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Connecting finite-time Lyapunov exponents with supersaturation and droplet dynamics
in a turbulent bulk flow
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The impact of turbulent mixing on an ensemble of initially monodisperse water droplets is studied in
a turbulent bulk that serves as a simplified setup for the interior of a turbulent ice-free cloud. A mixing
model was implemented that summarizes the balance equations of water vapor mixing ratio and temperature
to an effective advection-diffusion equation for the supersaturation field s(x, t ). Our three-dimensional direct
numerical simulations connect the velocity and scalar supersaturation fields in the Eulerian frame of reference
to an ensemble of cloud droplets in the Lagrangian frame of reference. The droplets are modeled as point
particles with and without effects due to inertia. The droplet radius is subject to growth by vapor diffusion.
We report the dependence of the droplet size distribution on the box size, initial droplet radius, and the strength
of the updraft, with and without gravitational settling. In addition, the three finite-time Lyapunov exponents
λ1 � λ2 � λ3 are monitored which probe the local stretching properties along the particle tracks. In this way,
we can relate regions of higher compressive strain to those of high local supersaturation amplitudes. For the
present parameter range, the mixing process in terms of the droplet evaporation is always homogeneous, while
it is inhomogeneous with respect to the relaxation of the supersaturation field. The probability density function
of the third finite-time Lyapunov exponent, λ3 < 0, is related to the one of the supersaturation s by a simple
one-dimensional aggregation model. The probability density function (PDF) of λ3 and the droplet radius r are
found to be Gaussian, while the PDF of the supersaturation field shows sub-Gaussian tails.
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I. INTRODUCTION

Atmospheric clouds are complex physical systems that
play a key role in synoptic timescales for the formation of
precipitation [1] and in much longer timescales for the ra-
diation budget of the climate of our planet [2]. The water
appears in different phases inside a cloud, either as water
vapor, liquid water droplets, or ice crystals. All phases affect
the optical properties of clouds crucially; the overall turbulent
dynamics determines the local increase and decrease of the
corresponding mixing ratios [3,4]. Warm ice-free clouds form
a two-component turbulent multiphase flow (water and vapor).
The cloud water droplet number density and size distribution
are then two key quantities in view to rain formation for which
droplets typically have to grow up to about 1 mm. One of the
central questions remains how the turbulent mixing of dry
air and moist air, in particular entrainment [5,6], alters the
number density and size distribution of cloud water droplets
inside the cloud, and which role the locally fluctuating su-
persaturation does play; see, e.g., Refs. [7–15] for numerical
investigations inside clouds or at their edges.

These questions provide the central motivation for the
present study. Here, we discuss a strongly simplified model
of turbulent mixing in the bulk of a cloud by means
of three-dimensional direct numerical simulations (DNSs).
This simplification consists of a summary of the balance
equations for the Eulerian fields of vapor mixing ratio
and temperature, qv (x, t ) and T (x, t ), to an effective bal-
ance equation for the scalar supersaturation field, following
Refs. [9,10,16,17]. We assume that the supersaturation field

s(x, t ) does not act back on the flow; it is thus a passive scalar
field in the present approach. The field is given by

s(x, t ) = qv (x, t )

qvs(T )
− 1, (1)

with the saturation mixing ratio qvs of vapor which depends
on temperature T via the Clausius-Clapeyron equation [18].
This field determines the diffusion growth of an ensemble of
individual Lagrangian cloud water droplets which are consid-
ered pointlike particles with an attached radius coordinate.
In the present work, we connect the statistics of finite-time
Lyapunov exponents of the advecting velocity field [19],
which quantify the local stretching and compression rates in
the Lagrangian frame of reference, to the statistics of s(x, t )
and thus to the droplet size (or droplet radius) distribution. A
further simplification of the present model is that the droplets
are subject to a one-way coupling only. Götzfried et al. [20]
showed that the particle Reynolds number for the initial radii,
which are taken here, remain smaller. An objective of our
approach is to test an aggregation model of the turbulent
mixing of passive scalar fields, which has been successfully
applied for turbulent mixing at high Schmidt numbers Sc in
the past [21–23]. The scalar statistics is followed then by a
successive stretch-twist-fold stirring of scalar concentration
filaments that are subject to molecular diffusion. We report
current results for a small cubical reference volume in the bulk
of a cloud where a Schmidt number Sc ≈ 0.7 is considered for
the scalar supersaturation field s(x, t ). As already said, this
is significantly smaller than the ones in Refs. [21,22,24,25].
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We find that the supersaturation dynamics is then Gaussian-
distributed in the core with sub-Gaussian tails, both from the
Eulerian statistical analysis as well as along the individual
droplet trajectories. This causes Gaussian-shaped droplet size
distributions, which broaden faster when the box size becomes
bigger.

Turbulent mixing, particularly across the boundary of a
cloud, influences the number density and size distribution of
cloud droplets by causing fluctuations of water vapor and
liquid water content, as we showed in previous works [20,
26–29], partly in significantly more complex configurations
with several nonlinear feedbacks. Here, we focus on the sim-
pler mixing inside the cloud bulk. Mixing can be characterized
by Damköhler number Da [30,31], the ratio of the typical
flow timescale, such as the large-scale eddy turnover time to a
characteristic thermodynamic reaction timescale of interest,

Da = τL

τreact
. (2)

Thermodynamic processes, which are characterized by small
Damköhler numbers (Da � 1), proceed slower than the flow
is mixed; this mixing regime is called thermodynamics-
limited or homogeneous; see, e.g., Ref. [32]. For cloud droplet
evaporation, it means that moist air will be properly mixed,
and droplets will evaporate at approximately the same rate.
In the regime with the large Damköhler number (Da � 1),
the corresponding thermodynamic regime is called mixing-
limited or inhomogeneous. In this regime, the moist air is
mixed slower by the flow than it is saturated by evaporating
droplets. For inhomogeneous mixing, cloud droplets evapo-
rate in different regions with different rates [17,27,33,34]. As
was shown in [27], the inhomogeneous mixing gives extended
tails of the cloud droplet size distribution. Higher levels of
fluctuations of water vapor content in different regions gen-
erate different rates of growth and shrinkage of cloud water
droplets. We want to investigate how strong this variability of
the droplet radius r is in the bulk of a cloud.

