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Optimal external forces of the lock-in phenomena for flow past an inclined
plate in uniform flow
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We theoretically studied the optimal control, frequency lock-in, and phase lock-in phenomena due to the
spatially localized periodic forcing in flow past an inclined plate. Although frequency lock-in is evident in
many fluid phenomena, especially fluid-structure interactions, not many researchers have investigated it using
a theoretical approach based on flow details. We obtained detailed information on the lock-in phenomena to
external periodic forcing using phase reduction theory, a mathematical method for extracting the dynamics near
the limit cycle. Furthermore, the optimal forces applied to the velocity field were determined under the condition
of the minimum forcing energy and maximum lock-in range. The study of uniform periodic forces applied
within spatially confined regions led to the conclusion that the effective lock-in position, which includes both
the upstream and downstream areas of the plate, depends on the principal frequency of the force. The frequency
lock-in range of these forces was analyzed and compared with theoretical predictions.
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I. INTRODUCTION

Effective flow control is demanded in many research areas,
e.g., fluid engineering, nonlinear physics, and environmental
research. In particular, the frequency lock-in and the phase
lock-in under external periodic forcing have been investigated
in the context of fluid-structure interactions. Examples of such
interactions are spring-suspended airfoils in transonic flows in
terms of aircraft vibration due to the shock wave oscillation
[1,2], spring-suspended cylinders exerted by random waves in
terms of fatigue and failures of structures in offshore systems
[3], and various problems in flow-induced vibrations [4,5].

When an external periodic force is applied, the lock-in
details can be provided through laboratory experiments and
time evolution of computational fluid dynamics. It has been,
however, difficult to determine the optimal form of the ex-
ternal force to achieve the lock-in phenomena even if the
forces are weak, as it requires complete information of the
flow response to external perturbations. Thus, it would be very
helpful if we could design the external force to be considered
as a control input.

A mathematical tool called phase reduction theory can be
used for this purpose. It can be applied to a dynamical system
with a limit cycle (LC) and describes the essential dynamics
near the LC. The reduced equation (called phase equation)
has few degrees of freedom [6]. Phase reduction theory has
been successfully applied to various rhythmic phenomena
[7] in mechanical vibration (synchronization of metronomes
[8]), ethology (synchronization of flashing fireflies [9,10]),
biology (circadian rhythms [11,12]), etc. Compared with the
applications in mechanical engineering and life sciences, its
applications to fluid mechanics are under development; e.g.,
thermal convection [13,14], Kármán’s vortex streets [15–21],
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wake on a wing [20–23], and other phenomena [24–27]. We
note that periodic vortex shedding is observed past inclined
wings when the Reynolds number is O(102) [28].

In phase reduction theory, complete information of the
phase response can be obtained from the phase sensitiv-
ity function (PSF) [6,29]. Thus far, three techniques have
been proposed to calculate the PSF, i.e., the direct method
[15,17–20], the adjoint method [13,14], and the Jacobian-free
projection method [16,22,30]. The theoretical background of
these methods can be found in Refs. [22,29].

The direct method measures the phase shift due to pertur-
bation by time evolution and is suitable for cases where phase
shifts due to a small number of degrees of freedom are of
interest. However, the accuracy of the phase-shift measure-
ment is limited by the time step of the numerical calculation
and requires a sufficiently long time for convergence. The
adjoint method obtains the PSF using time evolution of the
adjoint equation derived from the equation. This provides a
convenient computational procedure, although the derivation
of the adjoint equation is not always possible. The Jacobian-
free projection method can be used to obtain the PSF by
computing the eigenvector of the matrix constructed by time
evolution alone. It can be applied to the system from which
the adjoint equation is difficult to derive, although the limit
cycle solution is required and the computational cost is higher
than the adjoint method (yet lower than the direct method).

In the lock-in phenomena due to the periodic external
forcing, the phase reduction theory can provide predictions,
such as the frequency range of the external forcing for the
frequency lock-in and the phase difference for the phase
lock-in [29]. Furthermore, the optimal form of the external
forcing under various conditions can be calculated as a con-
strained optimization problem [31–35]. The optimal forms of
the external forcing for Kámán vortex streets were studied.
Khodokar and Taira calculated the largest lock-in region for
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FIG. 1. (a) Model configuration. An inclined plate is placed in the wind tunnel. A uniform external force was applied within a rectangular
area of size lx×ly centered at (xc, yc ). (b) Computational grid and the plate model. Grid lines are drawn on every other line for visibility.

a sinusoidal form 1 + sin �t applied at a single point. They
found that the best point to be near the separation point [17].
Khodokar et al. studied the case where the cylinder is moving
in uniform flow [18]. Loe et al. studied the synchronization
between the wake behind a two-dimensional (2D) cylinder in
a tube and the vibration of elastic walls in a sinusoidal form
[19]. The lock-in region was maximized when the perturba-
tion occurred near the downstream end of the cylinder.

Here, we considered the optimal forcing of the temporally
periodic form applied uniformly to a spatially confined region.
Based on the spatial distributions of the PSF for both the
cylinder and the plate [22,36], the phase shift property due to
perturbation has a complex spatiotemporal structure. This fact
implies that the practical control of the flow based on simple
control inputs, e.g., spatially uniform input within a confined
area and a temporally simple (e.g., sinusoidal) function rather
than an optimized waveform, may provide us different lock-in
properties from the optimized input by a pointwise designable
function. Such a study will provide insights into the appropri-
ate region and frequency, especially for fluid engineering.

In this study, we investigated the lock-in phenomena
of the flow past the inclined plate in a wind tunnel in
two-dimensional space. First, we analyzed the qualitative
characteristics of the PSF, which are useful for designing the
control input. Specifically, the details of the phase response to
the external forces were described by using temporal Fourier
decomposition of PSF, which has not been used so far. These
results were used to tackle the lock-in problem for a uniform
periodic external force within a confined region. We aimed to
answer the following questions:

(1) Where is the optimum region for the lock-in?
(2) How does this position depend on the principal fre-

quency and the direction of the force?
We showed that the optimal position depends on the prin-

cipal frequency and the direction of the force. The optimal
position may be away from the surface of the plate. These
results were compared with the theoretical prediction, which
provides the maximum lock-in range under the constant en-
ergy of a external force and the minimum energy.

II. METHOD

A. Fluid dynamics

The flow past a flat plate in a wind tunnel in two-
dimensional space [Fig. 1(a)] was considered. The flow is

governed by the incompressible Navier-Stokes equations in
a nondimensional form:

∂u
∂t

+ u · ∇u = −∇p + 1

Re
�u + f (x,�t ), ∇ · u = 0,

(1)

where u = (u, v) denotes the velocity, p denotes the pressure,
and Re denotes the Reynolds number. The time-periodic exter-
nal force is denoted by f = ( fx, fy) and the angular frequency
is denoted by �. The uniform flow is represented by u0 =
(u0, v0) = (1, 0). The system was assumed to be in a tunnel
of width 4c, where c (=1) is the cord of the plate. The system
is nondimensionalized by c as the length scale and c/u0 as the
timescale; Re = u0c/ν, where ν is the kinematic viscosity.

