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Breaking the symmetry of a wavy channel alters the route to chaotic flow
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We numerically explore the two-dimensional, incompressible, isothermal flow through a wavy channel, with
a focus on how the channel geometry affects the routes to chaos at Reynolds numbers between 150 and 1000.
We find that (i) the period-doubling route arises in a symmetric channel, (ii) the Ruelle-Takens-Newhouse route
arises in an asymmetric channel, and (iii) the type-II intermittency route arises in both asymmetric and semiwavy
channels. We also find that the flow through the semiwavy channel evolves from a quasiperiodic torus to an
unstable invariant set (chaotic saddle), before eventually settling on a period-1 limit-cycle attractor. This study
reveals that laminar channel flow at elevated Reynolds numbers can exhibit a variety of nonlinear dynamics.
Specifically, it highlights how breaking the symmetry of a wavy channel can not only influence the critical
Reynolds number at which chaos emerges, but also diversify the types of bifurcation encountered en route to
chaos itself.
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I. INTRODUCTION

From combustion [1,2] to heat transfer [3–6] to biome-
chanics [7,8], wavy or corrugated channels have received
significant attention from researchers owing to their ability
to enhance mass, momentum, and heat exchange. The pres-
ence of corrugations in a channel can disrupt the growth of
boundary layers, resulting in flow separation and reattach-
ment, which can in turn enhance the mixing of the near-wall
fluid with the core fluid. Increasing the Reynolds number
Re, which is the ratio of the inertial to viscous forces [see
Eq. (4)], can not only enhance such mixing, but also instigate
various bifurcations to nonlinear oscillatory states [9]. The
emergence of flow oscillations due to variations in Re suggests
that different scenarios are possible along the route to chaos,
whereby the system transitions from some ordered state to the
neighborhood of a strange attractor [10].

The three most common routes to chaos are as follows:
(i) Ruelle-Takens-Newhouse route: Newhouse, Ruelle, and

Takens [11] showed that a three-frequency quasi-periodic at-
tractor generated through three successive Hopf bifurcations
is inherently unstable to weak disturbances, with a tendency
to break down into a chaotic attractor via a set of fold-
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ing and stretching operations [12]. This route to chaos has
been numerically identified in the flow through various wavy
channels [13–15].

(ii) Period-doubling route: This route to chaos, discovered
by Feigenbaum [16], features a cascade of period-doubling
bifurcations, leading to self-similar structures in the bifur-
cation diagram. Although this route has been observed in
thermoacoustic systems [17], circuits [18], and convective
flows [19], it has yet to be reported for fluid flow in wavy
channels.

(iii) Intermittency route: Pomeau and Manneville [20]
discovered a route to chaos in which regular and chaotic
dynamics alternate intermittently. Along this route, as the
bifurcation parameter (e.g., Re) increases beyond a critical
value, chaotic bursts appear increasingly prominently over
a background of regular motion, eventually leading to a
fully chaotic state. Three distinct types of intermittency were
initially identified by Pomeau and Manneville [20]: (type-
I) saddle-node bifurcation, (type-II) Hopf bifurcation, and
(type-III) inverse period-doubling bifurcation. These were
later joined by further types, such as crisis-induced intermit-
tency and on-off intermittency [21]. In hydrodynamics (e.g.,
Rayleigh-Bénard convection), the intermittency route to chaos
has been well studied as a possible pathway to turbulence
[10]. For the flow through a wavy channel, Zhu et al. [15]
observed temporal intermittency but not along the route to
chaos. Therefore, whether the intermittency route to chaos
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FIG. 1. Computational domain for the (a) symmetric, (b) asymmetric and (c) semiwavy channels used in this study. The geometrical
parameters are H/a = 12/7 and L/a = 8 [9,25,26]. The flow is two-dimensional, incompressible, isothermal, and fully developed. The flow
enters the channel from the left inlet and exits at the right outlet.

could exist in the flow through a wavy channel remains an
open question.

II. PROBLEM DEFINITION

In this numerical study, we examine the bifurcations and
routes to chaos in the two-dimensional flow through three
canonical types of wavy channels: [Fig. 1(a)] a symmetric
channel, [Fig. 1(b)] an asymmetric channel, and [Fig. 1(c)]
a semi-wavy channel. For all three channels, the flow en-
ters from the left inlet and exits at the right outlet. For the
asymmetric channel [Fig. 1(b)], the top and bottom halves
are offset in the streamwise direction by L/4, where L is
the channel length. We consider incompressible, isothermal,
fully developed wavy-channel flow [22] susceptible to both
centrifugal instabilities [23] and shear (Kelvin-Helmholtz) in-
stabilities [24]. Here, to permit both types of instabilities, we
use the geometrical parameters from Nishimura et al. [25,26]
and Harikrishnan et al. [9], namely H/a = 12/7 and L/a = 8,
where H is the outlet height and a is the hump half-height, as
defined in Fig. 1. These parameters are known to support both
Kelvin-Helmholtz and centrifugal instabilities in wavy chan-
nel flow. Our bifurcation parameter is the Reynolds number,
as defined in Eq. (4).