The paper is organized as follows. In Sec. II, we pro-
vide the cloud mixing model, define the main parameters
of our model, and discuss their influence on the mixing
processes. Section III discusses DNS results obtained from
the turbulence fields in the Eulerian frame of reference.
Section IV is dedicated to the Lagrangian analysis of the cloud
water droplets. While Sec. IV A discusses the Lagrangian
tracer case, Sec. IV B investigates the effects of gravity and
the initial radius on the droplet dynamics. The definition
of finite-time Lyapunov exponents (FTLEs) is provided in
Sec. V. Here, we connect these results to those of the pre-
vious sections before a summary and outlook is given in
Sec. VI. The Appendix provides the derivation of the effective
advection-diffusion equation for the supersaturation field for
completeness.

II. NUMERICAL SIMULATION MODEL

A. Eulerian and Lagrangian model equations

In our cloud mixing model, we consider a subvolume
V = L3 in the bulk of a cloud as a multiphase system that
consists of dry air, water vapor, and liquid water. We as-
sume periodic boundary conditions in all three directions. The

turbulent velocity field u(x, t ) is assumed to be statistically
stationary, homogeneous, and isotropic. The full complexity
of the mixing process in the presence of phase changes re-
quires balance equations for the (i) temperature field T (x, t )
including latent heat release, (ii) vapor mixing ratio qv (x, t )
including condensation rate as a loss term, and (iii) liquid
water mixing ratio ql (x, t ) including condensation rate as a
gain term.

The models of Celani et al. [8,16], Sardina et al. [10],
and Fries et al. [17] simplify this complex dynamics in three
aspects. First, the liquid water content is represented by an en-
semble of individual spherical pointlike cloud water droplets.
Attached is a droplet radius that can increase and decrease,
thus changing ql . Second, the fields T and qv are summarized
in the scalar supersaturation field s(x, t ). Third, the mixing of
the scalar field and the advection of the droplets will not cou-
ple back to the turbulent velocity field u(x, t ) via a buoyancy
term, i.e., there is a one-way coupling considered only. This
assumption is justified when the droplet radii remain small
and the droplet number density n0 ∼ 100 cm−3 as in our study.
The Eulerian equations of motion follow as

∇ · u = 0, (3a)

∂u
∂t

+ (u · ∇)u = −∇p

ρ
+ ν∇2u + f , (3b)

∂s

∂t
+ (u · ∇)s = Ds∇2s + A1uz − A2

4πρLK ′

Va

×
N∑

i=1

ri(t )s(X i, t ). (3c)

Due to its small size, cloud water droplets will have a
small Stokes number (St � 1) and are thus approximated as
Lagrangian tracer particles without inertia following perfectly
the streamlines of the turbulent velocity field for most of
the work, except in Sec. IV B. In Ref. [26], we showed that
effects of additional droplet inertia for the presently chosen
parameters remain small. The dynamics of the np individual
cloud water droplets is given by [18]

dX i

dt
= u(X i, t ), i = 1, . . . , np, (4a)

ri
dri

dt
= K ′s(X i, t ). (4b)

The coefficients in the combined Euler-Lagrangian model
equations depend on thermodynamic properties of the cloud.
They are defined as

A1 = Lg

RvcpT 2
, (5a)

A2 = R′T
εes(T )

+ L2ε

pT cp
, (5b)

K ′ =
[Lρl

kT

( L
RvT

− 1

)
+ ρlRvT

Des(T )

]−1

. (5c)

Here p(xi, t ) is the pressure field, and ρ is the constant fluid
density. Quantities ri(t ) and X i(t ) are the radius and the spatial
position for the ith cloud water droplet, respectively. Further-
more, ν is the kinematic viscosity, f (x, t ) is the large-scale
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volume forcing of the flow, Ds is the diffusion coefficient of
the supersaturation field, L is the latent heat of evaporation,
g is the acceleration due to gravity, Rv is the gas constant for
water vapor, cp is the specific heat at constant pressure, R′
is the gas constant of dry air, ε = R′/Rv is the ratio of both
gas constants, es(T ) is the saturation water vapor pressure,
and ρl is the density of liquid water. Also, k is the thermal
conductivity of air, D is the diffusion coefficient of the water
vapor diffusion, Va is the grid cell volume, and N is the num-
ber of particles in the vicinity of the grid cell volume around
position x.

The diffusion coefficient of the supersaturation field, Ds,
can be well approximated by the diffusion coefficient of water
vapor, D [10]. The first of the two forcing terms, A1uz, in
Eq. (3c) is due to the temperature gradient in the z-direction.
For the present box sizes, the prefactor turns out to be very
small with O(10−3). Thus we have enhanced this factor in
the first three runs, and we discuss the realistic magnitude in
Sec. IV B. The second term in Eq. (3c) is a condensation rate
term, i.e., a change of the liquid water content in the air slab.
It quantifies the effects of condensation and evaporation and
thus couples the dynamics of the scalar field and the cloud
droplets. In turn, their individual radius changes with varia-
tions of the supersaturation field [18]. In the Appendix, we
provide the detailed derivation of Eq. (3c) for completeness;
see also [10,17,35].