The computational domain was [0, 6c] × [0, 4c] to reduce
the computational cost of calculating the functions describing
the detailed phase response to an external force [Fig. 1(b)].

The following boundary conditions were applied: A con-
stant velocity u0 was applied at the domain boundaries x = 0,
y = 0, and y = 4c. The outflow boundary condition proposed
by Dong et al. [37], which aims at minimizing the domain
truncation, was applied at the boundary x = 6c.

In the following sections, the optimal external forces were
considered. In addition to the optimal forces predicted by the
phase reduction theory (Secs. II C 1 and II C 2), the optimal
position was considered to maximize the frequency lock-in
region under the condition of uniform external force within a
rectangle of size lx × ly centered at (xc, yc) [Fig. 1(a)].

To solve Eq. (1), a fractional step method was used.
The finite-volume method was used for spatial discretization
[38]. The Adams–Bashforth scheme and the Crank–Nicolson
scheme were used for time integration of the advection terms
and that of the dissipation terms, respectively. The flat plate
was represented by an immersed boundary method [39]. The
computational code was the same as that used in Ref. [22].

The center of the plate was set to (x, y) = (2c, 2c) and the
angle of attack (AoA) was set to π/4. The Reynolds number
Re was set to 200. An unequal and orthonormal grid was
used, although the grid spacing in the region around the plate
was uniform at c/30 [Fig. 1(b)]. The number of grid points
was nx × ny where nx = 160 and ny = 120. In this setup, the
periodic flow was achieved and phase reduction theory can be
applied.
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The calculation scheme was compared with the spectral
element method, in which the computational domain was
divided into quadrilateral elements, and physical quantities
were represented using the spectral method [40]; their re-
sults agreed reasonably well with each other (Appendix A).
In addition, we concluded that the phase sensitivity vector
(see Sec. II B) near the plate was less sensitive to the size of
the wind tunnel (Appendix B).

The periodic solution without external force was obtained
numerically using the Newton–Raphson method [41] under
the condition where the relative errors of both the residue and
the increment of the iteration were less than 10−10. The period
was T = 3.439 58 when a single period was segmented into
1408 = 27×11 time steps. The origin of the phase was set as
the time at which the maximum lift was attained.

The Jacobian-free projection method [22] was used to
obtain the projected phase-sensitivity function. In this calcu-
lation, we focused on the response to the perturbation of the
velocity components, u = (u, v) alone, whereas the responses
to the pressure and variables in previous time steps were not
calculated. The Ritz value, an indicator for the convergence of
the projection field [22], was 6.59×10−3 at the origin of the
phase, which was reasonably small for the analysis.

B. Phase reduction theory

We analyzed an autonomous dynamical system with an
external periodic force F(�t ):

dX
dt

= G(X ) + F(�t ), (2)

where X ∈ RM is the state in the M-dimensional phase space,
G determines the autonomous dynamics system, and F(�t )
is the time-periodic external force with angular frequency
� and period T = 2π/�, i.e., F(�(t + T )) = F(�t ). We
assumed a weak external force to apply phase reduction the-
ory. According to the phase reduction theory [6,7], the phase
equation derived from Eq. (2) reads

dφ

dt
= ω + Z(φ) · F(�t ), (3)

where φ ∈ [0, 2π ) is the phase, ω is the natural frequency, and
Z(φ) is the phase sensitivity function.

We related X to the flow field data. Suppose that the space
is discretized by nx × ny, the position x = (x, y) can be la-
beled by n(= nxny) indices x1, . . . , xn. In the same way, the
velocity field (u, v) is discretized to construct X as

X = (u1, . . . , un, v1, . . . , vn) (M = 2n), (4)

where u j and v j are the values of u and v at x = x j , re-
spectively. The external force applied to the fluid f (x,�t ) is
related to F(�t ) as

F(�t ) = ( fu(x1,�t ), . . . , fu(xn,�t ),

fv (x1,�t ), . . . , fv (xn,�t )). (5)

In the formal calculation, X contains more variables, the
pressure p, and the variables that used in the numerical al-
gorithm when the multistep method is used for time evolution
(cf. Sec. II A, Ref. [22]).

The phase sensitivity vector, q(x, φ) = (qu(x, φ),
qv (x, φ)), describes the phase shift due to the unit force
at the position x at the phase φ. The phase shift due to the
perturbation �u δ(x − x0), where �u and δ(x) represent
a constant perturbation vector and the three-dimensional δ

function, respectively, is expressed as �u · q(x0) [16].
The relationship between q(x, φ) and Z(φ) is

Z(φ) = (qu(x1, φ)�S1, . . . , qu(xn, φ)�Sn,

qv (x1, φ)�S1, . . . , qv (xn, φ)�Sn), (6)

where �S j ( j = 1, . . . , n) is the area allocated for the grid
point x = x j .

When the external force F(�t ) is weak, the phase equa-
tion is reduced to the following equation by the averaging over
one period [6,29]:

dψ

dt
= �ω + �(ψ ), (7)

�(ψ ) = 1

2π

∫ 2π

0
Z(θ + ψ ) · F(θ )dθ [= 〈Z(θ + ψ ) · F(θ )〉],

(8)

where ψ = φ − �t is the phase difference between the system
and the external force, and �ω = ω − � is the frequency
difference. The function �(ψ ) is called the phase coupling
function.

Scaling of variables in relation to the level of discretization,
denoted n, is examined below. As both qi(x j, φ) and fi(x j,�t )
(i = u, v; j = 1, . . . , n) are independent of n, Eqs. (6) and
(8) imply that Z(φ) � S/n ∼ n−1 and �(ψ ) ∼ n0, where S =
lxly = ∑n

k=1 �Sk . Therefore, the magnitude of Z(φ) depends
on the value of n while �(φ) remains constant in the current
formulation.

Equation (7) implies that the frequency lock-in occurs
when

�min < �ω < �max,

�min = min
0�ψ<2π

�(ψ ),

�max = max
0�ψ<2π

�(ψ ). (9)

For later convenience, we define

ψ+ = arg max�(ψ ), ψ− = arg min�(ψ ). (10)

For further analysis, we decompose f (x,�t ) and q(x, ωt ) into
Fourier series:

f (x,�t ) =
∞∑

m=−∞
f̃ (x; m)eim�t ,

q(x, ωt ) =
∞∑

m=−∞
q̃(x; m)eimωt , (11)

where f̃ and q̃ are Fourier components of f and q, respec-
tively. Similarly, we decomposed F(φ) and Z(φ) into Fourier
series:

F(φ) =
∞∑

m=−∞
F̃(m)eimφ, Z(φ) =

∞∑
m=−∞

Z̃(m)eimφ. (12)
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Subsequently, Eq. (8) provided the expression of �(ψ ) as

�(ψ ) =
∞∑

m=−∞
Z̃(m) · F̃

∗
(m)eimψ, (13)

where ∗ represents the complex conjugate. Equation (13) in-
dicates that Z̃(m) determines the response to the mth mode
of external force, F̃

∗
(m). In Sec. III, we discuss spatial distri-

bution of strong-response region for the external forces with
different modes in detail.