Our results show that all three classic routes to chaos can
be found in this wavy-channel flow system. The symmetric
channel experiences the period-doubling route, the semi-
wavy channel experiences the intermittency route, and the
asymmetric channel experiences both the intermittency and
Ruelle-Takens-Newhouse routes. The intermittency observed
here is found to conform to type-II of the Pomeau-Manneville
scenario [20]. These findings provide researchers with new
insights into how best to predict and manage chaotic flow os-
cillations in systems with wavy channels, such as micropower
generation devices and the human heart. For example, massive
fatty depositions in the atrium of the heart can cause chaotic

blood flow, raising the risk of heartbeat disturbances and atrial
arrhythmias [27]. This process can be viewed as a bifurcation,
where changing the geometry of a wavy channel (atrium) can
cause chaotic flow disturbances to emerge at a lower Re.

III. NUMERICAL METHODOLOGY

A. Governing equations

We consider two-dimensional, laminar, incompressible,
isothermal, fully developed flow through a wavy channel, as
shown in Fig. 1. The governing equations for this system are
the mass and momentum equations [9,28]:

∇ · V = 0 (1)

∂V
∂t

+ V · ∇V = −∇ p̃

ρ
+ ν∇2V + β

ρ
, (2)

where V, ρ, β, ν, and p̃ denote the velocity vector, fluid
density, linear component of the pressure, kinematic viscosity
and the reduced pressure. The values of β and p̃ are selected so
as to satisfy cyclic boundary conditions at the inlet and outlet
patches. The actual pressure can be written as [22]

p(x, y) = −βx + p̃(x, y). (3)

As noted earlier, our bifurcation parameter is the Reynolds
number, defined as

Re ≡ u0H

ν
, (4)

where u0 is the spatially averaged velocity at the inlet, H is the
height of the outlet (Fig. 1), and ν is the kinematic viscosity
of the fluid. At the inlet and outlet patches, we impose cyclic
boundary conditions such that η (inlet ) = η (outlet ), where
η can be V or p̃. The top and bottom patches are impermeable
walls on which the no-slip condition is imposed. At t = 0, the
flow in the computational domain is initialized with a velocity
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corresponding to each value of Re. Previous studies [29–32]
have shown that the use of a single wavy module with cyclic
boundary conditions, rather than a long channel with several
wavy modules, can reduce the computational cost while still
enabling the flow instability mechanisms to be resolved. Fur-
ther details on the cyclic boundary conditions used here can
be found in Ref. [22].

B. Numerical simulations

We use OpenFOAM [33,34] to carry out direct numeri-
cal simulation of the flow in wavy channels at different Re.
The PISO (pressure-implicit with splitting of operators) algo-
rithm is used to solve the governing equations. The spatial
and temporal derivatives are approximated via a second-order
central differencing scheme and a second-order Euler back-
ward differencing scheme, respectively. For the mass and
momentum equations, the convergence criteria are set to 10−6.
In all the simulations, the maximum value of the Courant
number is kept at or below 0.3. A grid independence check
and validation of our numerical framework can be found in
Appendices A and B.

C. Nonlinear time-series analysis

For the symmetric and semiwavy channels, we extract
time traces of the instantaneous flow velocity at the location
(L/2, a). For the asymmetric channel, we use a velocity probe
location of (5L/8, a). To generate bifurcation diagrams, we
plot the local peaks of the transverse velocity component (v)
versus Re. We also use the velocity time traces to reconstruct
the phase space via the embedding theorem of Takens [35].
We use the average mutual information [36] and the algorithm
of Cao [37] to find the optimal values of the embedding delay
time (τ ) and the embedding dimension (m), respectively. We
plot the phase portrait and Poincaré map to identify the topol-
ogy of the attractors present in the system [38,39]. Using the
algorithm of Grassberger and Procaccia [40], we compute the
correlation dimension as a quantitative measure of the number
of active degrees of freedom. We plot the correlation sum
(C(m, R)) and its local slope (Dc = ∂ logC(m, R)/∂ log R) as
a function of the normalized Euclidean distance, R/Rmax, for
different values of m. The value of Dc should be zero, one, two
and a noninteger for, respectively, a fixed point (steady flow), a
limit cycle (periodic motion), a two-frequency quasi-periodic
torus, and a strange attractor [41]. Under certain conditions,
we observe intermittency, whose type we identify by ana-
lyzing the Poincaré map, the recurrence plot, the probability
distribution of the interchaos time, and the variation of the
average interchaos time versus a normalized bifurcation pa-
rameter [42,43].

IV. RESULTS AND DISCUSSION

A. Symmetric wavy channel

An overview of the temporal dynamics of the flow in the
symmetric wavy channel is shown in Fig. 2. The bifurcation
diagram [Fig. 2(a)] reveals the existence of four different dy-
namical states as Re increases: a fixed point (steady flow) →
a period-1 limit cycle → T 2 quasi-periodicity → a period-2

limit cycle → a period-4 limit cycle → chaos. This constitutes
direct evidence of the period-doubling route to chaos [16].
These dynamical states are examined further below:

(i) A fixed point (steady flow): For Re < 160 (brown
markers/lines), viscous damping is sufficient to overcome
the destabilizing influence of shear (Kelvin-Helmholtz) and
centrifugal forces. As a result, the flow is steady with no
large-scale self-excited oscillations.