B. Dimensionless form of equations and parameters

We set the same initial radius r0 for all droplets and
seed them randomly across the whole computational domain.
To get the dimensionless equations out of (4), the follow-
ing characteristic scales are chosen. The root mean square
of the velocity field is U = √

2 Ek , where Ek = 1
2 〈u2

i 〉V,t

is the turbulent kinetic energy. As the characteristic timescale,
the large-eddy turnover time τL = Ek/〈ε〉V,t is chosen. Here
ε = 2νSi jSi j is a turbulent energy dissipation rate, where
Si j = (∂ jui + ∂iu j )/2 is the rate-of-strain tensor. The charac-
teristic passive scalar scale is the root mean square of the
supersaturation, srms = 〈s2〉V,t . Note that the supersaturation
field is kept in a statistically stationary state. Here, 〈·〉V,t is a
combined average with respect to volume and time. The initial
droplet radius is r0, the corresponding number density is n0.
Using these assumptions, the dimensionless versions of (3)
and (4) are given by

∇ · u = 0, (6a)
∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
∇2u + f , (6b)

∂s

∂t
+ (u · ∇)s = 1

Re Sc
∇2s + Ã1uz + DasV

N∑
i=1

ri(t )s(X i, t ),

(6c)
dX i

dt
= u(X i, t ), i = 1, . . . , np, (6d)

ri
dri

dt
= Dad

2
s(X i, t ), (6e)

with Ã1 = A1U/τL. From (6), the flow depends on the fol-
lowing nondimensional parameters: the large-scale Reynolds
number Re, the Schmidt number Sc, and both Damköhler

numbers, which are given by

Re = U 2τL

ν
, Sc = ν

Ds
, Das = τL

τs
, Dad = τL

τd
. (7)

These two Damköhler numbers have been identified in
Refs. [30,31]. Here, τs is a supersaturation relaxation time,
the timescale at which supersaturation will decay to satu-
ration state; τd is droplet evaporation time, which describes
a timescale at which a droplet with initial radius r0 should
evaporate in a subsaturated environment with supersaturation
magnitude s = srms. The two timescales are determined by

τs = 1

A24πρLK ′r0n0
, (8a)

τd = r2
0

2K ′srms
. (8b)

When Dad � 1, the cloud droplets evaporate at approxi-
mately the same rate because the flow is well-mixed. The
other regime with Dad � 1 implies that the droplets will have
different rates of evaporation.

III. STATISTICS AND STRUCTURE OF THE EULERIAN
TURBULENCE

The Eulerian equations of motion are solved by a standard
pseudospectral direct numerical simulation. All fields are ex-
panded in Fourier series; the switch between the physical and
Fourier space is performed by fast Fourier transformations
[36] using the software package P3DFFT [37]. The simula-
tion domain is decomposed into pencils, and the simulation
code is parallelized with the message passing interface. Time
advancement is done by a second-order predictor-corrector
scheme. The same time integration technique is used for
tracking the Lagrangian tracer particles and calculating the
Lyapunov exponents [23]. Interpolation to switch between La-
grangian and Eulerian descriptions is done trilinearly. We vary
the Reynolds number and thus the degree of turbulent mixing
by an increase of the box size L in the volume forcing term
in the Navier-Stokes equations (3b). This forcing is defined
such that at each time step a fixed amount of turbulent kinetic
energy at a rate εin is injected [36]. This term is implemented
in the Fourier space,

F { f (x, t )} = εin
û(k, t )∑

k f ∈K |û(k f , t )|2 δk,k f . (9)

The subset of driven Fourier modes is given K = {k f =
(2π/L)(±1,±1,±2)} plus permutations of wave-vector com-
ponents. Here, εin is the energy injection rate that prescribes
the dissipation of turbulent kinetic energy, i.e., εin ≈ 〈ε〉V,t

for the statistically stationary regime. We performed three
different DNSs to investigate how variations of L affect the
flow properties. An additional parameter, which quantifies
the strength of turbulence, is the Taylor microscale Reynolds
number, which is listed in Table I. It is given by [36]

Rλ =
√

5

3ν〈ε〉V,t
U 2. (10)

Table I summarizes also other results. With increasing length-
scale L both Reynolds numbers and the velocity fluctuation
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TABLE I. The parameters of the simulations with different domain sizes L and energy injection rates εin, numerical resolution as a ratio
of bin size �x to obtained Kolmogorov length scale ηK , number of grid-points in each direction n, number of particles np, coefficient of
vertical ascending A1, time- and volume-averaged root-mean-square velocity magnitudes U , large-scale eddy turnover times τL , and time- and
volume-averaged root-mean-square supersaturation values srms. Furthermore, listed are Reynolds numbers Re, Taylor microscale Reynolds
numbers Rλ, and the Damköhler numbers, Das and Dad, specified for supersaturation and droplet evaporation, respectively. Quantities are
given in their physical dimensions with amplitudes that correspond to typical conditions in a cloud.

L εin A1 U τL

Run (m) (m2/s−3)
�x

ηK
n np (m−1) (m/s) (s) srms Re Rλ Das Dad

1 0.128 0.0034 1.009 128 209 715 0.2 0.072 1.78 0.00439 614 28.4 1.04 0.0043
2 0.256 0.0034 1.006 256 1 677 721 0.2 0.097 2.64 0.00795 1655 51.6 1.54 0.0125
3 0.512 0.0034 1.002 512 13 421 772 0.2 0.129 3.97 0.01088 4406 72.9 1.85 0.5952

magnitude increase, as expected and shown in [29]. Conse-
quently, the large-scale eddy turnover time τL grows as well.
The values of srms = 〈s2〉1/2

V,t remain very small, but increase
to about ∼1% for the biggest domain. We recall that in at-
mospheric clouds, heterogeneous nucleation proceeds such
that maximum values of s typically do not exceed a few
percent [18].

Figure 1 visualizes the turbulent dynamics by means of
a slice-cut snapshot for runs 2 and 3 of Table I. On display
are the velocity magnitude (or Ek) to the left, the passively
mixed supersaturation field, and the logarithm of the kinetic
energy dissipation field. It is clearly demonstrated how the
complexity of the flow increases when the Reynolds number
grows. The kinetic energy dissipation rate field develops finer
striated high-amplitude shear layers. They are connected to
stretching and compression regions in the Lagrangian picture
which will be further investigated in Sec. V by means of the
FTLEs.