For F(t )=εF0 sin(kt ), �(ψ )=−ε|F0 · Z̃(k)| sin(kψ+ϕ),
where ϕ= arg(F0 · Z̃(k)). Consequently, �max = ε|F0 · Z̃(k)|.
Furthermore, if certain components of F0 are zero, the cor-
responding components of Z̃(m) do not contribute to �(ψ ),
which directly follows from Eqs. (12) and (13).

Here, we consider a specific case which will be useful for
the following analysis (Sec. III B). We assume that (1) the
components of F0 are the same, i.e., F0 = ( f0, . . . , f0) ( f0

is a constant). (2) The amplitude of the component of Z̃(k)
are the same, while the arguments are not in general, i.e.,
Z̃(k) = (z(k)eiθ1 , z(k)eiθ2 , . . . , z(k)eiθn ) [z(k) is a constant and
θ j is an argument]. Then, we have

�max = ε| f0|z(k)

∣∣∣∣∣∣
n∑

j=1

exp
(
iθ j

)∣∣∣∣∣∣ � εn| f0|z(k), (14)

where the last equality holds when θ j is independent of j. Ge-
ometrically, the condition implies that the vectors representing
the components of Z̃(k) in the complex plane are parallel.
Similar analyses can be applied in the case that certain com-
ponents of F0 are zero.

C. Optimal external forces under several conditions

1. Case A: Minimum energy that enables lock-in phenomena

We considered an external force with minimum en-
ergy under the constraint of the lock-in phenomenon based
on Ref. [32]. To obtain the optimal force, we minimize
the Lagrangian function J±[F] = 〈|F|2〉 − λ[�ω + �(ψ±)].
A straightforward calculation provides the minimizers F±
for J± as

F±(θ ) = − �ω

〈Z2〉Z(θ + ψ±), (15)

where the subscripts + and − correspond to the cases � > ω

and � < ω, respectively. Thus, the external force with the
minimum energy is proportional to the phase sensitivity
function.

The energy of the external force, P = 〈|F±|2〉, is given by
P = �ω2/〈Z2〉. The coupling function �±(ψ ), corresponding

to ψ±, respectively, is calculated as

�±(ψ ) = 〈Z(θ + ψ ) · F±(θ )〉

= − �ω

〈Z2〉 〈Z(θ + ψ ) · Z(θ + ψ±)〉. (16)

The values of ψ± can be obtained by solving �′(ψ±) = 0. If
we define the function as

g(x) = 〈Z′(θ + x) · Z(θ )〉, (17)

the condition �′(ψ±) = 0 is equivalent to g(ψ − ψ±) = 0.
The following can be demonstrated:

g(x + 2π ) = g(x), g(−x) = −g(x), g(0) = g(π ) = 0.

(18)

The first two identities are a consequence of the definition
(17), whereas the last identity is derived from the first two
identities in Eq. (18). Any pair of (ψ+, ψ−) (ψ+ > ψ−) that
satisfies

g(�ψ ) = 0, �ψ = ψ+ − ψ− (19)

constitute a valid solution. In this study, ψ− = 0 is assumed.

2. Case B: Maximum lock-in region of frequency

We considered the external force that provides the max-
imum frequency lock-in region under the constraint of the
constant energy, based on Ref. [31]. The lock-in range R[F]
is defined as R[F] = �(ψ+) − �(ψ−), 〈|F±|2〉 = P, where
P is a constant. The Lagrangian function is J∗[F] = R[F] −
λ[〈|F|2〉 − P]. The minimizer F∗ is

F∗ = 1

2λ
[Z(θ + ψ+) − Z(θ + ψ−)], (20)

where the value of λ is given by λ = 1
2

√
Q/P, Q = 〈[Z(θ +

ψ+) − Z(θ + ψ−)]2〉. The coupling function �(ψ ) is

�(ψ ) = 1

2λ
〈Z(θ + ψ ) · [Z(θ + ψ+) − Z(θ + ψ−)]〉. (21)

The equation to determine ψ± is

g(ψ − ψ+) − g(ψ − ψ−) = 0, (22)

which is obtained by �′(ψ ) = 0. Property (18) gives

g(�ψ ) = 0. (23)

3. Case C: Uniform force in spatially localized area

In this paper, we place particular emphasis on the lock-in
phenomena induced by a time-periodic external force, de-
noted f (x,�t ), which is spatially uniform and acts within
a rectangular area of size lx × ly centered at xc = (xc, yc).
Specifically, this is defined as

f (x,�t ) = f u(�t )A(x), f u(�t ) = f u(�t + 2π ),

A(x) =
{

1 xc − 1
2 lx � x � xc + 1

2 lx, yc − 1
2 ly � y � yc + 1

2 ly

0 otherwise.
(24)
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FIG. 2. The velocity and vorticity fields. Snapshots at the phase φ/2π = k/8 (k = 0, 1, . . . , 7) are shown.

We highlight the followings key points: (1) In cases where
the force is consistently parallel to a constant vector f 0, we
can describe f u(t ) as

f u(t ) = ε ft (t ) f 0. (25)

The components of F(t ) outside the rectangular area are all
zero [cf. Eq. (5)]. Consequently, the coupling function �(ψ )
is solely determined by the values of q within the specified
rectangular area.

Finally, to address the optimization problems discussed in
Secs. II C 1 and II C 2 for the external force, as defined in
Eq. (24), Eqs. (15) and (20) can be used by assuming that
the components of Z corresponding to the components of f
outside the rectangle to be absent.

Periodic uniform forcing within a spatially localized area
is simple, however, the lock-in phenomena of flow past plate
for this type of forcing have not been analyzed so far. This
type of external forcing can provide a practical flow control
strategy. Furthermore, these characteristics above facilitate the
design and analysis of the optimal external force, as discussed
in Sec. II B the subsequent sections.

III. RESULT

A. Flow and phase sensitivity vector

In this section, the flow details and the phase sensitivity
vector field are described, and the optimal external forces for
the lock-in phenomena are discussed. In the present condition,
the flow converged to a periodic state. The vorticity fields
and the flow fields of the periodic solution are shown in Fig. 2,
where eight snapshots are shown with equal phase difference,
φ/(2π ) = k/8 (k = 0, 1, . . . , 7).

Leading edge vortex (LEV) and trailing edge vortex
(TEV) were generated periodically owing to the uniform flow
and their interactions with the plate. The LEV developed
(0 � k � 3) and splits owing to TEV growth (4 � k � 7).
Part of the LEV remains for the redevelopment.

In contrast, TEV develops (3 � k � 6) to be swept by the
flow induced by LEV (k = 7, 0) to pinch off (k = 2). The
volume (area) of the remaining TEV was not as large as that

of the LEV, and the main body of the TEV developed near
its trailing edge. Thus, major vortex interactions occurred on
the rear side of the plate. Figure 3 shows the phase sensitivity
vector field q(x, φ).