(ii) Quasiperiodicity between period-k limit cycles: The
window of T 2 quasiperiodicity (200 � Re < 500, orange) is
sandwiched by three different types of limit cycles: period-1
(160 � Re < 200, black), period-2 (500 � Re < 560, green),
and period-4 (560 � Re < 680, purple). To examine the
period-2k limit cycles and the T 2 quasiperiodic state, we
choose representative cases of Re = 190 for period-1, Re =
450 for quasiperiodic, Re = 530 for period-2, and Re = 610
for period-4 states. On increasing Re to around 160, we find
that the system becomes self-excited, transitioning from a
fixed point (steady flow) to a period-1 limit cycle with a
dominant frequency of f1 � 0.053 Hz via a Hopf bifurcation.
At Re = 190, the existence of a period-1 state is supported
by the time series exhibiting a single peak within each os-
cillation cycle [Fig. 2(b)], a closed orbit in the phase portrait
[Fig. 2(c)], and a single intercept in the one-sided Poincaré
map [Fig. 2(d)]. As Re approaches 200, the flow begins to
oscillate at two incommensurate frequencies, f2 � 0.106 Hz
and f3 � 0.230 Hz, where f3/ f2 is not a rational number (for
brevity, the spectra are not shown), confirming the existence of
a T 2 quasiperiodic state. This assessment is substantiated by
the aperiodic time trace at Re = 450 [Fig. 2(g)], along with
an ergodic torus and a closed ring, respectively, in the phase
portrait [Fig. 2(h)] and the one-sided Poincaré map [Fig. 2(i)].
On increasing Re to around 500, we find that the two in-
commensurate frequencies, f2 and f3, shift to commensurate
values, f4 � 0.130 Hz, and f5 � 2 f4 � 0.260 Hz, indicating
a frequency-locking condition that produces a period-2 limit
cycle [44]. This is clear from the time series at Re = 530
[Fig. 2(l)], which shows two peaks within each oscillation
cycle. The result is a double-loop structure in the phase por-
trait [Fig. 2(m)] and two discrete intercepts in the one-sided
Poincaré map [Fig. 2(n)]. Increasing Re further to around
560 results in the emergence of four commensurate frequen-
cies that are locked into one another, f6 � 0.075 Hz, f7 =
2 f6 � 0.150 Hz, f8 = 3 f6 � 0.225 Hz, f9 = 4 f6 � 0.300 Hz,
confirming the existence of a period-4 limit cycle. This obser-
vation is supported by the time trace at Re = 610 [Fig. 2(q)],
which shows four peaks within each oscillation cycle. This
produces a quadruple-loop structure in the phase portrait
[Fig. 2(r)] and four intercepts in the one-sided Poincaré map
[Fig. 2(s)]. As for the correlation dimension, we find that
for Re = 190 [Figs. 2(e) and 2(f)], Re = 530 [Figs. 2(o)
and 2(p)], and Re = 610 [Figs. 2 (t) and 2(u)], Dc � 1 over
10−3 < R/Rmax < 10−1 (self-similar scaling range) with m =
6, confirming the presence of a limit-cycle attractor. For
Re = 450 [Figs. 2(j) and 2(k)], we find Dc � 2 over 10−2 <

R/Rmax < 10−1 with m = 13, confirming the existence of a
T 2 quasi-periodic attractor with two incommensurate modes.

(iii) Chaos: When Re � 680 (blue), the flow becomes
chaotic, causing the data points in the bifurcation diagram to
become more scattered [Fig. 2(a)]. The time series of v at
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FIG. 2. Period-doubling route to chaos in the flow through a symmetric wavy channel. The bifurcation diagram is shown in panel (a). Five
different states are highlighted: (b)–(f), black, a period-1 limit cycle, (g)–(k), yellow, T 2 quasiperiodicity, (l)–(p), green, a period-2 limit cycle,
(q)–(u), purple, a period-4 limit cycle, and (v)–(z), blue, low-dimensional chaos. Skipping (a), the columns show, from left to right, the time
series of v, the phase portrait, the one-sided Poincaré map, the correlation sum, and the slope of the correlation sum.

Re = 700 [Fig. 2(v)] is highly irregular, giving rise to com-
plex fractal structures in phase space [Figs. 2(w) and 2(x)].
The plot of C(m, R) [Fig. 2(y)] and Dc [Fig. 2(z)] reveal a non-
integer value of Dc � 4.6 over the self-similar scaling range
(0.3 < R/Rmax < 0.6) with m = 19, confirming the presence

of a strange attractor [21]. Such a low value of Dc reveals that
the chaotic dynamics are low-dimensional [21].

