne (ω)/u(K )
Ne (t = 0) ones. In this way spectra have been normalized

(i.e., their areas are set equal to 1.0) for graphic reasons.

certain time threshold. Unfortunately, the LV model, due to
its heuristic nature, does not allow to shed more light on the
physical meaning of these findings concerning Kα,lt (t ), and so
we had to resort to another memory function model.

B. The itinerant oscillator model

As mentioned in the introductory section, a histori-
cally relevant approach to the classical VACF analysis is

TABLE II. Results of the fitting procedure of the canonical VACF spectra from CMD using the LV memory function, including: simulation
number “No.,” deuterium concentration xD2 , total molecular density n, Ne and D2 Einstein frequencies (�E ,Ne and �E ,D2 ), Ne and D2 squared
binary collision frequencies (BNe and BD2 ), Ne and D2 long-time memory function intensities (LNe and LD2 ), Ne and D2 long-time frequencies
( fNe and fD2 ). Statistical errors are reported in parentheses.

xD2 n h̄�E ,Ne h̄�E ,D2 BNe BD2 LNe LD2 fNe fD2

No. (%) (nm−3) (meV) (meV) (ps−2) (ps−2) (ps−1) (ps−1) (ps−1) (ps−1)

I 0.00 34.44 4.260(3) — 86.1(3) — 0.431(7) — 5.99(6) —
II 14.84 30.71 3.885(7) 7.723(9) 94.3(8) 162(1) −0.109(8) 4.30(5) 7.9(5) 13.79(9)
III 25.00 28.60 3.70(1) 7.255(7) 104(1) 167.5(8) −0.302(9) 2.72(3) 6.6(2) 13.47(8)
IV 35.16 26.80 3.54(1) 6.927(5) 115(2) 174.3(6) −0.409(9) 1.71(1) 6.6(1) 13.62(8)
V 44.92 25.34 3.42(2) 6.655(5) 128(3) 182.6(8) −0.457(9) 0.92(1) 6.7(1) 14.4(1)
VI 50.00 24.67 3.36(2) 6.531(6) 136(3) 186.6(9) −0.453(9) 0.63(1) 6.6(1) 15.0(2)
VII 55.08 24.07 3.31(2) 6.436(9) 147(4) 190(1) −0.453(9) 0.40(2) 6.6(1) 16.0(6)
VIII 75.00 22.33 3.16(3) 6.132(8) 201(8) 206(1) −0.373(7) −0.45(1) 7.0(1) 8.0(2)
IX 85.16 21.80 3.11(3) 6.02(1) 227(9) 213(2) −0.344(6) −0.59(1) 7.3(1) 9.8(2)
X 100.00 21.41 — 5.94(1) — 226(2) — −0.87(1) — 12.1(2)
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FIG. 5. Self-diffusion coefficients Dα (with α = Ne or D2) as a
function of xD2 obtained from CMD simulations. Blue symbols and
blue dashed line stand for Ne, while red symbols and red full line
for the D2 center of mass. Empty symbols refer to the raw values
reported in Table I, while lines are splines through the data corrected
according to the procedure described in the text to cope with the
small effects discussed in Appendix B and shown in Fig. 13. Green
error bars represent the Dα estimates from the Levesque-Verlet fitting
procedure of the CMD VACF data. Statistical errors smaller than the
symbol size are not reported.

represented by the various IO models [16], where a sin-
gle particle rattles inside pseudocages (made of neighbor
molecules) with a frequency ω0, a time-dependent friction
coefficient μ(t ), and a mass M0, while these pseudocages
move in the bulk liquid with a frequency ω1, a time-dependent
friction coefficient ν(t ), and a mass M1. Such a scenario seems
particularly suitable for the study of the self-dynamics of
D2 molecules in a neon-rich liquid mixture, since the light-

FIG. 6. Einstein frequency values h̄�E ,α (with α = Ne or D2) as
a function of xD2 obtained from CMD simulations compared with the
corresponding results derived from potential Laplacians and SPCFs
via Eq. (B5) as explained in Appendix B. Blue color stands for Ne,
while red color stands for the D2 center of mass. Lines (dashed for
Ne and full for D2) are splines through the PIMC/SPCF-based data,
while symbols (empty squares for Ne and full circles for D2) refer to
CMD estimates, whose statistical errors are smaller than the symbol
size.

FIG. 7. Coefficients Bα (with α = Ne or D2) as a function of xD2

obtained either directly from the CMD simulations or, indirectly, via
their LV fits. Blue squares and blue dashed line stand for Ne, while
red circles and red full line stand for the D2 center of mass. Empty
symbols refer to the short-time expansion in Eq. (8) applied to the
CMD outputs, while lines are splines obtained from the Levesque-
Verlet fitting procedure operated on the spectra of the same CMD
data. Statistical uncertainties are plotted as error bars.

molecule rattling dynamics might appear to be well decoupled
from the pseudocage motion, due to the large mass difference
between these two entities. The twofold IO dynamics can be
modelled by two coupled Langevin equations [44], including
the particle coordinates as well as the position of the pseu-
docage centroid and giving rise to a manageable formula for
the Laplace transform of the memory function, K̂IO(s):

K̂IO(s) = μ̂(s) + ω2
0[s + ν̂(s)]

s[s + ν̂(s)] + ω2
1

. (10)

However, this IO formula does not specify the time de-
pendence of the two friction coefficients μ(t ) and ν(t ). In
what follows we have assumed the former to be strictly
Gaussian: μ(t ) = a0τ

−1
0 exp[−π

4 (t/τ0)2], corresponding to
a Laplace transform: μ̂(s) = a0 exp(s2τ 2

0 /π )erfc(sτ0/
√

π );
while for the latter, following Ref. [44], the exponential op-
tion has been implemented: ν(t ) = a1τ

−1
1 exp(−|t |/τ1), with:

ν̂(s) = a1/(1 + sτ1). In this way, exploiting Eq. (5), it was
possible to set up a fitting model including six free parameters.
Namely, three for the particle rattling: ω0, a0, τ0, and three for
the pseudocage motion: ω1, a1, τ1. Of course, it is possible
to combine the six parameters above to recover the three
physical quantities we have dealt with earlier, i.e., �E , D and
B (where the suffix “α” has been dropped here for the sake of
simplicity):

�2
E = lim

s→+∞ sK̂IO(s) = a0τ
−1
0 + ω2

0,

D = u(K )(t = 0)

K̂IO(0)
= kBT M−1

a0 + a1ω
2
0ω

−2
1

,

B = − 1

2�2
E

lim
s→+∞

[
s3K̂IO(s) − s2�2

E

]

= ω2
0ω

2
1

�2
E

+ a0π

2τ 3
0 �2

E

. (11)
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FIG. 8. Mass parameters M1,α (with α = Ne or D2), representing
the effective masses of the pseudocages in the CE model, are reported
as symbols with error bars as a function of xD2 . Full and dashed lines
mark the M1,α values obtained from the SPCFs, while dot-dashed
horizonal lines stand for the corresponding M0,α values, i.e., the
masses of the rattling particles. Red full circles and red full line
represent D2, while blue empty squares and blue dashed line are for
Ne.