The region exhibiting a pronounced phase response to
the perturbation [|q(x, φ)| > 1.6] featured a distinctive spa-
tial structure characterized by narrow, curve-like formations.
Similar structures of PSF are observed in the case of
NACA0012 wing with Re = 100 flow [21]. Although the spe-
cific configuration of these structures varies with the phases,
a typical pattern on the backside of the plate comprises
two nearly parallel curve-like structures [e.g., marked as “a”
in Fig. 3 (k = 1)]. Furthermore, stronger response regions
[|q(x, φ)| > 3.2] were primarily observed close to the leading
edge, the trailing edge, and the region behind the plate where
LEV and TEV interact.

When comparing the vortex dynamics with the structure of
the phase response vector, a portion of the influence of q(x, φ)
can be attributed to the evolution of the flow, as outlined
below. However, all aspects of the flow evolution are not cap-
tured by q(x, φ). The vortex fields shown in Fig. 2 (k = 1) and
(k = 2) reveals certain features, and only the size of the LEV
changes. The TEV flows downward and subsequently pinches
off. The flow field situated between LEV and TEV exhibits a
negative y direction, indicated by “A” in Fig. 2 (k = 1). Region
A shifts downstream, as shown in Fig. 2 (k = 2). Furthermore,
Fig. 3 (k = 1) illustrates that the perturbations advance the
phase. The structure of the phase sensitivity vector in the
negative y flow region weakens the flow in the vicinity of
the near-plate part of region A, while it strengthens the flow in
the far-plate part. This alternation encourages a change in the
flow behavior with respect to that observed at k = 2.

Another consequence of q(x, φ) is a modification in the
timing of the separation. The earlier pinch-off of the TEV
during Fig. 2 (k = 1) and (k = 2) occurs when the TEV ex-
hibits more rapid growth. This phenomenon is suggested by
the structure of q(x, φ) located upstream of the trailing edge,
denoted by “b” in Fig. 3 (k = 1). Unlike the previously men-
tioned double-curved structure, this region does not exhibit
such features.
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FIG. 3. The fields of the phase sensitivity vector. The contour indicates the magnitude |q(x, φ)|. Snapshots at the phase φ/2π = k/8
(k = 0, 1, . . . , 7) are shown.

B. Fourier spectrum of phase sensitivity vector

This section discusses the frequency decomposition of
the phase sensitivity vector, which is used to examine the
frequency-dependent characteristics. As each component of
q̃(x; m) = (q̃u(x; m), q̃v (x; m)) represents a field of the com-
plex number, we display q̃ j (x; m) (i = u, v) as a vector in
the form of (Re[q̃ j (x; m)], Im[q̃ j (x; m)]). In this presentation,
the magnitude of the vector, denoted |q̃ j (x; m)|, indicates the
strength of the phase sensitivity to sinusoidal perturbations
with angular frequency m� [cf. Eq. (13)]. The angle be-
tween the vector and the x axis corresponds to arg(q̃ j (x; m)).
Notably, the area in which the argument of a complex num-
ber is uniform (vectors are parallel) and the magnitude of
q̃u(x; m) [or q̃v (x; m)] is large and regarded constant sig-
nifies an area with a relatively pronounced phase response
to uniform forcing (see discussions in Sec. II C 3). The
response to the perturbation at the angular frequency �

is depicted in Figs. 4(a) and 4(b). The quantities q̃u(x; 1)
and q̃v (x; 1) identify different regions that exhibit a strong

FIG. 4. Phase responses to periodic forcing, q̃u(x; m) and
q̃v (x; m). Arrows and contours indicate the values (complex numbers
in a Gauss plane) and their amplitudes, respectively. (a) q̃u(x; 1),
(b) q̃v (x; 1), (c) q̃u(x; 2), (d) q̃v (x; 2).

response to the periodic perturbation. Specifically, regions
with large |q̃u(x; 1)| are predominantly situated downstream
of both the leading and trailing edges, whereas regions with
large |q̃v (x; 1)| are primarily found downstream of the middle
of the plate. In summary, the phases within these regions ex-
hibited relatively minor variations, suggesting that a uniform
periodic external force was effective when applied to each
of these distinct areas. However, notably, the specific phase
values depend on the region, implying that the lock-in phase
varies based on the location.

The response to a perturbation with an angular frequency
2� is depicted in Figs. 4(c) and 4(d). The overall mag-
nitude characteristics closely resembled those observed for
m = 1. However, slight shifts were observed in the specific
downstream regions, and the phase changed more rapidly
within each area compared with the m = 1 scenario. Notably,
a broader area upstream of the leading edge was observed
where |q̃v (x; 2)| assumed higher values [|q̃v (x; 2)| > 0.4].
In Sec. III C, the details of the response are discussed.
The response to the perturbation with an angular frequency
m� (m � 3) is depicted in Fig. 5. As the value of m increases,
both |q̃u(x; m)| and |q̃v (x; m)| decrease in magnitude. Appar-
ently for larger values of m, the region of strong response
remained close to the trailing edge, which is a result that the
magnitude of PSF is significant at k = 0 and 1 in Fig. 3 and
almost no contribution at other phases; the magnitude of the
PSF’s temporal change undergoes a sudden shift.

C. Lock-in details for case C: Uniform periodic
external forces in a rectangle region

1. Where is the best area for largest frequency range of lock-in?

We consider the frequency lock-in phenomenon induced by
uniform periodic external forces within a rectangular region,
as defined by Eqs. (24) and (25). Specifically, we concentrate
on the scenario where ft (t ) = sin mt , and f 0 = (1, 0) and
(0,1), forming a basis of R2. The sizes of the rectangular ar-
eas were selected as (lx, ly) = (1.0, 0.5) and (0.5, 1.0), which
closely matched those of the regions where |q̃u(x; m)| or
|q̃v (x; m)| exhibited significant values. By varying the position
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FIG. 5. Amplitudes of phase responses to periodic forcing |q̃u(x; m)| and |q̃v (x; m)| (3 � m � 6).

vector xc, we derived the scalar field �max = maxψ∈[0,2π]�(ψ )
as a function of xc, indicating the extent of the frequency
lock-in range.

Hereafter, the scalar field is denoted “�(m)
max,x for (lx, ly) =

(1.0, 0.5)” [the subscripts “x” and “y” of �max denote f 0 =
(1, 0) and f 0 = (1, 0), respectively], for instance. Figures 6(a)
and 6(b) depict �max for (lx, ly) = (1.0, 0.5) and m = 1 for
the external forces in the x and y directions, denoted as �(1)

max,x

and �(1)
max,y, respectively. The chosen rectangular dimensions

of 1.0×0.5 roughly resembled the region where |q̃u(x; m)| is
significant. In this context, the field of �(1)

max,x approximates
|q̃u(x; m)| to some extents. While the rectangle is not similar
to the region with large |q̃v (x; m)|, the maximum of �(1)

max,y is
comparable to �(1)

max,x since the argument of |q̃v (x; m)| exhibits
more uniformity compared with that of q̃u(x; m). The posi-
tions where �(1)

max,x and �(1)
max,y attain their maximum values are

detailed in Table I, demonstrating these maximum values to
be comparable.