In summary, we have presented evidence of a bifurcation
cascade arising from the period-doubling route to chaos as
Re increases. The presence of a T 2 quasi-periodic window
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between the period-1 and period-2 windows is believed
to arise from the emergence of an incommensurate mode
following the period-1 state. This mode then undergoes
frequency-locking as Re increases, eventually taking on a
commensurate frequency. Resolving higher-order period-2k

(e.g., period-8) states is challenging [Fig. 2(a)] because the Re
range in which such states exist becomes increasingly narrow.

B. Asymmetric wavy channel

An overview of the temporal dynamics of the flow in the
asymmetric wavy channel is shown in Fig. 3. On increasing
Re [Fig. 3(a)], we first find evidence of the Ruelle-Takens-
Newhouse route to chaos [11]: a fixed point (steady flow) →
a period-1 limit cycle → T 2 quasi-periodicity → chaos. With
further increases in Re [Fig. 3(a)], we find evidence of the
intermittency route to chaos [20]: intermittency → chaos →
period-k limit cycles → chaos. Below we examine these states
in turn:

(i) A fixed point (steady flow): For Re < 180 (brown), the
flow is stabilized by the effects of viscosity, resulting in a
nominally time-independent state. Compared with the sym-
metric channel, the asymmetric channel is found to be more
resistant to flow instabilities, remaining dynamically stable at
higher values of Re.

(ii) Period-k limit cycles: The bifurcation diagram
[Fig. 3(a)] contains two different limit-cycle windows, as
denoted by black markers/lines. In the first window (180 �
Re < 200), the flow is self-excited in a period-1 limit cycle.
The time series of v at Re = 190 [Fig. 3(b)] is periodic with a
dominant frequency of f1 = 0.053 Hz. There is a closed orbit
in the phase portrait [Fig. 3(c)] and a single intercept in the
Poincaré map [Fig. 3(d)], confirming the existence of a period-
1 limit cycle. Figures 3(e) and 3(f) show that Dc � 1 over
10−3 < R/Rmax < 10−1, further corroborating the existence
of a limit cycle. In the second window (520 � Re < 560),
we find period-3, period-4 and period-5 limit cycles. The
time series of v at Re = 550, as a prototypical case of a
period-5 limit cycle, produces a quintuple-loop structure in the
phase portrait [Fig. 3(u)] and five intercepts in the one-sided
Poincaré map [Fig. 3(v)]. This limit-cycle behavior is also
verified by Figs. 3(w) and 3(x), which show Dc � 1 over
8 × 10−3 < R/Rmax < 6 × 10−2.

(iii) Quasi-periodicity: At slightly higher Reynolds num-
bers (200 � Re < 420, orange), two new incommensurate
frequencies emerge, f2 = 0.091 Hz and f3 = 0.336 Hz,
leading to a T 2 quasiperiodic state. This concurs with the
aperiodic nature of the time series at Re = 350 [Fig. 3(g)],
which produces an ergodic torus in the phase portrait
[Fig. 3(h)] and a closed ring in the one-sided Poincaré map
[Fig. 3(i)]. From Figs. 3(j) and 3(k), we note that Dc � 2
over 0.07 < R/Rmax < 0.25, confirming the presence of T 2

quasiperiodicity.
(iv) Chaos: In the bifurcation diagram [Fig. 3(a)], we find

three separate windows of chaos (420 � Re < 475, 505 �
Re < 520, 560 � Re < 600) in which the data points are
scattered. The time series of v at Re = 450 is highly ir-
regular, producing complex fractal structures in phase space
[Fig. 3(m) and 3(n)]. Figures 3(o) and 3(p) reveal that Dc �
3.2 (a noninteger) over 0.05 < R/Rmax < 0.16, confirming the

existence of a strange attractor with low-dimensional chaotic
dynamics [21].

(v) Intermittency: At 475 � Re < 505 (red), the flow
exhibits intermittency by alternating between chaotic and pe-
riodic epochs. This can be seen directly in the time series of v

at Re = 490 [Fig. 3(q)], where high-amplitude chaotic bursts
appear intermittently over mid-amplitude periodic epochs.
The phase portrait [Fig. 3(r)] and Poincaré map [Fig. 3(s)] also
reveal that the system switches between a limit-cycle attractor
(an inner closed loop) and a strange attractor (outer orbit). If
the phase trajectory is initially near the limit-cycle attractor, it
stays there for a while, then bursts out to the strange attractor,
but is reinjected later. As Re increases, the chaotic epochs
lengthen in time, eventually causing the flow dynamics to be
dominated by sustained chaos.

Next, we identify the specific type of intermittency present
in the asymmetric channel. We show in Fig. 4(a) the time
series of v at Re = 490 to illustrate chaotic bursts appearing
over a background of periodic epochs. We also show the prob-
ability distribution P of the duration of the periodic epochs
[i.e., the interchaos time, tP; Fig. 4(b)], the recurrence plot
[Fig. 4(c)], the power spectral density (PSD) of the v time
series [Fig. 4(d)], the Poincaré section [Fig. 4(e)], and the
average inter-chaos time versus the normalized Re [Fig. 4(f)].
Figure 4(a) shows that the high-amplitude chaotic bursts are
interspersed among mid-amplitude periodic epochs. The PSD
[Fig. 4(d)] features a set of broadband components during the
chaotic bursts, but only two sharp peaks during the periodic
epochs (at f1, f2, and f2 � 2 f1). These observations reinforce
the view that this is a state of intermittency involving temporal
switching between periodic and chaotic epochs.