Coffrey and Evans [45] devised a simplified version of the
IO model (labeled CE in what follows) where the friction
coefficient for the particle rattling is completely neglected
[i.e., μ(t ) = 0], while that for the pseudocage motion is taken
as impulsive [ν(t ) = βδ(t )]. These assumptions give rise to a
three-parameter memory function:

K̂CE (s) = ω2
0(s + β )

s(s + β ) + ω2
1

, (12)

where it is possible to prove that

�2
E = ω2

0,

B = ω2
1,

D = kBT ω2
1

Mβω2
0

. (13)

Since in both IO and CE the fundamental assumption [44]
is that ω2

0/ω
2
1 = M1/M0, and M0 is known, it is possible to

exploit CE (for both species α) to roughly estimate the average
pseudocage mass M1,α directly from the Bα data reported
in Fig. 7: M1,α ≈ M0,α (�2

E ,α/Bα ). For the sake of clarity, it
is worth recalling that the symbol M0,α stands for the mass
of a rattling particle belonging to the species α, while the
symbol M1,α represents the average mass of a pseudocage
surrounding a particle belonging to the species α (such a
pseudocage being made in general by particles of both species
in numbers depending on xD2 ). The results, shown in Fig. 8,
are quite surprising since M1,α , belonging to the pseudocage
as a whole, turns out to to be consistently smaller than M0,α

which pertains to the rattling particle trapped inside it. On
the contrary, making use of the partial static pair correlation
functions, gα,α (r) and gα,β (r), from PIMC, one can simply

estimate M1,α from the following formula:

M1,α = 4πn

(
M0,α xα

∫ Rα,α

0
r2gα,α (r)dr

+ M0,β xβ

∫ Rα,β

0
r2gα,β (r)dr

)
, (14)

where Rα,α and Rα,β represent the limits of the nearest
neighbor shell in gα,α (r) and gα,β (r), respectively, i.e., their
first minima. Results are plotted in Fig. 8 where the large
differences from the mentioned CE estimates are clearly ev-
ident. As a matter of fact, the partial SPCF analysis shows
that the pseudocages are formed by Nα (n) nearest neighbor
molecules, with 10.4 < Nα (n) < 12.7. In addition, it turns
out that Nα (n) is almost independent of the species α of the
central particle [i.e., Nα (n) ≈ N (n)], while it is only mildly
increasing with the total molecular density n. So it is expected
that M1,α ≈ N (n)(M0,α xα + M0,β xβ ). This noticeable dis-
crepancy between CE-based and PIMC-based estimates might
be interpreted as the effect of an error in the CMD output
analysis, but actually this is not the case since a similar situa-
tion was already noticed in Ref. [44] concerning the VACF of
liquid Ar at T = 94.4 K and n = 20.712 nm−3. In this case ω0

and ω1 were evaluated using the full IO model reported above
and provided a rather peculiar result: (ω0/ω1)2 = 1.5/2.1 ≈
0.71. As we have seen earlier, in the IO framework this finding
implies that M1 ≈ 0.71 M0. Now, assuming for liquid Ar in
the mentioned conditions an N = 12.53 [46], from the SPCF
analysis one would expect M1 = 12.53 M0 instead of M1 ≈
0.71 M0. This result should be compared with our pure Ne
calculation on sample No. I, where one obtains M1 = 0.39 M0,
instead of M1 = 12.05 M0.

Since the issue of the pseudocage mass is quite relevant,
and the CE model offers only a coarse description of the
CMD data, it was decided to perform an accurate IO fit-
ting of all the ũ(K )

α (ω) spectra using the memory function of
Eq. (10). However, differently from the LV fitting procedure,
we have used the first and the last constraints in Eq. (11)
to reduce the number of free parameters to four: ω0, τ0, τ1,
and K̂−1

IO (0). Moreover, we found that the fit did not exhibit
a strong dependence on τ1 whenever this parameter became
lower than (or comparable to) τ0. So we decided to keep τ1

fixed to 0 (actually, to 1.00 · 10−9 ps for numerical reasons)
arriving at a three-parameter IO fitting procedure. This as-
sumption implied that the time-dependent friction coefficient
ν(t ) could be safely approximated by a Dirac δ function. Final
results for the IO fits are plotted in Fig. 9 for some selected
spectra of both species, while the corresponding numerical
values for the physically most relevant IO parameters (i.e.,
ω0, ω1, and τ0) are reported in Table III together with the
new estimates of M1,α . These values, comparing Table III with
Fig. 8, turned out to be even lower than the corresponding CE
results, leaving the problem of the large discrepancy between
the structural and dynamical M1,α estimates still unsolved. We
will try to address this issue in the concluding section.

As for the quality of the IO fitting procedure, which is
globally good as shown in Fig. 9, we have to note that it
deteriorates as n decreases (i.e., xD2 grows) for both species. In
particular, for samples Nos. VII–X, the statistical uncertainties
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(a) (d)

(b) (e)

(c) (f)

FIG. 9. Selected examples of the canonical VACF spectra, ũ(K )
α (ω) (with α = Ne or D2), obtained from CMD simulations (blue full lines),

together with their best fits using the IO memory function approach of Eq. (10) (red dotted lines). Three concentrations have been included
among those reported in Table I, namely No. II [panels (a) and (d)], No. IV [panels (b) and (e)], and No. VII [panels (c) and (f)]. Panels
(a), (b), and (c) contain the ũ(K )

D2
(ω)/u(K )

D2
(t = 0) plots and panels (d), (e), and (f) the ũ(K )

Ne (ω)/u(K )
Ne (t = 0) ones. In this way, spectra have been

normalized (i.e., their areas are set equal to 1.0) for graphic reasons.

on the ω0 estimates become substantially larger. If compared
to the LV fits (which, however, include four free parameters),
the three-parameter IO fits are always worse for Ne, except in
case of samples Nos. I and II, where the respective reduced

chi-squared (χ2
r ) values are roughly similar. On the contrary,

moving to D2 the situation with χ2
r is somehow different: IO is

superior to LV at high density up to sample No. II, becoming
comparable for samples Nos. III–VII, and then ending as

TABLE III. Results of the fitting procedure of the canonical VACF spectra from CMD operated using the IO memory function of Eq. (10),
including: simulation number “No.,” deuterium concentration xD2 , molecular rattling frequency for the α species ω0,α , corresponding friction
coefficient (Gaussian) time constant, τ0,α , pseudocage frequency ω1,α , and estimated pseudocage mass M1,α . Statistical errors are reported in
parentheses.

xD2 ω0,Ne ω0,D2 τ0,Ne τ0,D2 ω1,Ne ω1,D2 M1,Ne M1,D2

No. (%) (ps−1) (ps−1) (ps) (ps) (ps−1) (ps−1) (a.m.u.) (a.m.u.)