Figure 2(a) demonstrates the probability density function
(PDF) for a supersaturation field for run 2 which has Gaussian

shape in the core and sub-Gaussian tails. This statistics agrees
with passive scalar DNSs by Celani et al. [38]. Figure 2(b)
displays isosurfaces of the instantaneous scalar dissipation
rate field of the supersaturation. This quantity is given by

εs(x, t ) = 1

Re Sc
[∇s(x, t )]2. (11)

We see that the isosurfaces of the scalar dissipation rate at the
chosen isolevel are mostly of smaller size, platelike, and not
stretched out and curved, as would be the case for turbulent
mixing at very large Schmidt numbers; see, e.g., Kushnir et al.
[39]. The reason is that the chaotic stirring of the scalar at sub-
Kolmogorov scales is absent for the present Schmidt number
Sc ∼1. In other words, no viscous-convective range exists
for the passive scalar in the present case which is established
between the Kolmogorov length ηK and the diffusive length of
the passive scalar, the Batchelor length ηB = ηK/

√
Sc. This

will have implications for the prospective application of the
aggregation model of passive scalars [21,22], which we will
discuss further below in the text.

FIG. 1. Contour plots of two-dimensional slice cuts of (a) the magnitude of the velocity field, (b) the supersaturation field, and (c) the
logarithm of the dissipation rate of turbulent kinetic energy. It is given by ε = 2νSi jSi j , Si j = (∂ jui + ∂iu j )/2 with the rate-of-strain tensor Si j .
Data are for the simulation run 2 with L = 256 mm at t = 0.045τL . The lower panels (d)–(f) show corresponding plots for simulation run 3
with L = 512 mm at t = 0.032τL . See also Table I. The characteristic time unit, the large-scale eddy turnover time τL is specified in Sec. II B;
see also Table I.
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FIG. 2. (a) Sub-Gaussian PDF of rescaled supersaturation field
taken from Eulerian approach (blue line) and Gaussian PDF for
reference. (b) Instantaneous snapshot of isosurfaces of the scalar
dissipation rate field εs(x, t ), which is defined in Eq. (11). The level
of the isosurfaces is log10 εs = −3.3 in this plot.

IV. CLOUD WATER DROPLET DYNAMICS
AND STATISTICS

A. Cloud water droplets as Lagrangian tracers

Each individual cloud water droplet was advected by sta-
tistically steady turbulent flow. It is seen from Eq. (4b) that
the supersaturation field directly impacts the size distribution
of cloud droplets. Figure 3 displays the droplet size distri-
butions for runs 1, 2, and 3 taken at different time instants.
The probability density function broadens in all cases with
progressing time, but remains in a Gaussian shape without
developing extended tails in the cloud bulk.

As seen in Table I, a larger domain size results in a larger
velocity fluctuation magnitude. Consequently, the fluctuations
of the supersaturation field are enhanced; see again Table I.
As a consequence and as expected, the cloud droplet size
distribution broadens much faster in time. Note that we pro-
vide the instants in terms of the corresponding large-scale
eddy turnover timescale τL, which itself becomes larger as the
domain size increases.

A more detailed analysis for individual cloud droplets was
performed subsequently. Therefore, the Lagrangian droplets
data of a few randomly selected particles, which are initially
far enough separated from each other, were written out at each
time integration step. The first plot of Fig. 4(a) demonstrates
the variation of the droplet radius for two selected particles
for a physical time of 2 min. The second plot of the figure in
panel (b) shows the corresponding value of the supersaturation
field s(X p, t ) at the particle position X p(t ). It can be clearly
seen that time intervals with positive supersaturation (s > 0)
correspond to the growth periods of cloud droplets. Droplets
shrink in subsaturated air (s < 0) [16].

According to statistically steady homogeneous isotropic
bulk turbulence, we expect that the PDF of s(X , t ) converges
to the Gaussian distribution in the core with sub-Gaussian
tails. Particles which are advected in the turbulent volume
are affected by differently long intervals of super- and sub-
saturation. Figure 4(c) confirms this point; we reproduce the
Gaussian statistics in the core with the sub-Gaussian tails
in the Lagrangian frame, which agrees consistently with the
Eulerian analysis that was displayed in Fig. 2.

The evaporation and condensation processes of the cloud
droplets depend on the character of corresponding mixing
regime as shown in several field measurements and controlled
laboratory experiments; see, e.g., Refs. [34,35,40]. As dis-
cussed already above in the Introduction, the mixing regime
is defined by a Damköhler number. For cloud droplet evap-
oration, we take Dad in (7). In the homogeneous mixing
regime for Dad � 1, droplets evaporate with an almost equal
rate, while in the inhomogeneous mixing regime evaporation
rates of different droplets are different, i.e., some droplets
can evaporate completely while others are not evaporated at
all. Here, the cloud droplet evaporation is a homogeneous
mixing process which explains the Gaussian distribution of
the cloud droplet radii. The PDFs are without far-tails as
they were seen in Ref. [28] for the edge of the cloud. The
second thermodynamic process of interest, the saturation re-
laxation of the water vapour content, is parametrized by the

FIG. 3. Droplet size distribution at different time instants for computational domains with (a) L = 128 mm (run 1), (b) L = 256 mm
(run 2), and (c) L = 512 mm (run 3). All times are expressed in units of the corresponding large-scale eddy turnover time τL which are
provided in Table I.
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FIG. 4. Time evolution of two individual droplet radii in (a) and the corresponding supersaturation field in (b). Solid and dashed lines
correspond to a particular particle. Time is given in seconds. (c) Probability density function (PDF) of the rescaled supersaturation field, s/srms,
experienced by the chosen individual particle for the whole calculation period, and (d) PDF of rescaled supersaturation field for all particles
averaged in time. The dashed line shows the corresponding Gaussian PDF for comparison.

second Damköhler number Das in Eq. (7). The correspond-
ing relaxation time τs of the passive supersaturation field
is of the order of τL. All three runs fall into the category
of inhomogeneous mixing with Das � 1, which implies that
regions of a cloud are saturated slightly faster than they are
mixed by the turbulence. The vapor field is stirred by the fluid
turbulence, fluctuations of s(x, t ) are effectively sustained
in a statistically steady state, and the relaxation timescale
τs � τL.

Both Damköhler numbers define an operating point in the
parameter plane of our stationary model, (Das, Dad ). They
are shown for the three simulations at different lengths L =
128, 256, and 512 mm in Fig. 5. Markers characterize the
position of our simulation cases in the Damköhler number
space. The solid vertical and horizontal lines characterize the
transition from homogeneous to inhomogeneous mixing for
both “reaction” processes at Da = 1.