We determine the intermittency to be type-II of the
Pomeau-Manneville scenario [20]. This is based on four
pieces of evidence: (i) P decays according to a power law with
an exponent close to −2, which is estimated via nonlinear
least-squares regression [Fig. 4(b)] [45–49], (ii) the recur-
rence plot shows kitelike structures [Fig. 4(c)] [50–52], (iii)
the Poincaré section shows spiraling trajectories [Fig. 4(e)]
[53–55], and (iv) the average interchaos time is inversely pro-
portional to the normalized bifurcation parameter, < tP >∼
[(Re − Re0)/Re0]−1 [Fig. 4(f)] [47,53–56]; here Re0 = 475
corresponds to the onset of intermittency.

In summary, we have shown that both the Ruelle-Takens-
Newhouse and intermittency routes to chaos can arise in
the flow through an asymmetric wavy channel. We iden-
tified the intermittency as belonging to type-II of the
Pomeau-Manneville scenario [20]. We found that introducing
asymmetry in a wavy channel can enrich the complexity of
the flow dynamics, allowing for different routes to chaos.
Regarding real-world implications, it is known that massive
fatty deposition in the atrium can trigger disturbances and
atrial arrhythmias [27]. Our findings suggest that this may
occur because the deposition of fat in the atrium makes
its geometry more asymmetric, inducing chaotic flow at
lower Re.

C. Semiwavy channel

Moving on to the semiwavy channel [Fig. 5], we see
from the bifurcation diagram [Fig. 5(a)] that there are four

045103-5



DORANEHGARD, KARIMI, BORAZJANI, AND LI PHYSICAL REVIEW E 109, 045103 (2024)

FIG. 3. Ruelle-Takens-Newhouse and intermittency routes to chaos in the flow through an asymmetric wavy channel. The bifurcation
diagram is shown in (a). Five different states are highlighted: (b)–(f) black, a period-1 limit cycle, (g)–(k), yellow, T 2 quasiperiodicity, (l)–(p),
blue, low-dimensional chaos, (q)–(s), red intermittency, and (t)–(x), black, a period-5 limit cycle. Skipping (a), the columns show, from left to
right, the time series of v, the phase portrait, the one-sided Poincaré map, the correlation sum, and the slope of the correlation sum.

dynamical states: a fixed point (steady state) → a period-1
limit cycle → intermittency → chaos. As before, this
indicates the presence of the intermittency route to chaos. We
examine each state in turn.

(i) A fixed point (steady flow): For Re < 280 (brown), the
flow is still dominated by viscous effects, with no sign of
self-excited oscillations. We find that flow in the semiwavy
channel remains steady for higher Re values than those in the
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FIG. 4. Type-II intermittency in the flow through an asymmetric wavy channel at Re = 490: (a) the time trace of v showing chaotic bursts
amidst a periodic background, (b) the probability distribution of the interchaos time, (c) the recurrence plot featuring kitelike structures, (d) the
PSD where the periodic epochs are dominated by narrowband components at f1 and f2 ( f2 � 2 f1) and the chaotic bursts are dominated by
broader peaks, (e) the Poincaré section featuring spiraling patterns, and (f) the average interchaos time versus the normalized bifurcation
parameter.

symmetric and asymmetric channels of the previous sections.
This is attributed to the weaker adverse and favorable pressure
gradients arising from the flat bottom surface of the semiwavy
channel.

(ii) Period-1 limit cycle: An increase in the Reynolds
number (280 � Re < 845, black) causes the flow to become
self-excited, transitioning to a period-1 limit cycle at a domi-
nant frequency of f � 0.520 Hz. The regularity of the v time
trace at Re = 600 [Fig. 5(b)] supports this view, as does the
closed orbit in the phase portrait [Fig. 5(c)] and the single
intercept in the one-sided Poincaré map [Fig. 5(d)]. Fig-
ures 5(e) and 5(f) show that Dc � 1 over 10−3 < R/Rmax <

0.6, confirming the presence of periodicity. The periodicity
is relatively robust, covering a wider Re window than for the
cases of the symmetric and asymmetric channels.

(iii) Intermittency: For 845 � Re < 885 (red), the data
points in the bifurcation diagram become more scattered,
with the time trace at Re = 860 [Fig. 5(g)] exhibiting
high-amplitude chaotic bursts amidst a background of low-
amplitude periodic epochs. This is the classic sign of
intermittency. The phase portrait [Fig. 5(h)] and the one-sided
Poincaré map [Fig. 5(i)] show that at the onset of intermit-
tency (i.e., the first sign of chaotic bursts), the phase trajectory
moves away from the vicinity of the inner periodic orbit and
towards several irregular outer orbits belonging to a strange
attractor. Once a chaotic burst ends, however, the phase tra-
jectory is reinjected to the neighborhood of the periodic orbit
(inner loops). As Re increases, the chaotic bursts appear more
frequently and with a longer duration, until they dominate the
flow motion at the upper Re limit of the intermittency window.
A detailed analysis of the intermittency characteristics, similar
to that conducted for the asymmetric channel [Fig. 4], will be
presented in Fig. 6.