I 0.00 4.65(4) — 0.1091(4) — 9.65(5) — 4.68(9) —
II 14.84 3.84(4) 5.19(2) 0.1031(6) 0.0840(2) 10.1(2) 11.0(2) 2.9(1) 0.89(3)
III 25.00 2.9(1) 4.31(2) 0.0988(5) 0.0853(1) 7.7(2) 13.6(1) 2.9(2) 0.404(9)
IV 35.16 2.18(7) 3.73(3) 0.0984(5) 0.0859(1) 6.4(1) 17.4(2) 2.4(2) 0.185(4)
V 44.92 2.00(6) 3.20(5) 0.0959(4) 0.0862(2) 6.1(2) 17.8(3) 2.2(2) 0.130(6)
VI 50.00 2.04(7) 3.03(7) 0.0939(5) 0.0863(2) 6.2(2) 18.9(4) 2.2(2) 0.103(8)
VII 55.08 2.2(1) 3.0(2) 0.0910(9) 0.0865(3) 6.7(2) 19.6(8) 2.2(3) 0.09(1)
VIII 75.00 3.7(5) 4.7(1) 0.072(7) 0.0776(3) 10.2(8) 13.0(4) 2.6(8) 0.53(4)
IX 85.16 3.9(5) 4.8(2) 0.06(1) 0.0758(2) 11(1) 12.4(4) 2.6(8) 0.60(6)
X 100.00 — 4.3(2) — 0.0738(4) — 11.4(3) — 0.57(7)
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clearly inferior for the lowest density mixtures and the pure
D2 liquid. This behavior is not completely unexpected and,
leaving aside the problem of the fitted M1 values for the mo-
ment, points to the fact that the IO model seems more justified
when the rattling mass is low (e.g., D2) and the pseudocage
mass is large (e.g., low xD2 corresponding to high n). Finally,
another IO fitting scheme was devised to rule out even the
most remote possibility that the fitted ratios M0,α/M1,α were
somehow conditioned by our model-parametrization choice.
The two canonical VACF spectra best described by the IO
model were selected, namely those for D2 belonging to sam-
ples Nos. II and III, and refitted using a full six-parameter
function (i.e., ω0, a0, τ0, ω1, a1, and τ1) plus a linear con-
straint: ω1,D2 = (2MD/M1,D2 )1/2ω0,D2 , forcing in this way the
pseudocage frequency to exhibit the correct behavior accord-
ing to the pseudocage mass estimated via the PIMC SPCFs.
In particular, M1,D2 was taken as 212.874 and 188.501 amu
for samples Nos. II and III, respectively. This corresponded to
(ω0,D2/ω1,D2 ) equal to 7.271 (for No. II) and 6.842 (for No.
III). Fitting results turned out to be extremely poor for both
samples, especially in the low ω range, where it was evident
that the CMD data fit required (ω0,D2/ω1,D2 ) < 1.

C. The exponential expansion theory approach

Given this peculiar and puzzling situation, we decided to
try interpreting the u(K )

α (t ) data from CMD via a new ap-
proach known as exponential expansion theory (EET), which
has been successfully applied to the study of the VACF of
various systems ranging from fluid para-H2 [47,48] to liquid
Au [49] and the classical Lennard-Jones liquids [50,51]. This
theoretical framework is actually very general and perfectly
suits all the real, time-symmetric autocorrelation functions,
including the Kubo-transformed ones when quantum effects
play a relevant role [52]. From a practical point of view, for
t � 0, the correlation function is always represented by a finite
sum of exponentials (modes):

u(K )
α (t ) = u(K )

α (0)
Nm∑
j=1

[I j exp(z jt ) + I∗
j exp(z∗

j t )], (15)

where the I j and z j parameters are generally complex numbers
to be determined under the condition that Re[z j] � 0 for each
mode, with j ranging from 1 to Nm, the total number of modes
required. This number is not determined a priori, since Nm is
strongly influenced by the thermodynamic state of the sample
and by the accuracy of the data and the fitting procedure,
but it is typically lower than 10. The complex frequencies
z j contain two parts, i.e., Re[z j] and Im[z j], with the former
part (i.e., Re[z j]) representing the mode damping � j and
the latter part (i.e., Im[z j]) the mode angular frequency ω j ,
although purely dissipative modes with ω j = 0 can also be
present (e.g., representing thermal diffusion decay processes).
In other words, z j = −� j + iω j (and z∗

j = −� j − iω j). Thus,
for t � 0, Eq. (15) can always be cast in a slightly different
form:

u(K )
α (t ) = 2u(K )

α (0)
Nm∑
j=1

|I j | exp(−� jt ) cos(ω jt + φ j ), (16)

where I j = |I j | exp(iφ j ) with |I j | representing the amplitude
of the jth mode. This implies that the exponential expansion
in the Laplace space reads

û(K )
α (s)

u(K )
α (t = 0)

= 2
Nm∑
j=1

|I j | (� j + s) cos φ j − ω j sin φ j

(� j + s)2 + ω2
j

, (17)

which in the Fourier space corresponds to

ũ(K )
α (ω)

u(K )
α (t = 0)

=
Nm∑
j=1

|I j |
[
� j cos φ j − (ω + ω j ) sin φ j

�2
j + (ω + ω j )2

+ � j cos φ j − (ω − ω j ) sin φ j

�2
j + (ω − ω j )2

]
. (18)

In addition, some sum rules can be imposed to comply with
some exact physical constraints. In particular, the zeroth sum
rule is simply obtained by evaluating Eq. (15) for t = 0, that
is

∑Nm
j=1(I j + I∗

j ) = 1, while the higher-order sum rules can
be worked out keeping in mind that the odd derivatives of
u(K )

α (t ) evaluated at t = 0+ are equal to zero, as already seen in
Eq. (8). For example, the first sum rule can be simply written
as

∑Nm
j=1(z jI j + z∗

j I
∗
j ) = 0.

While fitting the D2 canonical VACFs we have always
made use of three complex pairs (3C, involving three fre-
quencies, ω1−3, and three damping coefficients, �1−3), except
for the samples at the lowest densities values, namely, Nos.
VIII, IX, and X, where two complex pairs (2C) and two real
dissipative (2R) modes (i.e., two frequencies. ω1,2, and four
damping coefficients, �1−4) have been utilized. It is important
to stress that when three complex pairs are included, only the
first two have to be considered as physically meaningful since
the third, which is characterized by large values of both ω3 and
�3 but a very low value of |I3|, is needed only to improve the
fit quality accounting, for example, for small computational
inaccuracies. Similarly, for samples Nos. VIII, IX, and X
where two complex pairs are used, only one is considered
relevant. Various reasons can be given to justify this choice:
for example, h̄ω3 turns out to be unphysically larger than
kB�D,D2 (see Table I), where the latter quantity approximately
marks the upper limit of the collective excitation energies
involving the D2 molecules of the system. In addition, it is
worth mentioning the fact that in quite a different context (i.e.,
a set of slightly supercritical monatomic Lennard-Jones fluids
[50]) similar high-frequency modes showed up in the analysis
of the VACFs of these systems. For this reason, only |I1,2|,
φ1,2, �1,2, and ω1,2 are reported in Table IV.