B. Effect of gravity settling and magnitude of constant A1

In the previous subsection, gravitational settling and
droplet inertia were neglected. Their impact is studied now.
Similar to previous works [9–11,26], we generalize our
droplet dynamics model in the following to one for inertial

FIG. 5. Parameter space which is spanned by the two Damköhler
numbers Dad and Das. The operating points of the three simulation
runs are inserted; see the legend and Table I. Solid lines show Da = 1
for both. They mark the corresponding transition between inho-
mogeneous and homogeneous mixing. Damköhler numbers greater
and smaller than 1 characterize inhomogeneous and homogeneous
mixing regimes, respectively.
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TABLE II. Parameters of the additional simulation runs 2a–2f
which have the same setting for the turbulent velocity as run 2. These
runs have either a smaller constant A1 in the transport equation for the
supersaturation field or inertia effects included or both. Plus means
included; minus means neglected.

A1 r0

Run (m−1) (µm) Inertia and gravity

2a 5 × 10−4 10 −
2b 5 × 10−4 10 +
2c 0.2 20 +
2d 0.2 20 −
2e 5 × 10−4 20 −
2f 5 × 10−4 20 +

particles. The Lagrangian equations of motion are then ex-
tended to

dX i

dt
= V i, (12a)

dV i

dt
= 1

τ
(i)
p

[u(X i, t ) − V i] − gez (12b)

for i = 1, . . . , np. Here, X i and V i are position and velocity
for the ith particle, respectively. Time τ (i)

p = 2ρLr2
i /(9ρν) is

the particle response time of the ith droplet, and g is the
acceleration due to gravity. To this end, we performed six
additional DNSs in the same setting as run 2 of Table I, but
with new equations for the particle dynamics; see Eqs. (12).
Different combinations of the magnitude of A1, different ini-
tial radii, and droplet inertia are covered by these runs. They
are summarized in Table II.

The particle response time τp depends on its radius; for
particles with a radius r ≈ 20 µm, the response time is τp ≈
0.0045 s. Together with the large-scale eddy turnover time
τL = 2.64 s as the characteristic velocity field timescale (for
runs 2a–2f), the Stokes number St = τp/τL � 1. This im-
plies that the Stokes friction term, i.e., the first term on the
right-hand side of the particle velocity Eq. (12b), will remain
subdominant in comparison to the gravitational settling term,
the second term on the right-hand side. Furthermore, a second
initial droplet radius of r0 = 10 µm was taken, which leads to
different growth rates. Here, inertia effects are even smaller;
the radius, however, is still large enough to neglect curvature

FIG. 7. Droplet radius vs time for four randomly chosen individ-
ual droplets in run 2e from Table II.

and hygroscopicity effects for the growth by vapor diffusion
of the water droplets [18].

As seen in Fig. 6, the smaller initial droplet size leads to a
faster relative growth and shrinking of droplets and thus to a
faster relative broadening of the droplet size distribution. Both
runs (2a and 2e) were conducted at the corresponding realistic
value of A1 = 5 × 10−4 [8,10]. Thus even at this small A1,
a small change of the droplet size is observed for the short
mixing process. After approximately two large-scale eddy
turnover times, which correspond to t ≈ 5.3 s, the mixing
process is ceased and the droplet size distribution reaches a
steady state, as shown in Fig. 7, where we plot the radius of
four selected droplets as a function of time.

The first of the two forcing terms, A1uz, in Eq. (3c) keeps
the supersaturation field in a statistically steady state; the
second term was found to have a very small impact on the
dynamics only. With increasing box size and Reynolds num-
ber, both terms would gain magnitude and thus enhance the
level of fluctuations of the supersaturation field. The present
box sizes are too small, such that we decided to enhance the
prefactor artificially to keep the supersaturation fluctuations
at about srms ≈ 2%. Increasing A1 results in an expected faster
broadening PDF of droplet radii, as can be seen from Fig. 8.
Here, we compared identical simulations with an enhanced

FIG. 6. The impact of different initial sizes of the cloud droplets on the droplet size distribution. Panel (a) is taken at t = 1 s, (b) at t = 2 s,
and (c) t = 3 s. Data correspond to runs 2a and 2e in Table II.
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FIG. 8. Comparison of the time evolution of the cloud droplet size distribution for nonenhanced prefactor, A1 = 5 × 10−4, (solid line) and
enhanced factor, A1 = 0.2 (dashed line), for cloud droplets with initial radius r0 = 20 µm. These are runs 2d and 2e from Table II. Panel (a) is
taken at t = 1 s, (b) at t = 5 s, and (c) t = 15 s.

A1 = 0.2 to ones with the realistic value for the bulk of a warm
cloud, A1 ≈ 5 × 10−4.

Figure 8 reports a further effect, i.e., the longer-term impact
of droplet inertia on the broadening of the droplet size distri-
bution for two different initial radii and different A1. For the
initial radius of r0 = 10 µm, the additional impact of inertia,
i.e., gravitational settling, remains very small such that the
droplet size distributions for droplets with and without inertia
collapse almost perfectly for all times reported here and both
A1. This holds even for the tails. In the case of the initial radius
of r0 = 20 µm, there is a small effect of the gravitational set-
tling term observable. The gravitational settling term causes
a partial decoupling of the droplet tracks from the velocity
field and thus from the simultaneously stirred filaments of
the supersaturation field. The vertical motion of these bigger
droplets is slightly stronger in comparison to the horizontal
one. This leads to slightly sparser tails of the droplet size dis-
tribution which is visible in all three panels for all three times
(see Fig. 9). Sparser tails are also observed when comparing
runs 2c and 2d (not shown). The effect becomes visible for
the larger A1 = 0.2; it is not detectable for the realistic value
of A1.