(iv) Chaos: For Re � 885 (blue), the data points in
the bifurcation diagram become even more scattered. The
v time series at Re = 960 [Fig. 5(j)] produces complex
fractal structures in phase space [Figs. 5(k) and 5(l)]. Fig-
ures 5(m) and 5(n) show that Dc � 4.4 (a noninteger) over
0.07 < R/Rmax < 0.1, confirming the presence of a strange
attractor.

Next, we identify the specific type of intermittency present
in the semiwavy channel. Figure 6(a) shows the time trace of v

at Re = 860, where high-amplitude chaotic bursts can be seen
appearing intermittently over a background of low-amplitude
periodic epochs. Figure 6(b) shows that P decays according
to a power law with an exponent close to −2, indicating
the presence of type-II intermittency [45–49]. The recurrence
plot is seen to contain kite-like structures [Fig. 6(c)], pro-
viding further evidence of type-II intermittency [50–52]. The
PSD reveals that the chaotic bursts contain a broad range
of frequencies, while the periodic epochs are dominated by
three sharp peaks at commensurate frequencies [Fig. 6(d)]:
f2 ≈ 2 f1 � 0.474 Hz, and f3 ≈ 3 f1 � 0.711 Hz. Further ev-
idence of type-II intermittency can be found in the spiraling
patterns of the Poincaré section [Fig. 6(e)] [53–55]. Finally, an
examination of the average interchaos time [Fig. 6(f)] reveals
that it is inversely proportional to the normalized bifurcation
parameter, < tP >∼ [(Re − Re0)/Re0]−1, further substantiat-
ing the presence of type-II intermittency [47,53–56]. Here,
Re0 = 845 is the Reynolds number at the start of the inter-
mittency window.

In summary, we have shown that the flow through a
semiwavy channel can transition to chaos via the intermit-
tency route. The intermittency is determined as conforming
to type-II of the Pomeau-Manneville scenario [20]. Com-
pared with the symmetric and asymmetric channels, the

045103-7



DORANEHGARD, KARIMI, BORAZJANI, AND LI PHYSICAL REVIEW E 109, 045103 (2024)

FIG. 5. Intermittency route to chaos in the flow through a semi-wavy channel. The bifurcation diagram is shown in panel (a). Three different
states are highlighted: (b)–(f), black, a period-1 limit cycle, (g)–(i), red, intermittency, and (j)–(n), blue, low-dimensional chaos. Skipping (a),
the columns show, from left to right, the time series of v, the phase portrait, the one-sided Poincaré map, the correlation sum, and the slope of
the correlation sum.

semiwavy channel is found to have a wider window of
period-1 dynamics, implying that it is more difficult to
activate additional degrees of freedom in this specific
geometry.

As a final remark, we observe unstable invariant sets for the
semiwavy channel. In the vicinity of an unstable invariant set,
the phase trajectory is attracted towards it in some directions,
but is repelled in other directions [57]. Identifying the exis-
tence of unstable invariant sets is important because it could
help researchers understand, predict and control the pathways
and mechanisms governing the evolution of a nonlinear dy-
namical system from one state to another [58]. The role of
unstable invariant sets is well known in the hydrodynamics
community, especially in the context of turbulence transition
in pipe flow [59], but we believe that they have not, until now,
been observed in wavy-channel flow.

Figure 7 shows the temporal dynamics of the flow through
the semiwavy channel at Re = 835 and 840. For both values
of Re, the system is first attracted to a quasiperiodic attrac-
tor (orange) but is then repelled to a high-amplitude state

associated with a chaotic saddle (blue). The system remains
near this unstable invariant set for a short period, before
eventually settling on a period-1 limit-cycle attractor (black).
The observation that the unstable chaotic state exhibits higher
amplitude bursts at higher Re is consistent with the data
in Fig. 5.

D. Flow pattern and friction factor

Figure 8 shows the instantaneous and time-averaged
streamlines and contours of the dimensionless streamwise
velocity for all three channels at different Re, along with their
corresponding dynamical state and friction factor ( f ). The
blue, green, and red regions indicate reversed flow (u/u0 <

0), decelerated flow (0 < u/u0 < 1), and accelerated flow
(u/u0 > 1), respectively.