As for the Ne canonical VACFs, the EET fitting procedure
was similar to that used in the D2 case, even though the
distribution of complex and real modes was not identical: for
samples Nos. II–VII two complex pairs (2C) and one real
dissipative (1R) mode (i.e., two frequencies and three damp-
ing coefficients) have been employed. All these three modes
were considered as physically meaningful despite the fact that
the second was characterized by a rather low value of |I2|.
Sample No. I, i.e., pure Ne, needed an additional dissipative
mode, including two complex pairs (2C) and two real (2R)
modes (i.e., two frequencies and four damping coefficients).
However, in this case, similarly to what we have seen above,
the 2nd C mode was regarded as unphysical, due to its high
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TABLE IV. Selected results of the EET fitting procedure of the canonical VACFs for the α (= Ne or D2) species. Table includes: simulation
number “No.,” deuterium concentration xD2 , applied fitting scheme, mode number of the propagating excitations (C), their frequencies ωα ,
damping coefficients �α , amplitudes |Iα|, and phases φα . Available statistical errors are reported in parentheses. Only propagating modes with
a relevant amplitude are reported, while diffusive modes (R) have been always omitted.

xD2 Fit scheme ωNe ωD2 �Ne �D2 φNe φD2

No. (%) Ne D2 Mode (ps−1) (ps−1) (ps−1) (ps−1) |INe| |ID2 | (rad) (rad)

I 0.00 2C+2R — 1st C 8.10(4) — 6.00(3) — 0.479 — −1.374 —
2nd C — — — — — — — —

II 14.84 2C+1R 3C 1st C 6.74(5) 6.30(7) 5.88(1) 7.5(3) 0.430 0.671 −1.279 0.860
2nd C 19.2(3) 15.2(1) 14.8(6) 8.7(2) 0.012 0.476 −3.499 −1.441

III 25.00 2C+1R 3C 1st C 5.34(6) 5.2(2) 5.58(7) 7.6(3) 0.533 0.707 −0.932 0.868
2nd C 16.9(3) 14.19(7) 16.2(7) 9.0(2) 0.019 0.483 −3.820 −1.480

IV 35.16 2C+1R 3C 1st C 4.5(1) 5.1(2) 5.7(1) 7.6(2) 0.605 0.683 −0.961 0.740
2nd C 17.3(3) 13.68(8) 16(1) 9.3(2) 0.018 0.457 −3.687 −1.578

V 44.92 2C+1R 3C 1st C 3.94(6) 5.4(5) 5.74(9) 7.8(4) 0.612 0.641 −0.997 0.528
2nd C 18.0(2) 13.3(3) 14.6(9) 9.6(4) 0.016 0.427 −3.342 −1.693

VI 50.00 2C+1R 3C 1st C 3.63(9) 5.9(6) 5.7(1) 8.2(5) 0.618 0.651 −1.019 0.330
2nd C 18.2(3) 13.3(6) 13.5(8) 10.1(5) 0.016 0.410 −3.127 −1.855

VII 55.08 2C+1R 3C 1st C 3.1(1) 5.6(6) 6.0(1) 9.0(4) 0.708 0.677 −1.103 0.386
2nd C 18.4(2) 12.6(5) 14.3(8) 10.2(2) 0.015 0.482 −3.207 −1.835

VIII 75.00 1C+2R 2C+2R 1st C 7.5(4) — 14.9(4) — 0.129 — −3.278 —
2nd C — 10.68(4) — 9.93(6) — 0.682 — −1.429

IX 85.16 1C+2R 2C+2R 1st C 10(1) — 13(2) — 0.088 — −2.819 —
2nd C — 10.9(1) — 10.0(2) — 0.582 — −1.531

X 100.00 — 2C+2R 1st C — — — — — — — —
2nd C — 11.05(5) — 9.63(4) — 0.505 — −1.459

value of ω2 and its tiny value of |I2|. Moving to samples
Nos. VIII and IX, the mode selection changed again: one
complex pair (1C) and two real dissipative (2R) modes (i.e.,
one frequency and three damping coefficients) were used in
the EET fits. Also this time all the three modes were taken
as relevant and, moreover, none of their amplitudes, |I1,2,3|,
was much smaller than the other two. Given this scenario, in
the case of Ne, the main propagating mode parameters, |I1|,
φ1, �1, and ω1, are reported in Table IV for all the samples,
while those related to the 2nd C mode, i.e., |I2|, φ2, �2, and
ω2, appear only for samples Nos. II–VII. At this stage it is
worthwhile to point out that the mode type selection was not
arbitrary at all, but it was always driven by both physical
reasons and fit quality. For instance, in the D2 case the EET fit
with three complex pairs (3C) was really excellent for sample
No. II, remaining substantially very good up to sample No.
VII. Then, after reaching sample No. VIII, the mode selection
was changed, moving to two complex pairs (2C) and two real
dissipative modes (2R), and the fit result was excellent again
for all the remaining samples. Selected examples of the EET
fits for Ne and D2 canonical VACFs can be found in Fig. 10.

Some of the information contained in Table IV has been
also plotted in Figs. 11(a) and 11(b), where one can observe
the density trend of ωα and φα , respectively. The main feature
in Fig. 11(a) is the presence of a D2 high-frequency mode
(HFM), ωh f ,D2 , for 0% < xD2 < 60%, whose frequency de-
creases with increasing the deuterium concentration (full red
circles with black rings). Slightly above, the corresponding Ne
high-frequency mode, ωh f ,Ne, is visible in the same xD2 range,
showing, with exception of sample No. (II), an opposite trend,
i.e., increasing along with the deuterium concentration (empty
blue squares with green fillings). In addition, one can also

observe two low-frequency modes (LFMs), ωl f ,Ne and ωl f ,D2 ,
one belonging to Ne (empty blue squares) and the other to
D2 (full red circles with no rings), which initially exhibit very
similar frequency values, even though the former decreases
with xD2 , while the latter seems more or less constant. For
xD2 > 60%, the frequency behavior changes: the two couples,
ωl f ,D2 and ωh f ,D2 on one side and ωl f ,Ne and ωh f ,Ne on the
other, simply disappear, leaving room to single modes for
both species (symbols with crosses), which, however, exhibit
a different behavior: the D2 frequencies turn out to be almost
constant, while the Ne ones seem to rapidly grow, even though
their determination becomes less precise as shown by the large
error bars.