Figures 6(c) and 6(d) depict �max for (lx, ly) = (1.0, 0.5)
and m = 2. As the phase changes rapidly within regions
where |q̃u(x; m)| or |q̃v (x; m)| assumes larger values, �(2)

max,x

FIG. 6. (a) The field of �(1)
max,x for (lx, ly ) = (1.0, 0.5) as a func-

tion of xc [x∗ = (2.079, 2.829); cf. Table I]. (b) Same as panel (a),
but for �(1)

max,y [x∗ = (1.553, 2.645)]. (c) Same as panel (a), but for
�(2)

max,x [x∗ = (2.079, 2.276)]. (d) Same as panel (c), but for �(2)
max,y

[x∗ = (1.289, 2.645)].

exhibits smaller values compared with |q̃u(x; m)| with a few
exceptional regions downstream and the upstream of the lead-
ing edge. Similar characteristics are observed for the �(2)

max,y

field. While the maximum value of �(2)
max,x is relatively higher

compared with other instances m = 2, the peak does not ex-
hibit broader support. Figures 7(a) and 7(b) depict �max for
(lx, ly) = (0.5, 1.0) and m = 1. Since the sizes of the rectan-
gle, 0.5×1.0, closely resembles the region where |q̃v (x; m)| is
significant, the �(1)

max,y field approximates |qv (x; m)| to some
extent. However, in this case, the rectangle does not resemble
a region with significant |qu(x; m)| values. Notably, the maxi-
mum value of �(1)

max,y(� 0.21) exceeds the maximum value of
�(1)

max,x (�0.13; Table I).
Figures 7(c) and 7(d) depict �max for (lx, ly) = (0.5, 1.0)

and m = 2. Although the �(2)
max,x field is generally weak,

the �(2)
max,y field exhibits a prominent peak in the up-

stream section of the leading edge. The maximum value of
�(2)

max,y(� 0.10) is comparable to the maximum value of �(2)
max,x

for (lx, ly) = (1.0, 0.5) (about 0.14). However, the strong re-
gion’s extent is broader. The broad lock-in region in the
upstream of the plate is characteristic of �(2)

max,y [for both
(lx, ly) = (1.0, 0.5) and (0.5,1.0)].

2. Arnold tongue: Two cases

We examine two cases: Cases I and II. (I) Maxi-
mizing the lock-in frequency range. We consider �(1)

max,y

TABLE I. The position of rectangle x∗ = (x∗, y∗) where maxi-
mum frequency lock-in is obtained and the maximum value of �max.

Mode (lx, ly ) x∗ y∗ Maximum value

�(1)
max,x (1.0, 0.5) 2.079 2.829 0.1794

�(1)
max,y (1.0, 0.5) 1.553 2.645 0.1587

�(1)
max,x (0.5, 1.0) 2.566 1.763 0.1321

�(1)
max,y (0.5, 1.0) 2.855 2.079 0.2142

�(2)
max,x (1.0, 0.5) 2.079 2.276 0.1420

�(2)
max,y (1.0, 0.5) 1.289 2.645 0.07749

�(2)
max,x (0.5, 1.0) 1.987 2.079 0.07769

�(2)
max,y (0.5, 1.0) 1.408 2.553 0.1045
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FIG. 7. Same as Fig. 6, but for (lx, ly ) = (0.5, 1.0). The positions
of the rectangles where maximum frequency lock-in is obtained
are as follows (cf. Table I): (a) x∗ = (2.566, 1.763). (b) x∗ =
(2.855, 2.079). (c) x∗ = (1.987, 2.079). (d) x∗ = (1.408, 2.553).

with (lx, ly) = (0.5, 1.0). We obtain �max = 0.2142 where
(x∗, y∗) = (2.855, 2.079) (Table I). The rectangular region
is located downstream of the plate. (II) Lock-in in the up-
stream region using an external force. We focus on �(2)

max,y
with (lx, ly) = (0.5, 1.0). We obtain �max = 0.1045 where
(x∗, y∗) = (1.408, 2.553) (Table I). Case II corresponds to a
2 : 1 frequency ratio lock-in induced by an external force.
In addition, the forcing region (rectangle) is situated in the
upstream of the leading edge, indicating that the perturbation
is advected toward the leading edge, leading to entrainment.
A similar large response region in the upstream is reported in
the case of the Kármán vortex street [16]. In this sense, this
case is interesting although the value of �(2)

max,x with (lx, ly) =
(1.0, 0.5) is larger among the examined cases among m = 2.

To determine the lock-in region, we conducted direct nu-
merical simulations with periodic external forces for either
500 periods (ε � 0.05) or 1000 periods (ε < 0.05). The ini-
tial conditions for these simulations were periodic solutions
in the absence of external forces. The period of the system
under the influence of an external force was determined by
the peak-to-peak duration of the lift coefficient. We calculated
the average of the last 100 periods to estimate the period and

the standard deviation to assess whether frequency lock-in
occurs. The angular frequency of the system under the in-
fluence of the external force, as obtained through numerical
simulation, is denoted ωsim.

To show the change of the aerodynamic characteristics
in lock-in states, the relative deviation of the lift coefficient
from its nonperturbed state, δ = (CL − CL,0)/CL,0 is also cal-
culated, where CL and CL,0 are the mean lift coefficients with
perturbed and nonperturbed states, respectively; the mean val-
ues were calculated over the last ten periods of the entire
simulation.

Figure 8(a) shows the lock-in region for Case I in the
�ω-ε plane. The blue triangles represent instances where
the frequency lock-in was observed, with the condition:
|� − ωsim| < εe where εe = 1.0×10−4. Conversely, the gray
triangles indicate cases where the frequency lock-in was not
observed. The dashed lines delineate the boundary of the lock-
in region, as predicted by phase reduction theory [see Eq. (9)]
over the entire investigations of 0 � ε � 0.15. The predic-
tions of phase reduction theory align closely with the results
from direct numerical simulations. The relative deviation of
the lift coefficient δ is indicated by color symbols in Fig. 8(a).
The maximum of |δ| is 0.026. As a general trend, δ is neutral
(|δ| < 0.005) when ε � 0.025. When ε � 0.05, δ increases
slightly within the lock-in region as ε increases, and takes
negative or neutral values outside the lock-in region, although
some values do not follow. This trend may be comparable to
the root-mean-square value of the pressure loss coefficient in
fluidic oscillator synchronized by elastic vibration [27].

To examine the details of the lock-in phenomena, we dis-
played the values of � − ωsim in Fig. 9 for each ε. This
representation also highlights the good agreement between the
theoretical predictions and the simulation results.

