
PHYSICAL REVIEW E 109, 045001 (2024)

Indentation of an elastic arch on a frictional substrate: Pinning, unfolding, and snapping
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In this study, we investigate the morphology and mechanics of a naturally curved elastic arch loaded at its
center and frictionally supported at both ends on a flat, rigid substrate. Through systematic numerical simulations,
we classify the observed behaviors of the arch into three configurations in terms of the arch geometry and the
coefficient of static friction with the substrate. A linear theory is developed based on a planar elastica model
combined with Amontons–Coulomb’s frictional law, which quantitatively explains the numerically constructed
phase diagram. The snapping transition of a loaded arch in a sufficiently large indentation regime, which involves
a discontinuous force jump, is numerically observed. The proposed model problem enables a fully analytical
investigation and demonstrates a rich variety of mechanical behaviors owing to the interplay among elasticity,
geometry, and friction. This study provides a basis for understanding more common but complex systems, such
as a cylindrical shell subjected to a concentrated load and simultaneously supported by frictional contact with
surrounding objects.

DOI: 10.1103/PhysRevE.109.045001

I. INTRODUCTION

Designing the proper geometry of a thin structure is cru-
cial for realizing its functionality, and has become a central
topic in the field of soft matter mechanics [1,2]. For example,
by choosing suitable geometrical and structural arrangements
for the assembly of thin strips and harnessing their elastic
forces, various curved (pseudo)surfaces and their transforma-
tions have been achieved [3–5]. Typically, the fundamental
building blocks for such advanced materials are intrinsically
straight and/or uniformly curved rods, ribbons, and plates.
The intrinsic curvature of a slender object introduces novel
types of elastic instabilities and morphologies, which may find
various applications, such as mechanical metamaterials [6],
jumping soft robotics [7,8], and bioinspired actuators [9].

These geometrical structures are subjected to various
boundary conditions, depending on how they are mounted
onto an entire physical system. In some cases, the relevant
boundary conditions are not given a priori but rather in a
state-dependent manner [10,11]. For instance, when a wire is
inserted into a narrow channel, it is resisted by the frictional
forces exerted from the inner side of the wall [12,13]. As the
compressive force increases, the wire may buckle and eventu-
ally jam with undesired pressure applied to the wall [14–16],
which is a potentially fatal problem in endoscopic surgery
applications. Therefore, the morphologies of thin structures
in contact with the surrounding objects have been extensively
studied at various levels of complexity, ranging from the
buckling of a single strip on a flat surface [17] to crumpled
sheets during packing [18–23]. Notably, recent studies have
also uncovered functional advantages of frictional contact,
such as the force amplification in a capstan [24,25], elastic
knots [26], interleaved plates [27,28], and twisted yarn [29],
as nonreciprocal mechanical responses in snap fits [30] and
grasping [31] and as energy absorption devices [32]. However,
the interplay among natural curvature, elasticity, and contact

mechanics, and the consequences of their potential applica-
tions, have not been fully explored.

To highlight the role of the intrinsic geometry and frictional
contact in the mechanics of a thin structure, we propose an
investigation of the simplest possible system: an elastic arch
on a rigid, flat frictional surface (see Fig. 1). Such a uniformly
curved elastic strip can act as a leaf spring [33] and exhibit
an intriguing mechanical response that is highly dependent
on its configuration. In addition to its geometry-dominated
nature, the arch can exhibit a rich variety of force responses
against indentation at its center when friction acts to resist
the tangential motion (i.e., slipping) of the two ends on the
surface.

FIG. 1. Naturally curved elastic strip, which we call “arch,”
loaded at its center on a frictional substrate. (a) Definition of the
coordinate system and variables in our theoretical analysis. (b)–(d)
Photographs of the three characteristic configurations, i.e., unfolding,
folding, and pinning, of a naturally curved plastic film ribbon, for
illustration purposes only.
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Most studies on the planar elastica problem have focused
on solving the nonlinear boundary value problem, either an-
alytically or numerically, to address its large deformation
behaviors. In this approach, transcendental equations involv-
ing elliptical integrals must be addressed [33–35]. As there
are generally multiple solutions to these nonlinear equations,
we must also identify which solution is an energy mini-
mizer [36]. A uniform intrinsic curvature is equivalent to a
premoment applied externally to an intrinsically straight elas-
tica, which makes it difficult to find such a physical solution
analytically [33]. Instead of employing a rigorous but implicit
analytical approach that relies heavily on elliptic functions, we
opt for a linear relationship between the force and displace-
ment in a curved elastica by focusing on a small-amplitude
deflection regime [12,37,38]. For example, the linear mechan-
ical response of a curved elastic beam has been examined
previously to elucidate the climbing mechanism of gecko
setae [39,40].

In this study, we consider the indentation of an elastic
arch placed on a frictional substrate [Fig. 1(a)]. We generalize
the aforementioned small-deflection theory to an intrinsically
curved elastic strip within the framework of the planar elastica
theory. The predictions of our analytical theory are corrobo-
rated using systematic numerical simulations.