At this stage, at least for 0% < xD2 < 60%, one is surely
tempted, in the spirit of IO, to associate the D2 HFMs to
the rattling of deuterium molecules in the pseudocages, while
the D2 and Ne LFMs would somehow represent the pseu-
docage motion in the bulk liquid. To this end, it might be
reasonable to introduce a new LFM frequency ωl f , given by
a weighted mean of ωl f ,D2 and ωl f ,Ne based, for instance,
on the mixture concentration. The frequency ratio between
the D2 HFM and the weighted mean LFM, dubbed Rh−l =
ωh f ,D2/ωl f , is not constant in the 0% < xD2 < 60% range,
where it varies from 2.27 ± 0.02 to 3.9 ± 0.3. As we have
seen above, it entails that, in the case of a D2 rattling molecule,
the corresponding pseudocage mass, M1,D2 ≈ R2

h−l MD2 , varies
from M1,D2 = (20.7 ± 0.4) amu to (60 ± 8) amu. Dividing
by the average molecular weight of each mixture, estimated
as ND2 (n)(MD2 xD2 + MNe xNe), one can approximately evalu-
ate the number of particles, ND2 (n), forming the pseudocage
around D2: from 1.16 ± 0.02 molecules for sample No. II to
5.4 ± 0.7 for sample No. VII. These figures, although more
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(a) (d)

(b) (e)

(c) (f)

FIG. 10. Selected examples of the canonical VACFs, u(K )
α (t ) (with α = Ne or D2), obtained from CMD simulations (black empty circles),

together with their best fits using the EET approach (red full lines). Five concentrations have been included among those reported in Table I,
namely No. I [panel (d)], No. II [panel (a)], No. VII [panels (b) and (e)], No. VIII [panel (f)], and No. X [panel (c)]. Panels (a), (b), and (c)
contain the u(K )

D2
(t )/u(K )

D2
(0) plots and panels (d), (e), and (f) the u(K )

Ne (t )/u(K )
Ne (0) ones. In this way, spectra have been normalized (i.e., their values

at t = 0 ps are set equal to 1.0) for graphic reasons. Propagating EET components have been also plotted following the notation of Table IV:
green dashed lines stand for the 1st C modes, while blue dotted lines stand for the 2nd C modes. Diffusive modes have been combined and
plotted as orange dot-dashed lines when present.

physically meaningful than the original IO results, are still far
from the reported SPCF estimates (12.67 > ND2 (n) > 11.64)
and, in addition, exhibit the wrong trend with n. As we will
see in the conclusions, this result actually disproves the appli-
cability of the IO model to our binary mixture systems.

For 0% < xD2 < 60%, Fig. 11(b) shows the phase of the
four modes, indicating that φl f ,Ne and φh f ,D2 are generally
both negative and quite close to each other, while φl f ,D2 is
mildly positive, and φh f ,Ne is strongly positive. In other words,
the two LFMs often have similar frequencies, but they are
largely dephased between each other (more than π/2). Also
this fact seems in contradiction with the IO model interpreta-
tion proposed above, since D2 and Ne, when forming the same
pseudocage, should oscillate in phase since they belong to a
relatively rigid structure. On the contrary, one might expect
that φh f ,D2 , if associated with a D2 rattling, would exhibit a
certain shift with respect to the two LFM phase values; but this
is not the case. For this reason, it appears more reasonable to
explain the shift between φl f ,D2 and φh f ,D2 on one side, and
between φl f ,Ne and φh f ,Ne on the other, as a sort of liquid
equivalent of what can be easily observed in a non-Bravais

solid crystal made of two components with uneven masses,
where the distinct phonon branches (either acoustic or op-
tic) projected on the different species (either Ne or D2) can
show quite a large phase difference among one another [53].
Moving to xD2 > 60% one notes that the deuterium phases
are almost constant and close to the φl f ,Ne values observed
for lower values of xD2 , while the Ne ones grow rapidly and,
somehow surprisingly, are not distant from the φh f ,Ne.

Finally, an additional clue can be gained by comparing
the present ω j values with the simulated dispersion curves,
�d,Ne(q) and �d,D2 (q), obtained from the maxima of the
longitudinal current-current correlation spectra, c̃L(q, ω), and
reported in Fig. 15 of Ref. [13]. Although only three xD2

values of those plotted in this figure are of interest to us,
namely xD2 = 0%, 23%, and 49%, roughly corresponding
to the present Nos. I, III, and V–VI, one can note a strict
correspondence between �d,Ne(q) and ωl f ,Ne on one side,
as well as �d,D2 (q) and ωh f ,D2 on the other. However, as
for ωl f ,D2 and ωh f ,Ne, which are both associated with rather
weak EET amplitudes [54], we are in the position neither to
unambiguously assign the origin of these modes nor to find a
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(a) (b)

FIG. 11. The EET fitting results from Table IV, concerning fre-
quencies ωα and phases φα (with α = Ne or D2), are plotted as a
function of xD2 in panels (a) and (b), respectively. Red full circles
represent D2, while blue empty squares stand for Ne. For 0% <

xD2 < 60%, black rings and green fillings are used to distinguish
the high-frequency 2nd C modes (HFMs) from their low-frequency
counterpart (LFM) for D2 and Ne, respectively; while, for xD2 >

60%, such a distinction disappears and both frequencies and phases
are marked by black crosses. The horizontal dash-dotted lines in
panel (a) mark the experimental coherent scattering results from
Refs. [55,56] for pure liquid Ne and D2, respectively. Available
statistical uncertainties are plotted as error bars.

simple correspondence with the peaks contained in c̃L(q, ω).
In addition, it is worth mentioning the experimental estimates,
obtained from coherent inelastic scattering, of the longitudinal
frequencies in pure samples of Ne and D2. The maxima (with
respect of q) of these dispersion curves clearly support the
quality of the present EET data analysis if compared with
the fit results in Fig. 11(a). Namely, in the case on Ne, Ref.
[55] reports the maximum of �L(q) at about (5.7 ± 1.5) meV,
corresponding to (8.7 ± 2.3) ps−1, in a sample at T = 32 K
and n = 34.7 nm−3; while, as for D2, where data close to
our thermodynamic conditions are unfortunately missing, one
can approximately scale the frequency data from Ref. [56]
(taken at T = 20.7 K and n = 25.4 nm−3) making use of the
appropriate speed of sound values [57] (i.e., cs = 984 m/s for
Ref. [56] and cs = 778 m/s for the present sample No. X),
obtaining ωD2 ≈ 11.8 ps−1. The agrement of both estimates
with the EET frequency results for pure samples Nos. I and X
is really impressive.

IV. CONCLUSIONS

In this work we have presented new and original VACF
data of liquid D2 mixed with liquid Ne for several values of
xD2 , using the static and dynamic quantum simulation methods
PIMC [31] and CMD [33]. We have shown that CMD can
perfectly reproduce the 〈EK 〉 of both molecular species, and
gives substantially correct estimates of the corresponding �E ,
confirming the effectiveness of this semi-quantum technique
when dealing with correlations of operators which, like the
VACF, are linear in the particle positions or momenta [58].
This permitted us to confidently address the extraction of other