Figure 8(b) shows the lock-in region for Case II in �ω-ε
plane. In this case, the theoretical predictions closely matches
the numerical results when ε � 0.05; however they deviate
from each other when ε > 0.05. The lock-in range for the
region where ε > 0.05 shifts to the higher-frequency side as ε

increases.
For the relative deviation of the lift coefficient δ, the max-

imum of |δ| is 0.011 and δ is neutral (|δ| < 0.0025) when
ε � 0.025. The trend when ε � 0.05 differs from that in

(a) (b)

FIG. 8. Arnold tongues. Broken lines indicate theoretical prediction of the lock-in. Blue triangles and gray triangles indicate the lock-in
state and no lock-in states, respectively. Relative deviation of the lift coefficient δ is indicated by colored symbols, circle with a vertical line.
Vertical positions of the symbols are shifted downward slightly for visibility: (a) Case I, (b) Case II.
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FIG. 9. Difference between the angular frequency of the external force and that observed in the simulation, � − ωsim, for Case I. The points
indicate the mean values, with vertical lines representing the standard deviations. Vertical broken lines indicate the theoretical boundary of the
lock-in region.

Case I. The value of δ is negative on the higher-frequency side
(�ω > 0) and neutral on the lower-frequency side (�ω < 0),
although positive values are observed near the boundary of the
lock-in region. This trend may be comparable to the maximum
value of the pressure-loss coefficient in a fluidic oscillator
synchronized by elastic vibration [27].

Examining the details of the lock-in phenomena, we dis-
played the values of � − ωsim in Fig. 10 for each ε.

D. Optimal external forces that achieves the frequency lock-in
and comparison with uniform force within the rectangle region

In this section, the optimal external forces in following
two distinct cases are discussed: (A) minimizing the energy
of the external force to achieve frequency lock-in, and (B)
maximizing the frequency range for lock-in with a constant
energy external force. These cases were previously introduced
in Sec. II C.

FIG. 10. Same as Fig. 9, but for Case II.

045102-9



MAKOTO IIMA PHYSICAL REVIEW E 109, 045102 (2024)

FIG. 11. (a) Graph of the function g(ψ ). There are four solutions ψ = 0, ψ∗, π , and 2π − ψ∗ for g(ψ ) = 0. (b) Graph of the function
�−(ψ ). The lowest angular frequency for lock-in is achieved at ψ = ψ−(= 0).

1. Coupling functions

Regarding Case A, the shapes of the coupling function (16)
for ψ± were identical with the only difference of the phase.
The phase difference �ψ can be determined from Eq. (19).
Assuming ψ− = 0 [Eq. (18)], one of the solutions is �ψ =
ψ+ = π .

Figure 11(a) shows the function g(ψ ). Four solutions were
obtained within the region [0, 2π ), including one nontrivial
solution ψ∗/(2π ) = 0.2980 (ψ∗ = 1.0249). Notably,
2π − ψ∗ also satisfies the equation according to Eq. (18).
Therefore, the complete set of solutions includes:
ψ = 0, ψ∗, π , and 2π − ψ∗.

Figure 11(b) shows the coupling function for ψ−(= 0) in a
nondimensional form by �ω. As expected, the lowest angular
frequency for lock-in is achieved at ψ = ψ−. For smaller
frequency differences, four lock-in phases were encountered.

Regarding Case B, the coupling functions defined in
Eq. (21) were obtained from the solution of Eq. (19). We
consider two specific cases ψ+ = π , denoted by �1, and
ψ+ = ψ∗, denoted by �2. These choices yield distinct cou-
pling functions, which are illustrated in Figs. 12(a) and
12(b), and which we display in a nondimensionalized form
by 1

2

√
PQ.

Evidently, as shown in Fig. 12(a), the shape of �1(ψ )
exhibits symmetry with respect to the line ψ = π . Moreover,
the shapes within the ranges 0 � ψ � π and the shape in
π � ψ � 2π are antisymmetric with respect to the points
(ψ,�1) = (π/2, 0) and (ψ,�1) = (3π/2, 0), respectively.

These characteristics can be derived from the defini-
tion of �1. In fact, the following two identities hold true:
�1(ψ ) = �1(2π − ψ ) and �1(ψ ) = −�1(ψ + π ). The first
identity can be expressed as follows: The definition of �1

[Eq. (21)] with ψ+ = π and ψ− = 0 implies that �′
1(ψ ) =√

P/Q[g(ψ − π ) − g(ψ )]. Then, �′
1(ψ ) = −�′

1(−ψ ) holds
due to the properties of g(ψ ) [Eq. (18)]. Integrating the
relationship, we obtain �1(ψ ) = �1(2π − ψ ). The second
identity can be easily shown through the definition of �1.
These two identities indicate that �1(π − ψ ) = �1(2π −
(ψ + π )) = �1(ψ + π ) = −�1(ψ ). Consequently, the fol-
lowing identities hold:

�1(ψ ) = �1(2π − ψ ),

�1(π − ψ ) = −�1(ψ ),

�1(2π − ψ ) = −�1(π + ψ ), (26)

FIG. 12. (a) The graph of the function �1(ψ ) (ψ+ = π ), illustrating symmetries as depicted by Eq. (26). (b) The graph of the function
�2(ψ ) (ψ+ = ψ∗). There are multiple lock-in phases for smaller frequency difference, ψ/(2π ) = 0.491 649 and 0.807 218.
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FIG. 13. The fields of the optimal force of the maximum lock-in region, f ∗, in the case ψ+ = π . Arrows and contours indicate the force
vectors and their magnitudes, respectively. Snapshots at phase θ/2π = k/8 (k = 0, 1, . . . , 7) are shown.

which correspond to the characteristics of �1, as shown in
Fig. 12(a).

Based on the properties (26), the lock-in phases for
�ω = 0 are ψ/(2π ) = 0.25 (unstable) and 0.75 (stable). The
shape of the graph suggests the absence of other lock-in
phases.

As shown in Fig. 12(b), the symmetries displayed in
Fig. 12(a) are not observed because ψ+ �= π . The shape
of �2(ψ ) can yield multiple lock-in phases for smaller
frequency differences within the lock-in region. The sta-
ble lock-in phases for �ω = 0 are estimated as ψ/(2π ) =
0.491 649 and 0.807 218 through linear interpolation. We note
that the state with two stable lock-in phases is easily lost.
Figure 12(b) shows that two stable lock-in phases are lost
when �ω/( 1

2

√
PQ) < −0.052 or �ω/( 1

2

√
PQ) > 0.054, al-

though lock-in occurs when |�ω| < 1 .