For the symmetric channel (top two rows of Fig. 8), at
Re = 190, only minor differences arise between the instan-
taneous and time-averaged flow patterns owing to the low Re.
The instantaneous contours of the accelerated flow (central jet
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FIG. 6. Type-II intermittency in the flow through a semiwavy channel at Re = 860: (a) the time trace of v showing chaotic bursts amidst
a periodic background, (b) the probability distribution of the interchaos time, (c) the recurrence plot featuring kitelike structures, (d) the PSD
where the periodic epochs are dominated by narrowband components at f1, f2 and f3 ( f2 � 2 f1 and f3 � 3 f1) and the chaotic bursts are
dominated by broader peaks, (e) the Poincaré map featuring spiraling patterns, and (f) the average interchaos time versus the normalized
bifurcation parameter.

in red) exhibit an undulating pattern, with a significant extent
of reversed flow (blue regions) relative to higher Re, which
increases the flow resistance and thus f . Two large vortices
appear, one in the top groove and the other in the bottom
groove. When Re = 450 (quasiperiodicity), the instantaneous
contours of the accelerated flow show higher amplitudes,
consistent with the time series shown in Fig. 2(g). The re-
duction in f for Re > 190 is due to a smaller reversed flow
region, a delay in flow separation, and earlier reattachment.
This observation is consistent with the findings of Nishimura
et al. [25], where for Re > 230, f experiences only minor

variations. Meanwhile, the time-averaged contours show that
the structure of the two large vortices in the grooves is main-
tained. However, for Re > 450, two small vortices appear
in the top and bottom grooves. At Re = 530 (period-2 limit
cycle), the accelerated flow (central jet) in the instantaneous
contours exhibits more pronounced undulations, but the struc-
ture of the two main vortices is still recognizable. At Re =
610 (period-4 limit cycle), the upper vortex is distorted and the
central jet exhibits even more marked undulations, indicating
more irregular dynamics at higher Re. At Re = 700 (chaos),
the central jet becomes highly distorted and the two main

FIG. 7. Evidence of an unstable invariant set (chaotic saddle) in the flow through a semiwavy channel at two different Re values: (a)–
(c) Re = 835 and (d)–(f) Re = 840. From left to right, they show the time trace of v, the phase portrait, and the Poincaré map.
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FIG. 8. Instantaneous and time-averaged streamlines and streamwise velocity contours for the three channel geometries. The blue, green,
and red regions denote reversed flow (u/u0 < 0), decelerated flow (0 < u/u0 < 1), and accelerated flow (u/u0 > 1), respectively. Pk , period-k
limit cycle; QP, quasiperiodicity; C, chaos; I , intermittency.

vortices are destroyed, consistent with the presence of a
strange attractor.

For the asymmetric channel (middle two rows of Fig. 8),
higher shear stresses lead to higher f at all Re relative to the
symmetric channel. Simulation data shown in Appendix A
support this observation, as the velocity profile is symmetric
for the symmetric channel [see Fig. 9(a)] but asymmetric for
the asymmetric channel [see Fig. 9(b)]. The asymmetry in
the velocity profile causes a stronger velocity gradient and
hence a higher f . At Re = 190 (period-1 limit cycle), the
instantaneous and time-averaged contours appear similar,
with two large vortices present in the top and bottom grooves.
For Re > 190, f decreases to a relatively constant value,
similar to the case of the symmetric channel. At Re = 350
(quasi-periodicity), the central jet and the two main vortices
become distorted, while for Re > 350, a small (third)
vortex emerges in the bottom groove. At Re = 450 (chaos),
the instantaneous contours reveal that the central jet and
the vortices are modified such that different vortices are
dispersed within the grooves. At Re = 490 (intermittency),
the instantaneous contours show a moderate level of distortion
of the main vortices and the central jet. At Re = 550 (period-5

limit cycle), the upper vortex and the central jet are highly
disrupted, consistent with the emergence of chaos at higher Re
[see Fig. 3(a)].

For the semiwavy channel (bottom two rows of Fig. 8),
contrary to the other two channels, f increases with increasing
Re owing to the flat bottom surface, which promotes bound-
ary layer development and enhances momentum diffusion. At
Re = 600 (period-1 limit cycle), the instantaneous contours
reveal that the central jet is largely straight, with the single
groove hosting a large vortex. However, in the time-averaged
contours, this main vortex appears as two vortices next to
each other. At Re = 860 (intermittency), the instantaneous
contours show a moderate level of distortion of both the
main vortex and the central jet, indicating more irregularity
at higher Re. Finally, at Re = 960 (chaos), the central jet and
the main vortex become highly distorted, consistent with the
dominance of chaos.

It is worth noting that the study of fluid flow in two
dimensions serves as a simplified yet valuable approach to
understanding the fundamental flow physics. By focusing on
two-dimensional simulations, we can isolate complex flow
phenomena in a more controlled setting, which would be more
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FIG. 9. Grid independence check using the dimensionless streamwise velocity profile u/u0 for the (a) symmetric, (b) asymmetric, and
(c) semiwavy channels.

computationally expensive and difficult to interpret than if it
were done in three dimensions.

It is also important to recognize the limitations of
two-dimensional simulations. Real-world flows are inherently
three dimensional, and many flow phenomena—such as
turbulence, vortex dynamics and secondary flows—can
only be fully captured in three-dimensional simulations.

FIG. 10. Computational domain for the (a) symmetric, (b) asym-
metric, and (c) semiwavy channels.