physical information by means of fits to the various canoni-
cal VACF spectra, which, differently from the truly quantum
ones, still retain a number of characteristics allowing for the
use of standard classical models. We have utilized two types
of heuristic fit models introduced in the literature a long time
ago (i.e., LV and IO), as well as the more recent, theoretically
based EET modeling. In particular, we have found that the LV
model [42], which is considered as very flexible and rather
heuristic, provides a good spectral description of the Kubo
correlation for both molecular species in the full xD2 (and
n) range. In addition, its binary collision component, which
dominates at short times (linked with the large ω values in the
spectra), reproduces reasonably well the first two terms of the
power series expansion of the normalized canonical VACFs,
the latter term being simply �E . As for the effective many-
body term in the LV model, which, on the contrary, is the
crucial part at long times, we found that it often turns out to be
negative, causing a change in sign of the LV memory function
at times larger than a certain threshold. Unfortunately, the
meaning of such a peculiar result was not easy to interpret
since the LV many-body term is not grounded on a solid
physical theory but stems from some mathematical constraints
imposed in an ad hoc way. For these reasons, we have resorted
to two versions (the more complete IO, and the more primitive
CE) of a totally different approach to the VACF based on
the concept of an “itinerant oscillator” [44] which, in spite
of its simplicity, retains a certain physical background at least
for very dense fluids. Indeed, it is based on the interaction
between an individual molecule rattling inside a short-lived
pseudocage, temporarily formed by the neighbor particles and
diffusing in the bulk liquid. The SPCFs from PIMC provided
all the ingredients to accurately calculate the average proper-
ties of such pseudocages, including, in particular, their mass
M1 as a function of the rattling particle mass M0 and the
system xD2 (or n). The main characteristic of this class of
models is the fact that, due to the supposed free diffusion
of the pseudocages in the bulk, the ratio ω2

0/ω
2
1 between the

squared rattling frequency, ω2
0, and the squared oscillation

frequency of the short-lived particle aggregates, ω2
1, should

be rigorously identical to the inverse mass ratio M1/M0. Al-
ready the simplistic CE model, which can be devised even
without performing complete VACF fits, showed that the M1

estimates from PIMC and CMD were utterly irreconcilable
since they disagreed by more than one order of magnitude for
both M0 values. This result was extremely surprising since it
also turned out that M1 < M0 (i.e., the pseudocage was on
average lighter than the rattling particle!), similarly to what
had been found many years ago analyzing classical liquid Ar
simulations. To clarify this issue, a detailed IO fitting proce-
dure was also carried out, providing a fairly good description
of the CMD data, which, unsurprisingly, became particularly
effective in the case of D2 at low values of xD2 , where the
IO fit quality was better than (or comparable to) the LV
one. However, as far as M1/M0 was concerned, the new and
supposedly more accurate estimates were even farther from
the PIMC results than the corresponding CE estimates, with
unrealistic mean values for M1 in both the Ne and D2 cases.
Therefore, despite its good practical capability to fit canon-
ical VACFs of dense quantum binary systems, the IO model
contains strong intrinsic limitations which make the numerical
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values of its fitting parameters physically implausible. We are
strongly inclined to think that the IO failure has a clear origin:
the motion of the pseudocage is supposed to be a free diffusion
in the bulk, with the vibrational component coming only from
the reaction to the rattling particle inside the nearest neighbor
pseudocage itself. However, in a dense fluid also the second-
and third-neighbor shells likely exert an effect on the nearest
neighbor one, thus modifying the force constant accounting
for the pseudocage vibrations. Since such an effect would be
understandably different for the pseudocage and the rattling
particle inside it, the translational invariance would be broken
and the action-reaction principle would not apply in the way
we discussed in the text. This would imply the possibility of
the existence of two distinct force constants, κ0 and κ1, and,
consequently, (ω0/ω1)2 �= M1/M0, explaining the breakdown
of the IO model.

The final part of this study was dedicated to the EET, a
more modern, physically grounded, and comprehensive ap-
proach to the analysis of the VACFs, in which a correlation
function is decomposed into a sum of a small number of ex-
ponential modes, either of propagating or diffusive type. The
EET method was very successful for both molecular species
at all the n values. In particular, in the 10% � xD2 < 60.0%
range, the interpretation of the obtained results turned out to
be quite straightforward in terms of propagating modes: both
Ne and D2 were characterized by two kinds of modes: LFMs
(i.e., ωl f ,Ne and ωl f ,D2 ) and HFMs (i.e., ωh f ,Ne and ωh f ,D2 ).
The first and the last excitation frequencies were found in ex-
cellent agreement with the pseudodispersion curves obtained
from the collective dynamical simulations of similar Ne-D2

mixtures [13]. It is reasonable to assume that LFMs and HFMs
correspond to acoustic and optic vibrations, respectively. On
the contrary, if the mode frequencies determined by EET are
used to estimate the pseudocage masses as in the IO frame-
work, we find values much smaller than the mentioned SPCF
estimates (10 − 12 molecules per pseudocage) and, moreover,
with an incorrect dependence on n. In our opinion these
findings definitely prove that the whole concept of individual
particles rattling inside short-lived pseudocages formed by
their neighbors is intrinsically flawed, at least from a dynamic
point of view. In fact, this seems to be the case even in the most
favorable scenario, i.e., where a small amount of D2 impurities
are dispersed in a Ne-rich mixture.
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APPENDIX A: CHECKING PIMC AND CMD
SIMULATIONS FOR POSSIBLE FINITE-SIZE EFFECTS

In this Appendix we will focus on the following Ne-D2

mixture: 85.16% Ne + 14.84% D2 (with a molecular density
n = 30.71 nm−3 at a temperature T = 30.0 K) to test the
stability of our results when either the number of particles
N or the Trotter number P (see Sec. II for details) is varied.
The choice of such a mixture is justified by the fact that

it corresponds to sample No. II (see Table I) which is the
most unbalanced of all the simulated binary mixtures, with
the lowest value of D2 concentration. This means that in this
case, at least in theory, the deuterium self-dynamics should not
only be the most prone to the so-called “finite-size effects” but
should also show the most pronounced quantum behavior, due
to the high overall density of the mixture.

Test calculations on the three static pair correlation func-
tions (SPCFs, i.e., those concerning Ne-Ne, Ne-D2, or D2-D2)
using the PIMC technique have been carried out in the case of
the selected mixture. We have used a total number of particles,
namely N = 512, which is twice that of our standard PIMC
simulations (N = 256) presented in the paper. This choice
implied the presence of 436 Ne atoms and 76 D2 molecules
instead of 218 Ne atoms and 38 D2 molecules only, as in
the previous PIMC calculation. In both simulations the Trot-
ter number P was kept fixed to 32. Three relevant physical
quantities have been explicitly evaluated and compared: the
mean kinetic energy per particle for both species (α = Ne or
D2) 〈EK 〉α , which is already a standard PIMC output, as well
as the Einstein frequencies �E ,α , and the mean-square forces
〈F2〉α , which, on the contrary, must be derived from the SPCFs
in connection with the Laplacians and square gradients of the
three interparticle potentials [see Eq. (B5) in Appendix B]. A
similar test was also performed on the same selected mixture
keeping the particle number constant (N = 256), but doubling
the Trotter number P from 32 to 64. Also in this case, the
three relevant physical quantities mentioned above have been
evaluated and compared. The results of both types of PIMC
tests (i.e., on either N or P) are reported in Table V, where
one can see that by doubling either the number of particles or
the Trotter number, the relative variations of 〈EK 〉Ne, �E ,Ne,
and (〈F2〉Ne)0.5 are not larger than 0.08%, 0.2%, and 0.2%,
respectively; while those of 〈EK 〉D2 , �E ,D2 , and (〈F2〉D2 )0.5 are
not larger than 0.2%, 0.3%, and 0.2%, respectively.