2. Comparison between the uniform force within the
rectangular region and optimal forces

In this section, the efficiencies of the uniform force within
the rectangular region are discussed by comparing them with
the optimal forces. We focus on Case 1, where �(1)

max,y for
(lx, ly) = (0.5, 1.0) (referred to as “the case of uniform force”
hereafter), and examine the lock-in characteristics in com-
parison with the optimal forces calculated within the same
rectangle region. As previously discussed in Sec. II C 1, the
optimal external force is proportional to −Z(ψ ) [Eq. (15)]. In
the case where the external force is applied only within the
rectangular region, the optimal force is determined by using a
procedure similar to that described in Sec. II C 1. The optimal
external force is given by the Eq. (15) within a localized
region.

a. Energy ratio with the same lock-in range. The energy
of the external force, E±,opt, was obtained from the square of
Eq. (15) as E±,opt = 〈|F±|2〉 = �ω2

±/〈Z2〉, where �ω± corre-
sponds to the cases of ψ±, respectively. Notably, ψ+/(2π ) =
0.2606 when the optimal force is calculated within the rectan-
gle region.

In the case of uniform force, the energy of the external
force, Eu, is Eu = 〈|Fu|2〉 = ε2M/2, where M is the num-
ber of grid points within the rectangle. The value of 〈Z2〉 is
0.002 306 and M = 450. Furthermore, as listed in Table I,
�max = 0.2142.

The comparison under the condition that the maximum
frequency differences for the lock-in, i.e., �ω = ε�max, we
obtain

E±,opt

Eu
= 2�2

max

M〈Z2〉 = 0.0884. (27)

Thus, the energy of external force in the case of uniform
force is approximately 8.8% of the optimal energy. Notably,
Eq. (27) does not depend on M because � ∼ M0 and Z ∼ M−1

(cf. Sec. II B).
b. Lock-in range ratio with the same energy. Similar calcu-

lation to obtain Fig. 12 provides that the maximum frequency
difference of the optimal force within the rectangle region,
�ωopt, is �ωopt. = 1

2

√
PoptQopt, where Popt is the energy of

the optimal external force within the rectangular region, and
Qopt(= 0.004 854) has the same definition as Q but is calcu-
lated within the rectangular region. In the case of uniform
force, the maximum frequency difference for the lock-in,
�ωrect, is ε�max.

Presumably, the energy of the case of uniform force, Eu, is
the same as that of the optimal case, Popt; i.e., Popt = Mε2/2.
Then, the ratio of the maximum frequency differences is

�ωopt

�ωrect
= 0.500

√
MQopt√

2�max

= 2.44. (28)

Thus, the maximum lock-in range for the optimal force is
2.44 times that of the maximum lock-in range for the uniform
force.

c. Field of optimal forces. Figure 13 shows the fields of
the optimal force of the maximum lock-in region, denoted
f ∗(x, θ ), in the case ψ+ = π . The optimal force is converted
to the force field using a similar formula as Eq. (6). Notably,
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FIG. 14. The fields of the optimal force of the maximum lock-in region, f ∗, in the case ψ+ = ψ∗. Arrows and contours indicate the force
vectors and their magnitudes, respectively. Snapshots at the phase θ/2π = k/8(k = 0, 1, . . . , 7) are shown.

the force f ∗(x, θ ) satisfies the following relationship:

f ∗(x, θ ) = − f ∗(x, θ + π ). (29)

This relationship is derived from the definition (21) and the
settings of (ψ+, ψ−) = (0, π ). In all the phases, the region
with the strongest optimal force is predominantly situated
behind the plate. In several phases, such as k = 1, 2 (and 5,6),
a pronounced region of strong forces is observed upstream of
the leading edge, suggesting a more favorable position and
timing for the phase control in the upstream region. Figure 14
shows f ∗(x, θ ) in the case ψ+ = ψ∗. An area with a strong
force f ∗(x, θ ) is noticeable when k is between zero and three,
rather than when it is between four and seven. Interestingly,
the optimal forces for ψ+ = π and ψ∗ differ, even though
the maximum frequency lock-in region is nearly identical. As
shown in Fig. 13, the region with stronger forces is primarily
found downstream of the plate, with a noticeable difference
between the downstream of the leading edge and that of the
trailing edge. This implies that the forces mainly control the
interaction between the LEV and TEV to achieve a frequency
lock-in. As shown in Fig. 14, a region with stronger forces
was observed downstream of the plate and upstream of the
leading edge.

IV. SUMMARY

In this study, we applied phase reduction theory to analyze
the flow past an inclined plate in a wind tunnel. The thrust
was a result of the lock-in phenomenon caused by the external
force. We employed the Jacobian-free projection method to
calculate the phase sensitivity function, which allowed for
an in-depth analysis of its properties. Our examination of
the frequency decomposition of the phase sensitivity function
revealed a prominent component for modes with k � 3. For
mode k = 2, we observed a strong response region located in
the upstream of the leading edge for the plate.

Building on this knowledge, we investigated the lock-in
phenomenon induced by a periodic uniform force applied

within a rectangular region. We selected two rectangular re-
gions based on the spatial distribution of the phase sensitivity
function and determined the optimal position of the rectangle.
Evidently, the optimal position depended on both the mode
and the force direction.

Although the primary interactions were observed down-
stream of the plate, the application of the sinusoidal force
in the y direction led to an optimal position upstream of the
leading edge for the mode k = 2. We then compared the
lock-in regions with finite amplitude to the predictions of
phase reduction theory. The numerically calculated Arnold
tongue indicated that for mode k = 1 in the y direction, the
result closely matched the theoretical predictions, even for
the largest amplitude cases. This alignment suggests that the
theoretical assumption of a linear response remains valid even
at higher amplitudes. Conversely, for the mode k = 2 in the
y direction, the agreement was lost, except for the small-
amplitude cases. This discrepancy implies that the linearity
does not hold as the amplitude increased.

We applied theories that provide optimal external forces
for inducing lock-in phenomena and compared the results
with those of a detailed investigation of rectangular external
forces. These optimal forces can result in multiple lock-in
phases, which can be beneficial for future control problems.
Furthermore, the optimal forces exhibited distinct features.
Cases with multiple phase lock-ins had multiple strong-force
regions, both upstream of the leading edge and downstream
of the plate. Notably, the multiplicity of strong force regions
coincides with multiple phase lock-ins. However, we intend
to leave a detailed evaluation of each force regions for future
research.

ACKNOWLEDGMENT

This work was partially supported by the Japan Society for
the Promotion of Science KAKENHI Grant No. 19K03671
and the SECOM Science and Research Foundation.

045102-12



OPTIMAL EXTERNAL FORCES OF THE LOCK-IN … PHYSICAL REVIEW E 109, 045102 (2024)

FIG. 15. Comparison with the calculation by the spectral element method.

APPENDIX A: COMPARISON WITH THE SIMULATION
BY THE SPECTRAL ELEMENT METHOD

We compared our calculations with those obtained using
the open-source program Semtex, which employs the spectral
element method (SEM) [40,42] to compute the flow around
the inclined plate. In SEM, adaptive elements are used to
discretize the plate shape and the computational domain,
whereas the spectral method is employed to discretize within
the elements. In the calculation, we maintained the same com-
putational domain as that in our main calculation, measuring
6×4. However, in the SEM, the plate was modeled with a
thickness of t = 0.04, and both edges were represented by half
circles. The total number of elements in the SEM was 720,
and each element was further discretized into 9×9 elements.
The computational grid is shown in Fig. 15(a). The boundary
conditions at the domain boundary remained consistent with
those in our calculations, and the time step was set to 0.001.