V. FINITE-TIME LYAPUNOV EXPONENTS AND
SUPERSATURATION

In the Lagrangian approach, the turbulence can be studied
along the lines of dynamical systems theory. The deformation

of the fluid element assigned with each particle in the turbulent
flow can be used to obtain and monitor the local stretching
and compression in the flow along droplet trajectories. This
information is obtained by means of the finite-time Lyapunov
exponents (FTLEs). They are denoted as λi with i = 1, 2, 3.
Applying the gradient of Eq. (4a) with respect to initial con-
dition Xi(0) gives [19,41]

dMi j (t )

dt
= Jik (t )Mk j (t ) with Mi j (0) = δi j, (13)

where Mi j = ∂Xi/∂Xj (0) is the deformation tensor, Ji j =
∂ui/∂Xj is the Jacobian of the velocity field, and δi j is the
Kronecker delta. Integrating Eq. (13) with respect to time t ,
which is taken as a multiple integer of the step width �t , one
obtains for the lth particle at the position Xl at time t = n�t a
tensor Mi j that is given by

Mn
i j = [δik + Jik|X n

l
�t]Mn−1

k j . (14)

For each time step n, a QR-decomposition of the deformation
tensor Mi j is performed, i.e.,

M̂n = Q̂nR̂n, (15)

where Q̂n is an orthogonal matrix, and R̂n is the upper-triangle
matrix. Since Q̂n involves only rotations and reflections, the
matrix Rn contains information about stretching and compres-
sion of the corresponding fluid element, which is assigned
with a Lagrangian particle. FTLEs are obtained from the
time-averaged exponential growth or decay of the diagonal

FIG. 9. Comparison of the time evolution of the cloud droplet size distribution for nonenhanced prefactor, A1 = 5 × 10−4, for cloud
droplets with dynamics as gravity settling particles (dash-dotted and dotted lines) and as Lagrangian tracers (solid and dashed lines) for
droplets with initial radius r0 = 20 µm (dash-dotted and dashed lines) and r0 = 10 µm (solid and dashed lines). These are runs 2a, 2b, 2e, and
2f from Table II. Panel (a) is taken at t = 1 s, (b) at t = 5 s, and (c) t = 15 s.
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FIG. 10. Contour plots of horizontal slice cuts of λ3(x, t ) at different times in units of the large-scale eddy turnover time. (a) t = 0.03τL ,
(b) t = 0.09τL , and (c) t = 0.32τL . The magnitudes are given by the corresponding color bars. Data are for run 3.

elements, Rn
ii (note that no Einstein summation rule is applied

here). In detail, the exponents are given by

λi = 1

n�t

n∑
j=1

ln
∣∣R j

ii

∣∣. (16)

The FTLEs are then ordered, λ1 > λ2 > λ3 for each reference
tracer. Since we consider an incompressible flow, the sum of
FTLEs follows as

λ1 + λ2 + λ3 = 0. (17)

The first FTLE λ1 is always positive and characterizes local
stretching, while the intermediate λ2 can be either negative
or positive. The third exponent, λ3, is always negative and
describes the local compression of the fluid element. This
exponent characterizes the pile-up of scalar concentration by
stirring which can lead to an aggregation of filaments. The
evolution of the compression field λ3(x, t ) is displayed in
Fig. 10. With progressing time the contours get increasingly
finer in scale and convoluted. Figure 11 shows the PDFs of all
three FTLEs for different moments of time. As can be seen,
the PDFs of the FTLEs converge to Gaussian distributions for
later times, t � 5τL. The ratio between mean values of the
three FTLEs is seen in Table III. With increasing Reynolds
number, the magnitude of all three mean values decreases
slightly. The ratio is of approximately the same size as in
Ref. [41]. The rates of convergence to the Gaussian case in
units of τL are approximately the same for the investigated

runs, as seen in the figure. We have verified this relaxation
by means of the skewness and flatness factors of the PDF(λ3)
which converge to 0 and 3, respectively. The range of Taylor
microscale Reynolds numbers Rλ in this study is limited; it
basically ends where the range of the studies of Bec et al.
[42] starts; it is much smaller than in Ref. [41]. This might be
why the PDFs for all λi become symmetric in our study and
do not show the asymmetric form which would follow from
the large deviation theory (once the turbulent flows are highly
intermittent in the inertial cascade range).

The regions of high compression rates, as characterized by
high absolute values of λ3, describe regions of high turbulent
mixing (which means stirring plus diffusion). Thus regions
with high magnitudes of λ3 should also be associated with
regions of high spatial variations of the supersaturation field
s(x, t ), which is probed by the magnitude of the supersatu-
ration gradient or the corresponding scalar dissipation rate;
see again Fig. 2. We display the PDFs of the gradient of
the supersaturation field (normalized by its rms value) in
Fig. 12. The distributions are highly intermittent, as expected.
Tails are increasingly extended with growing Reynolds num-
ber Re. The far-tail regions are taken as those where χ =
|∇s|/|∇s|rms � 5.

Figure 13 shows different joint probability density func-
tions (JPDFs). These are p(λ3, r) in panel (a), p(λ3, s) in panel
(b), and p(λ3, χ ) in panel (c). Panels (a) and (b) show the
typical elliptically shaped contours of the joint PDFs since
both distributions are Gaussian. Panel (c) replots the JPDF

FIG. 11. Probability density functions of the finite-time Lyapunov exponents at different times in units of the large-scale eddy turnover
time τL . (a) Run 2 with L = 256 mm and (b) run 3 with L = 512 mm.

045101-9



VLADYSLAV PUSHENKO AND JÖRG SCHUMACHER PHYSICAL REVIEW E 109, 045101 (2024)

TABLE III. Ratio between mean value of FTLE for runs from
Table I. The average is taken over all Lagrangian droplet tracks.

Run 〈λ1〉 : 〈λ2〉 : 〈λ3〉
1 3.8 : 0.9 : −4.7
2 3.7 : 0.9 : −4.6
3 3.7 : 0.8 : −4.5

normalized by the single quantity marginal PDFs,

p̃(λ3, χ ) = p(λ3, χ )

p(λ3) p(χ )
. (18)

When the quantity p̃ > 1, then the correlation of both statisti-
cal quantities is larger as if they were statistically independent.
We see that this is exactly the case at the boundary of the sup-
port of the JPDF, particularly where larger λ3 are connected
with larger χ . It is expected that this effect becomes stronger
when the analysis is moved towards the cloud boundary.