Therefore, while two-dimensional simulations can provide
valuable insights into the underlying physics and can guide
the development of theoretical models, they should always
be supplemented with three-dimensional simulations in order
to gain a complete representation of the real-world flow
behavior [60]. Nevertheless, the two-dimensional assumption
remains valid at low Re for two-dimensional geometries
in which the flow is laminar or at the onset of transition,
such as the flow over a cylinder at Re � 200 [61,62] or
the flow through a two-dimensional channel at Re � 1000
[63,64]. Thus, the two-dimensional assumption should be
valid in this study as the Re values used are relatively low
(Re � 1000).

As for the relation between two- and three-dimensional
simulations, it is generally accepted that two-dimensional
simulations can provide qualitatively similar flow patterns
to three-dimensional simulations for laminar and transitional
flows. However, quantitative differences can be significant
for fully turbulent flows. The absence of streamwise vortices
and three-dimensional coherent structures in two-dimensional
flow tends to lower the Re value at which the transition
from laminar to turbulent flow occurs [65]. Therefore, we
do not expect the two-dimensional assumption to affect our
conclusions, but it may have reduced the Re value at which
transition occurs.
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FIG. 11. Validation of our numerical framework via streamlines:
(a), (c) our simulations and (b), (d) those by Harikrishnan et al. [9].

V. CONCLUSIONS

In this study, we have numerically investigated the
two-dimensional, laminar, incompressible, isothermal flow
through a wavy channel, with a focus on the effects of channel
geometry on the nonlinear dynamics and routes to chaos. Us-
ing an array of tools from dynamical systems theory, we found
the period-doubling route to chaos in a symmetric channel,
the Ruelle-Takens-Newhouse route in an asymmetric channel,
and the intermittency route in both asymmetric and semiwavy
channels. Regardless of the channel geometry, we determined
that the intermittency present in the system conforms to type-
II of the Pomeau-Manneville scenario. For the semiwavy
channel, we showed that the flow can transition from an initial
quasiperiodic state to a final period-1 limit-cycle state via
an unstable invariant set (chaotic saddle). These results show
that breaking the symmetry of a wavy channel cannot only
change the critical Reynolds number required for chaos, but
also introduce new bifurcations en route to chaos itself. This
study could open up new directions for the prediction and
management of chaotic flow oscillations in various biological
and technological systems containing wavy channels, such as
micro-combustors and the human heart.
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APPENDIX A: GRID INDEPENDENCE CHECK

A grid independence check is performed on the symmetric,
asymmetric and semiwavy channels using the dimensionless
streamwise velocity profile at a specific x location. For the
symmetric channel [Fig. 9(a)], a line probe is used to record
the streamwise velocity component at x = L/2 for Re = 670
with three different grids, where the number in brackets indi-
cates the cell count: G1 (0.49 × 104), G2 (1.69 × 104), and G3

(2.21 × 104). From Fig. 9(a), we find a maximum difference

FIG. 12. Validation of our numerical framework via nondimen-
sional z-vorticity contours: (a), (c) our simulations and (b), (d) those
by Harikrishnan et al. [9].

of 8.14% between G1 and G2, and of 0.59% between G2

and G3. Therefore, G2 is chosen for our simulations of the
flow in the symmetric channel. For the asymmetric channel
[Fig. 9(b)], a line probe is used to record the streamwise
velocity component at x = 3L/8 for Re = 570 with three
different grids: G4 (0.69 × 104), G5 (2.31 × 104), and G6

(4.56 × 104). From Fig. 9(b), we find a maximum difference
of 8.54% between G4 and G5, and of 0.31% between G5

and G6. Therefore, G5 is chosen for our simulations of the
flow in the asymmetric channel. For the semiwavy channel
[Fig. 9(c)], a line probe is used to record the streamwise
velocity component at x = L/2 for Re = 900 with three
different grids: G7 (0.41 × 104), G8 (1.78 × 104), and G9

(3.25 × 104). From Fig. 9(c), we find a maximum difference
of 10.27% between G7 and G8, and of 0.52% between G8 and
G9. Therefore, G8 is chosen for our simulations of the flow in
the semiwavy channel.

Figure 10 shows the computational domain, where grid
G2, G5, and G8 are used, respectively, for the symmet-
ric [Fig. 10(a)], asymmetric [Fig. 10(b)], and semiwavy
[Fig. 10(c)] channels. The maximum value of y+ is approx-
imately 0.18.

APPENDIX B: VALIDATION OF THE NUMERICAL
FRAMEWORK

To validate our numerical framework, we compare in
Fig. 11 the streamlines computed in our simulations with
those reported by Harikrishnan et al. [9]. Comparisons at
both Re = 200 [Figs. 11(a) and (b)) and Re = 280 [Fig. 11(c)
and (d)) show that the locations of flow separation and
reattachment match well between our simulations and
those by Harikrishnan et al. [9]. Figure 12 compares our
nondimensional z-vorticity contours, ωzH/u0, with those
reported by Harikrishnan et al. [9] at Re = 220 [Figs. 12(a)
and 12(b)] and Re = 260 [Figs. 12(c) and 12(d)]. Again,
good agreement is found, demonstrating the reliability of our
numerical framework.
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