We obtained a periodic state through a time evolution cal-
culation in SEM, with a period estimated of 3.461. This value
exhibited a discrepancy of less than 1% compared with the
period calculated in our main text by the immersed boundary
method (IB), 3.440.

Additionally, we examined the v fields by IB and SEM
along the line connecting two points, (0,2) and (6,2), as shown
in Fig. 15(b). Similarly, we observed the u fields along the line
connecting two points, (3,0) and (3,4), as shown in Fig. 15(c).
The results showed a reasonable agreement. Notably, dis-
crepancies may arise owing to the discretization method and
grid spacing. Furthermore, it is noteworthy that SEM em-
ploys a time-evolution calculation, and any differences may be

attributed to potential temporal misalignment or a slight error
in the selected time.

APPENDIX B: DOMAIN SIZE EFFECT

We compared the phase sensitivity vectors using different
domain sizes. As shown in Fig. 16(a), the q(x) field was com-
puted with a larger computational domain (8×6) containing
160×160 grid points. To maintain consistency with the main
calculation for the computational domain size, we employed
the projection method [22] to confine the calculation region to
[2, 8]×[1, 5]. The center of the plate was positioned at (4,3)
to ensure the relative positioning with respect to the domain
for the projection method, as described in the main text. The
phase in Fig. 16(a) is at the origin, matching the upper-left
image in Fig. 3. Both exhibit similar overall characteristics,
and the computed Ritz value is −0.0162, which is sufficiently
small, despite the computed area being only half of the entire
computational domain.

The velocity fields within both domains are compared
along two lines, y = 3 and x = 4.5, using the coordinate sys-
tem of the larger computational domain [refer to Fig. 16(a)].
The v component along the line y = 3 and the u component
along the line x = 4.5 are displayed in Figs. 16(b) and 16(c),
respectively. The influence of domain size, especially on the
width in the y direction, was observed, while the characteris-
tics around the plate remain largely unaffected by the domain.

Figures 16(d) and 16(e) show qv along the line y = 3 and
qu along the line x = 4.5, respectively. These figures reveal
minimal impact of domain near the plate, although slight
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FIG. 16. Comparison with different size of the domain.

differences are noticeable in qv near the upstream (left)
boundary.

Overall, these results indicate that the domain size had an
insignificant influence on the calculations in this study.
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[30] V. Novičenko and K. Pyragas, Computation of phase response
curves via a direct method adapted to infinitesimal perturba-
tions, Nonlinear Dyn. 67, 517 (2012).

[31] T. Harada, H.-A. Tanaka, M. J. Hankins, and I. Z. Kiss, Optimal
waveform for the entrainment of a weakly forced oscillator,
Phys. Rev. Lett. 105, 088301 (2010).

[32] A. Zlotnik and J.-S. Li, Optimal entrainment of neural oscillator
ensembles, J. Neural Eng. 9, 046015 (2012).

[33] A. Zlotnik, Y. Chen, I. Z. Kiss, H.-A. Tanaka, and J.-S. Li, Op-
timal waveform for fast entrainment of weakly forced nonlinear
oscillators, Phys. Rev. Lett. 111, 024102 (2013).

[34] H.-A. Tanaka, Optimal entrainment with smooth, pulse, and
square signals in weakly forced nonlinear oscillators, Phys. D
(Amsterdam, Neth.) 288, 1 (2014).

[35] H.-A. Tanaka, Synchronization limit of weakly forced nonlinear
oscillators, J. Phys. A: Math. Theor. 47, 402002 (2014).

[36] M. Iima, Phase responses and flow characteristics of a family
of Kármán’s vortex streets, in Proceedings of the 2019 Inter-
national Conference of Nonlinear Theory and its Applications
(IEICE, Tokyo, 2019), pp. 369–372.

[37] S. Dong, G. Karniadakis, and C. Chryssostomidis, A robust
and accurate outflow boundary condition for incompressible
flow simulations on severely-truncated unbounded domains,
J. Comput. Phys. 261, 83 (2014).

[38] H. Liu and K. Kawachi, A numerical study of insect flight,
J. Comput. Phys. 146, 124 (1998).

[39] M. Uhlmann, An immersed boundary method with direct forc-
ing for the simulation of particulate flows, J. Comput. Phys.
209, 448 (2005).

[40] H. Blackburn, D. Lee, T. Albrecht, and J. Singh, Sem-
tex: A spectral element-Fourier solver for the incompressible
Navier–Stokes equations in cylindrical or cartesian coordinates,
Comput. Phys. Commun. 245, 106804 (2019).

[41] Y. Saiki, Numerical detection of unstable periodic orbits in
continuous-time dynamical systems with chaotic behaviors,
Nonlinear Proc. Geophys. 14, 615 (2007).

[42] Y. Fujita and M. Iima, Dynamic lift enhancement mechanism
of dragonfly wing model by vortex-corrugation interaction,
Phys. Rev. Fluids 8, 123101 (2023).

045102-15

https://doi.org/10.1007/BF00164052
https://doi.org/10.1038/nrg1633
https://doi.org/10.1002/wsbm.1439
https://doi.org/10.1103/PhysRevE.89.012912
https://doi.org/10.1103/PhysRevResearch.1.033130
https://doi.org/10.1017/jfm.2018.327
https://doi.org/10.1103/PhysRevE.99.062203
https://doi.org/10.1017/jfm.2020.772
https://doi.org/10.1103/PhysRevFluids.6.034401
https://doi.org/10.1017/jfm.2020.1110
https://doi.org/10.1017/jfm.2021.735
https://doi.org/10.1103/PhysRevFluids.7.104401
https://doi.org/10.1103/PhysRevE.103.053303
https://doi.org/10.1017/jfm.2023.929
https://doi.org/10.1016/j.physleta.2015.12.029
https://doi.org/10.1017/jfm.2021.1093
https://doi.org/10.1017/jfm.2022.129
https://doi.org/10.1038/s41598-023-35643-1
https://doi.org/10.1063/1.4744982
https://doi.org/10.1080/00107514.2015.1094987
https://doi.org/10.1007/s11071-011-0001-y
https://doi.org/10.1103/PhysRevLett.105.088301
https://doi.org/10.1088/1741-2560/9/4/046015
https://doi.org/10.1103/PhysRevLett.111.024102
https://doi.org/10.1016/j.physd.2014.07.003
https://doi.org/10.1088/1751-8113/47/40/402002
https://doi.org/10.1016/j.jcp.2013.12.042
https://doi.org/10.1006/jcph.1998.6019
https://doi.org/10.1016/j.jcp.2005.03.017
https://doi.org/10.1016/j.cpc.2019.05.015
https://doi.org/10.5194/npg-14-615-2007
https://doi.org/10.1103/PhysRevFluids.8.123101