As mentioned above, the FTLEs are used to monitor
stretching and compression regions in the turbulent flow.
These regions are connected to changes of the supersaturation
field. Thus the PDF of λ3 can be connected to the one of s.
Locally, the growth of a filament of the supersaturation can be
approximated effectively from a one-dimensional advection
by compressive strain [23],

S(t ) ≈ S(t0) exp[λ3(t )(t − t0)], (19)

where we define S(x, t ) = s(x, t ) + 1 for convenience. This
filament aggregation model [43] is applicable in the crossover
region starting from the small-scale end of the inertial range
into the viscous range below the Kolmogorov length ηK .
This viscous-convective range of passive scalar turbulence is
well developed only when Sc � 1 [23]. Here, the viscous-
convective range is narrow (if existing at all). In the crossover
range up to scales of a few Kolmogorov lengths ηK , the ve-
locity field should, however, still be sufficiently smooth such
that the framework is applicable. Time t0 in Eq. (19) is the

FIG. 12. Probability density function of the magnitude of the
gradient of the supersaturation field, χ = |∇s|/|∇s|rms for runs 1
(solid line), 2 (dashed line), and 3 (dash-dotted line). We indicate
the corresponding Reynolds numbers in the legend.

initial time of a time lag over which such a local aggregation
process proceeds at many places simultaneously in the bulk
of a cloud. The original model of Villermaux and Duplat
[21] is formulated for a conserved passive scalar field that
is not subject to additional source terms in contrast to the
present situation. We incorporate the relative changes of the
compression rates λ3(t ) relative to t0 by

S(t ) ≈ S(t0) exp

[
λ3(t )

λ3(t0)
− 1

]
. (20)

Figure 14 compares the supersaturation PDF for s obtained
from the PDF of the compressive FTLE with scalar distribu-
tion obtained in DNS. Therefore, we applied the substitution
rule

P(S̃) =
∫

p(λ3, t ) δ(S̃ − S(λ3, t ))dλ3, (21)

where S(λ3, t ) follows from (20). As seen, the results obtained
from FTLE field show a good agreement with the original
analysis of the DNS data. Particularly for later times, the
sub-Gaussian tails of the PDF of the supersaturation field are
reproduced. A task for future work is to check how well this
aggregation model will work when we move towards the edge
of the cloud where entrainment processes become important
and multiple filament foldings might take place.

VI. SUMMARY AND OUTLOOK

In the present work, a simple warm cloud mixing model
is presented and analyzed. Instead of two scalar fields—the
water vapor mixing ratio qv and the temperature T —one
scalar field, namely the supersaturation s, is used. This su-
persaturation field contains all required information about
water vapor and temperature in the bulk of the cloud and
thus determines the evaporation and condensation of cloud
droplets [9,10,17]. Direct numerical simulations for the tur-
bulent mixing of the supersaturation field, which is assumed
to be a passive scalar field in a homogeneous, isotropic tur-
bulent flow, were performed. For simplicity, we neglected the
two-way coupling of the droplets, since the particle Reynolds
numbers still remained smaller than 1. Furthermore, we kept
the flow in a statistically stationary regime to avoid com-
plex transients, which have been analyzed, for example, in
Ref. [20], and which would always be present in a real cloud.
The strongly simplified model opened doors for a connection
of the supersaturation and droplet statistics to the local strain
statistics along Lagrangian trajectories, which is quantified by
the FTLEs. Our study is motivated by the aggregation model
of turbulent mixing of scalar fields [21,22].

In our model, Eulerian and Lagrangian approaches are
combined. The Lagrangian frame is incorporated via the cloud
droplets (and thus the liquid water content), which are de-
fined as Lagrangian tracers. Their size depends strongly on
the fluctuations of the supersaturation field while they are
advected by the turbulent flow. It was shown that the droplet
size broadening strongly depends on the Reynolds number.
A higher turbulence level triggers larger fluctuations of the
supersaturation field and wider distributions of droplet radii.
It was also shown that inside the cloud bulk, distributions of
droplet radii are Gaussian without extended tails, as found in
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FIG. 13. Joint probability density functions of the third FTLE with (a) the droplet radius, p(λ3, r), (b) the supersaturation field at the
particle positions, p(λ3, s), and (c) the normalized gradient magnitude of the supersaturation field, p̃(λ3, χ ); see (18) for a specific definition.
Data are for run 3 at t = 19.4τL; see also Fig. 11(b).

entrainment studies [20]. The same holds for the distribution
of the supersaturation.

Different mixing regimes have been classified by the
Damköhler number. In our DNS, we have an inhomogeneous
mixing for the supersaturation field, Das > 1. It implies that
regions are saturated much faster than they are mixed by the
flow. For the droplet evaporation process, a homogeneous
mixing regime is obtained for the present parameter settings;
in the bulk, droplets experience a rapid change of sub- and
supersaturated regions along their pathways, which cause
Dad < 1. See again Fig. 5.

Using the Lagrangian approach allowed us to obtain
stretching and compression by calculating FTLE for our
Lagrangian tracers. The interdependence of stretching regions
defined by the highest absolute values of the third FTLE and
regions with the highest supersaturation are obtained from a
joint distribution of λ3 and s. We have seen that the aggre-
gation model of scalar filaments can be applied in principle,
similar to [21,23] even though the Schmidt number is Sc ∼1.
Multiple foldings of scalar filaments, however, are unlikely;
the diffusion times are short, and a viscous-convective range
of scalar mixing is very small. The statistics of droplet size
distribution in the bulk of the cloud remains Gaussian. Fur-

FIG. 14. Probability density functions of supersaturation s for
times (a) t = 4.86τL and (b) t = 9.75τL , which are obtained from
the FTLEs (solid line) from run 3 via the aggregation model. They
are compared to the directly evaluated ones (dash-dotted line). The
dashed line is a Gaussian PDF.