Test calculations on the two types of VACFs (i.e., those
concerning either Ne or D2) using the CMD technique have
been carried out in the case of the selected mixture. We have
used a number of particles, namely N = 1024, which is four
times that of our standard CMD simulations (N = 256) pre-
sented in the paper. This choice implied the presence of 872
Ne atoms and 152 D2 molecules instead of 218 Ne atoms and
38 D2 molecules only, as in the previous CMD calculation. In
both simulations the Trotter number P was kept fixed to 32.
The outputs of both CMD calculations are plotted in Fig. 12.
While no changes can be discerned on the scale of the graphs,
three relevant physical quantities have been explicitly evalu-
ated and compared: the mean kinetic energy per particle of
both species (α = Ne or D2) 〈EK 〉α , their Einstein frequencies
�E ,α , and their mean-square forces 〈F2〉α . It is worth noting
that while �E ,α can be derived directly from the CMD outputs,
i.e., the Kubo-transformed (or canonical) VACFs u(K )

α (t ), the
other two physical quantities, 〈EK 〉α and 〈F2〉α , have to be
extracted from the velocity autocorrelation spectra obtained
via a Fourier transform of the canonical VACFs [see Eq. (B1)
in Appendix B]. A similar test was performed on the same
selected mixture, but now keeping the particle number con-
stant (N = 256) and doubling the Trotter number P from 32 to
64. The outputs of both CMD calculations are also plotted in
Fig. 12. Also in this case, the three relevant physical quantities
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TABLE V. Results from the tests of the effect of finite total number of particles N and Trotter number P on our PIMC calculations with
deuterium concentration xD2 = 14.84%, molecular density n = 30.71 nm−3, and temperature T = 30.0 K, including the mean kinetic energy
per particle for both species 〈EK 〉α (α = Ne or D2), as well as the Einstein frequencies �E ,α , and the mean-square forces 〈F2〉α . Statistical
uncertainties have been reported in parentheses.

k−1
B 〈EK 〉Ne k−1

B 〈EK 〉D2 h̄�E ,Ne h̄�E ,D2 (〈F2〉Ne)0.5 (〈F2〉D2 )0.5

N P (K) (K) (meV) (meV) (meV/Å) (meV/Å)

256 32 52.70(1) 72.40(1) 4.021(3) 8.347(2) 34.35(2) 37.577(8)
512 32 52.74(1) 72.26(3) 4.028(3) 8.375(5) 34.41(3) 37.51(2)
256 64 52.74(6) 72.54(6) 4.02(2) 8.35(1) 34.4(1) 37.64(5)

have been evaluated and compared. The results of both types
of CMD tests are reported in Table VI, where one can see
that by either quadrupling the number of particles or doubling
the Trotter number, the relative variations of 〈EK 〉Ne, �E ,Ne,
and (〈F2〉Ne)0.5 are not larger than 0.04%, 0.07%, and 0.2%,
respectively; while those of 〈EK 〉D2 , �E ,D2 , and (〈F2〉D2 )0.5 are
not larger than 0.3%, 0.5%, and 0.6%, respectively.

APPENDIX B: TESTING THE CMD RESULTS

In this Appendix, exploiting the knowledge of the partial
SPCFs, we will perform three important tests on ũ(K )

α (ω)
and ũα (ω) making use of their moments which can be
simply transformed into four important physical quantities
[59], namely T , 〈EK 〉α , the Einstein frequency �E ,α , and the

mean-squared force 〈F2〉α , for both species Ne and D2:

M−1
α kBT =

∫ ∞

−∞
dω ũ(K )

α (ω) = u(K )
α (t = 0),

2

3
M−1

α 〈EK 〉α =
∫ ∞

−∞
dω ũα (ω),

M−1
α kBT �2

E ,α =
∫ ∞

−∞
dω ω2 ũ(K )

α (ω) = −ü(K )
α (t = 0),

1

3
M−2

α 〈F2〉α =
∫ ∞

−∞
dω ω2 ũα (ω). (B1)

It is important to stress that in a classical scenario the sec-
ond physical quantity is simply related to the first, and the
fourth physical quantity to the third [40,60]: 〈EK〉α = 3

2 kBT

FIG. 12. Kubo-transformed velocity autocorrelation functions u(K )
α (t ) (with α = Ne or D2), obtained from CMD for a test binary mixture

(xD2 = 14.84%, molecular density n = 30.71 nm−3, temperature T = 30.0 K). Upper panels refer to Ne, while lower panels to D2. Full lines
(either blue or black) represent the outputs evaluated with N = 256 and P = 32, red empty circles stand for those obtained with N = 1024 and
P = 32, and green empty diamonds for those obtained with N = 256 and P = 64.
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TABLE VI. Results from the tests of the effect of finite total number of particles N and Trotter number P on our CMD calculations with
deuterium concentration xD2 = 14.84%, molecular density n = 30.71 nm−3, and temperature T = 30.0 K, including the mean kinetic energy
per particle for both species 〈EK 〉α (α = Ne or D2), as well as the Einstein frequencies �E ,α , and the mean-square forces 〈F2〉α . Statistical
uncertainties have been reported in parentheses.

k−1
B 〈EK 〉Ne k−1

B 〈EK 〉D2 h̄�E ,Ne h̄�E ,D2 (〈F2〉Ne)0.5 (〈F2〉D2 )0.5

N P (K) (K) (meV) (meV) (meV/Å) (meV/Å)

256 32 52.82(1) 72.52(5) 3.973(1) 7.896(5) 31.593(8) 32.83(2)
1024 32 52.801(9) 72.28(3) 3.9707(7) 7.859(3) 31.534(5) 32.64(1)
256 64 52.798(4) 72.48(1) 3.9709(3) 7.892(1) 31.547(3) 32.829(5)

and 〈F2〉α = 3MαkBT �2
E ,α. This is due to the fact that in the

classical limit ũ(K )
α (ω) and ũα (ω) coincide.

In Fig. 13 one can observe a generally good agreement
between Mαk−1

B u(K )
α (t = 0) and the prescribed simulation

temperature T for both species, even though the lighter
molecules (i.e., D2) tend to be slightly “warmer” than the
heavier ones (i.e., Ne). This small equipartition defect has
a clear redistributional origin since the overall system ther-
mostatting is perfect as shown in this figure by the two pure
cases (i.e., xD2 = 0% or 100%). To cure this slight velocity
mismatch between Ne and D2, ũ(K )

α (ω) and ũα (ω) have been
both corrected through the factor M−1

α kBT/u(K )
α (t = 0). So,

from now on, only corrected VACF spectra will be dealt with
in the present work. The effect of such a correction on the
self-diffusion coefficients DNe and DD2 , whose raw estimates
were reported in Table I, is visible, although rather minute, in
Fig. 5. In addition, it is worth noticing that a typical diffusional
behavior can be clearly observed in our quantum calculations:
both DNe and DD2 rapidly decrease as n grows with xNe (where
xNe = 1 − xD2 ). However, one can also see that the more xD2

approaches zero, the closer DNe and DD2 become. This effect
might be explained by the fact that in a dense liquid the diffu-
sion of the few D2 molecules is dominated by that of the more
abundant and heavier Ne atoms which completely surround
the lightweight particles hindering their motion [61]. Moving
to the quantum mechanical mean kinetic energies 〈EK 〉α in

FIG. 13. Effective temperature Mαk−1
B u(K )

α (t = 0) (with α = Ne
or D2) as a function of ND2 , obtained from CMD simulations com-
pared with the prescribed temperature T . Blue empty squares with
error bars represent Ne, while red full circles with error bars stand
for the D2 center of mass. Black dashed line marks the T level. See
Table I for further details.