thermore, the small Reynolds numbers of the present cases
generated Gaussian distributions of λ3. At higher Re, intermit-
tency in the inertial cascade range will generate asymmetric
distributions in correspondence with large-deviation theory.
These studies are currently taken towards the cloud boundary
where the entrainment of clear air into cloudy air proceeds and
the droplet size distributions develop tails. The results with
expected deviations from a Gaussian statistics will be reported
elsewhere.
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APPENDIX: BALANCE EQUATION FOR THE
SUPERSATURATION FIELD

In the following, we describe in brief the derivation of
the equation of motion of the supersaturation field s(x, t )
following the works of Sardina et al. [10] and Fries et al. [17].
The starting point is the balance equations of the temperature
fluctuations θ (x, t ) = T (x, t ) − 〈T (z)〉 and vapor mixing ratio
fields qv (x, t ). They are given by

Dqv

Dt
= Dv∇2qv − Cd , (A1a)

Dθ

Dt
= κ∇2θ − g

cp
uz + L

cp
Cd , (A1b)
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where Dv is the vapor diffusivity, κ is the temperature diffu-
sivity, and Cd is the condensation rate. An additional term that
contains the dry adiabatic lapse rate g/cp is contained in the
equation of the temperature fluctuations. In clouds, the lapse
rate is somewhat smaller than the dry one, 0.01 K

m ; therefore,
even for the largest computation box from Table I with size
L = 0.512 m, the mean temperature variation does not exceed
0.005 K. Thus the prefactor in the updraft term of the equa-
tion for the supersaturation field will have a small prefactor
A1. We are not including a mean updraft of the volume as a
whole with a velocity 〈uz〉. The condensation rate is given by

Cd (x, t ) = 1

ma

dmL

dt
= 4πρL

ρVa

N∑
i=1

r2
i

dri

dt

= 4πρLK ′

ρVa

N∑
i=1

ri(t )s(xi, t ). (A2)

We will now reduce the two equations to one balance equa-
tion, since the supersaturation field summarizes effectively the
effects of latent heat release and condensation/evaporation in
qv (x, t ) and θ (x, t ). We start with the material derivative of
s(x, t ), which is given by

Ds

Dt
= D

Dt

(
qv (x, t )

qvs(x, t )
− 1

)
= 1

qvs

Dqv

Dt
− qv

q2
vs

Dqvs

Dt
. (A3)

First, the material derivative of the saturation mixing ratio (of
vapor) qvs, using the ideal gas law, gives

Dqvs

Dt
= D

Dt

(
ρvs

ρ

)
= D

Dt

(
εes

p

)
= ε

p

Des

Dt
− εes

p2

Dp

Dt

= ε

p

des

dθ

Dθ

Dt
− εes

p2

Dp

Dt
, (A4)

where ε = R′/Rv . The total time derivative of the pressure
field can be obtained via the hydrostatic equilibrium [46]

Dp

Dt
= d p

dz

dz

dt
= −uzgρ = −uzgp

Raθ
, (A5)

where Ra is a gas constant for dry air. By using the
Clausius-Clapeyron equation (A5) and (A1b), Eq. (A4) is
transformed to

Dqvs

Dt
= ε

p

Les

Rvθ2

(
κ∇2θ − g

cp
uz + L

cp
Cd − εes

p2

uzgp

Raθ

)
.

(A6)
Substituting (A6) and (A1a) into (A3) results in

Ds

Dt
= 1

qvs
(Dq∇2qv − Cd ) − qv

q2
vs

ε

p

Les

Rvθ2

×
(

κ∇2θ − g

cp
uz + L

cp
Cd − εes

p2

uzgp

Raθ

)
.

Thus it follows that

Ds

Dt
= 1

qvs

(
Dq∇2qv − Cd

) − s + 1

qvs

ε

p

Les

Rvθ2

×
(

κ∇2θ − g

cp
uz + L

cp
Cd − εes

p2

uzgp

Raθ

)
.

For clouds, supersaturation usually does not exceed 1–2 %.
Thus s � 1 and consequently s + 1 ≈ 1. Together with the
definition of the saturation mixing ratio, one gets

Ds

Dt
= pDq

εes
∇2qv − p

εes

Lesκ

Rvθ2
∇2θ − Cd

×
(

p

εes
+ p

εes

L2εes

pRvθ2cp

)
+ Lg

Rvcpθ2
uz. (A7)

In the present model, we will approximate diffusion of the
supersaturation field as a linear combination of the diffusion
processes of temperature and vapor mixing ratio

Ds∇2s = pDq

εes
∇2qv − p

ε

Lκ

Rvθ2
∇2θ. (A8)

The diffusion coefficient of supersaturation is assumed to be
equal to the diffusion coefficient of water vapor, Ds ≈ Dq.
Thus the Schmidt number of the scalar supersaturation field
will also be Sc ≈ 0.7. The coefficient that is connected to the
condensation rate can then be transformed in the following
way:

p

εes
+ p

εes

L2εes

pRvθ2cp
= ρR′θ

εes
+ L2ερθ

pθ2cp
= ρ

(
R′θ
εes

+ L2ε

pθcp

)
.

(A9)

Substituting (A8), (A9), and (A2) into (A7), we get the final
equation for the supersaturation field, which is given by

Ds

Dt
= Ds∇2s + Lg

Rvcpθ2
uz −

(
R′θ

εes(θ )
+ L2ε

pθcp

)
4πρLK

Va

×
N∑

i=1

ri(t )s(xi, t ). (A10)

The following coefficients can then be defined:

A1 = Lg

Rvcpθ2
, (A11a)

A2 = R′θ
εes

+ L2ε

pθcp
, (A11b)

K ′ =
[

LρL

Kθ

(
L

Rvθ
− 1

)
+ ρLRvθ

Des(θ )

]−1

. (A11c)

Thus the final balance equation of the supersaturation field is

Ds

Dt
= Ds∇2s + A1uz − A2

4πρLK ′

Va

N∑
i=1

ri(t )s(t, xi ). (A12)

This equation couples Eulerian and Lagrangian dynamics and
is used in the main text.
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