Fig. 14, where the values obtained from the CMD simulations
via the second formula of Eq. (B1) are compared with the
corresponding PIMC results reported in Table I, one can note
an excellent agreement for both molecular species, proving
that the “mean-squared velocity correction” mentioned above
has been beneficial. This comparison can be considered as
an important test of the consistency of the CMD procedure
since the two sets of values have a thoroughly different ori-
gin: 〈EK〉α from PIMC, as obtained via the “crude energy
estimator,” is related to the average squared distance between
successive monomers on the ring-polymer which isomorphi-
cally represents a quantum particle (either Ne or D2), while
in the CMD case the same quantities are derived from the
area of the quantum VACF spectra which, on the contrary,
are linked with the dynamics of the centroids of the various
polymers. In all the systems investigated, both Ne and D2 ex-
hibit sizable quantum effects as proved by the fact that 〈EK 〉α
is always quite larger than the classical translational mean
kinetic energy (i.e., 3

2 T = 45 K). To be more quantitative, one
can extract �D,α from all the 〈EK〉α values reported in Table I
via the well-known Debye-model formula [8]:

〈EK 〉α = 9

4

∫ kB�D,α

0

(
h̄ω

kB�D,α

)3

coth

(
h̄ω

2kBT

)
dh̄ω, (B2)

FIG. 14. Single-particle mean kinetic energy values k−1
B 〈EK 〉α

(with α = Ne or D2) as a function of xD2 obtained from CMD
simulations compared with the corresponding PIMC results reported
in Table I. Blue empty squares and blue dashed line stand for Ne,
while red full circles and red full line stand for the D2 center of mass.
Lines are splines through the PIMC data, while symbols refer to
CMD estimates, whose statistical errors are smaller than the symbol
size.
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from which one can also obtain the corresponding zero-point
mean kinetic energy 9

16 kB�D,α , which has a purely quantum
nature. It is straightforward to verify in Table I that �D,α > T
for all samples and for both molecular species. This proves
the quantum character of the fluid systems under investigation
in a rigorous way [7]. In addition, from the variation of �D,Ne

and �D,D2 as a function of the total molecular volume n−1, it
is possible to extract the two Grüneisen parameters [8] for the
Debye temperature, labeled γD,α:

γD,α = − n−1

�D,α

(
∂�D,α

∂n−1

)
T

= n

�D,α

(
∂�D,α

∂n

)
T

, (B3)

which amount to 0.83 ± 0.02 and 0.827 ± 0.009 for Ne and
D2, respectively. These two figures appear to be in line with
the Grüneisen parameter value of a nonpolar fluid at a density
rather lower than its triple-point value [62].

We have seen that 〈EK 〉α was directly calculated by our
PIMC code, while the Einstein frequency and the mean-
squared force were not. However, the latter two can be
generally estimated exploiting the SPCF, g(r), if the interpar-
ticle potential, v(r), is assumed to be isotropic and pairwise
additive [1]:

M�2
E = n

3

∫
g(r)[∇2v(r)]d3r,

〈F2〉 = n
∫

g(r)[∇v(r)]2d3r. (B4)

Nevertheless, in the case of a binary mixture the standard rela-
tionships above turn out to be slightly more complicated since
they include the three partial gα,β (r) and the three interpar-
ticle potentials vα,β (r). After some straightforward algebraic
manipulations, one can generalize Eq. (B4) as follows:

Mα�2
E ,α = xαn

3

∫
gα,α (r)[∇2vα,α (r)]d3r

+ xβn

3

∫
gα,β (r)[∇2vα,β (r)]d3r,

〈F2〉α = xαn
∫

gα,α[∇vα,α (r)]2d3r

+ xβn
∫

gα,β [∇vα,β (r)]2d3r, (B5)

where xα (or xβ = 1 − xα) represent the concentration of α-
type (or β-type) molecules. The SPCF-derived results for
h̄�E ,α and (〈F2〉α/3)1/2 are displayed in Figs. 6 and 15, re-
spectively.

In the former figure one can observe a fairly good agree-
ment between the two estimates of h̄�E ,α for both species,
even though a general tendency of the CMD to underestimate
the Einstein frequency values clearly shows up. However, in
analogy with what has been found in Fig. 13 for the “ef-

FIG. 15. Root-mean-squared force values (〈F2〉α/3)1/2 (with
α = Ne or D2) as a function of xD2 obtained from CMD simulations
compared with the corresponding results derived from mean-squared
potential gradients and SPCFs via Eq. (B5). Classical limits are also
reported as dashed lines. Blue color stands for Ne, while red color
stands for the D2 center of mass. Full lines are splines through the
PIMC/SPCF-based data, while symbols (empty for Ne, full for D2)
refer to CMD estimates, whose statistical errors are smaller than the
symbol size. Dashed lines are also splines and are obtained using the
PIMC/SPCF-based data for h̄�E ,α plotted in Fig. 6.

fective temperature,” such an agreement is almost perfect in
the case of the two pure systems [i.e., samples Nos. I and
X], while it somehow deteriorates for the α species as the
respective number of molecules Nα decreases. For this rea-
son we cannot completely rule out an alternative explanation,
although it seems very unlikely (as suggested in Appendix A):
namely, the possibility that the mentioned small inaccuracies
are caused by the numerical implementation of Eq. (B5) via
the SPCFs calculated by our PIMC code. Moving to Fig. 15
a different scenario appears as far as 〈F2〉α is concerned: the
general CMD underestimation can be appreciated even in the
case of the two pure samples Nos. I and X, which, however,
still exhibit the best agreements between the two techniques.
In this respect, it can be also observed that CMD, differently
from PIMC, provides (〈F2〉α/3)1/2 values which are almost
identical for the two species. However, at the moment, we
have no explanation for this effect. In spite of such a minor
discrepancy, one should note that both approaches (i.e., CMD
and PIMC) capture quite well the quantum character of the
mean-squared force in our mixtures, as clearly shown by their
large difference from the two purely classical components,
MαkBT �2

E ,α , also reported in the figure. In this respect, it is
also interesting to note that the possible introduction of a sort
of “quantum enhanced temperature” (i.e., T ∗

α = 2
3 k−1

B 〈EK 〉α >

T ) into the aforementioned classical formula for 〈F2〉α is not
sufficient to reproduce the fully quantum values of the mean-
squared force.
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