The remainder of this paper is organized as follows. In
Sec. II, numerical simulations are employed to investigate the
deformation of an elastic arch loaded at its center on a fric-
tional substrate [17,30]. We identify three distinct behaviors,
which we classify into folding, unfolding, and pinning phases,
based on the static friction coefficient μ and the opening angle
2� of the arc [see Fig. 1(a)]. In Sec. III, we develop an
analytical theory based on Kirchhoff’s elastic rod theory [41]
combined with a dry friction law [42] and establish a linear
response formula that quantitatively explains the mechanical
phase diagram. In Sec. IV, we numerically address various
morphological transitions observed in a highly nonlinear de-
formation regime. In Sec. V, we summarize our main results
and discuss potential avenues for future research.

II. NUMERICAL SIMULATION

A. Setup of the simulation

We consider the planar deformation of a uniform elastic
arch of total length 2L and opening angle 2�. See Fig. 1(a).
In this study, we consider L and � as the basic geometric pa-
rameters, and the arch is assumed to have a uniform intrinsic
curvature with a radius of curvature of R = L/�. Gravity is
ignored in this study.

The basic numerical method has been previously de-
scribed [17,30]. Several key aspects of the simulation method
are described briefly in this section. A continuous elastic arch
is discretized into a chain of N = 31–51 nodes in which
neighboring nodes are connected with sufficiently stiff springs
of nearly constant length a. The force fields are calculated
from properly defined stretching and bending elastic ener-
gies [17,30]. The self-avoidance of the chain is considered by
the repulsive potential, modeled as a harmonic potential with
a sufficiently large modulus. The penetration of the chain into
a flat rigid substrate is also prevented using the same type of

potential. The tangential interaction of the chain nodes with
the surface is modeled according to the Amontons–Coulomb’s
law [42]. The position of each node evolves according to
Newton’s equation of motion with a small damping parameter
that ensures numerical stability. We use the Euler iteration
method to numerically integrate appropriately rescaled dy-
namical equations with a nondimensional time step, which is
typically 0.05. The output values are calculated every 105 −
106 steps, and the total simulation time is 107–108 steps.

In its initial configuration, the discretized arch is semicir-
cular and located just above a rigid flat substrate. We impose
a downward displacement at the center of the arc �y and mea-
sure the reaction force P with increasing �y quasistatically. As
soon as both ends of the arch come into contact with the sur-
face, they move tangentially outward or inward [see Figs. 1(b)
and 1(c), respectively] or remain stationary [Fig. 1(d)]. To
classify the configurations of the arch quantitatively, we mea-
sure the resulting outward horizontal displacement, �x, and
define “unfolding” for �x > 0, “pinning” for �x = 0, and
“folding” for �x < 0. To establish a mechanical phase dia-
gram, we explore a wide range of parameter spaces (�,μ):
� = 20◦–178◦ and μ = 0.1–1.2.

B. Results

The results of a systematic numerical investigation in the
low-force regime are presented in Fig. 2(a). We observe
three distinct mechanical phases depending on the parameters
(�,μ).

First, we focus on the frictionless case. See the μ = 0
line in Fig. 2(a). For a shallow arch (� < �c), where �c is
determined as follows, the two ends slip outward (�x > 0) as
soon as the arch is loaded at its center. As explained above,
we define this phase as “unfolding.” In contrast, for a deep
arch, i.e., � > �c, the two ends initially slip inward (�x < 0);
we define this phase as “folding.” The boundary between the
folding and unfolding phases for μ = 0 is �c ≈ 142◦.

Next, when frictional interactions occur between the arch
and the substrate, the phase diagram bifurcates, resulting in
the emergence of the third phase, which we define as “pin-
ning.” See the μ > 0 region in Fig. 2(a). In the pinning phase,
both ends of the arch remain immobile during the indentation.
In Fig. 2(a), the pinning phase expands as μ increases and
prevails in the diagram for a sufficiently large friction. In
addition, the folding phase disappears when μ > μc ≈ 0.42.
In the following section, we develop an analytical argument to
corroborate these numerical findings and show that �c and μc

are universal numbers in the sense that they are independent
of any material parameter, such as the Young’s modulus of the
arch.

In Fig. 2(b), the typical force versus displacement curves
for the three phases are shown for μ = 0.2. In the case
of unfolding [Fig. 2(b)(i)], the force increases linearly with
the vertical displacement �y(� L). With increasing vertical
displacement, the force increases but deviates from the lin-
ear slope, whereas the two ends continue to slip outward
[Figs. 2(b)(i) and 2(c)(i)]. In the case of folding [Fig. 2(b)(ii)],
the force initially exhibits a linear increase with the vertical
displacement, but then increases rapidly because of the inter-
action with the substrate [Fig. 2(b)(ii)]. Note that the force
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FIG. 2. Phase diagram, representative force–displacement curves, and configurations. (a) Numerically constructed phase diagram of the
(�,μ) space. The blue, green, and red symbols represent the (i) unfolding, (ii) folding, and (iii) pinning phases, respectively. The solid lines
represent our analytical predictions; see the main text. (b) Rescaled indentation force PL2/B as a function of the rescaled vertical displacement
at the center of the arch, �y/L, for μ = 0.2. The inset displays the same data focusing on the small indentation regime, �y/L < 0.05. Note
that the vertical axis in the inset shows PL2/B�2 because our linear theory is developed under the basic assumption given by PL2/(B�2) � 1
(see the main text). (c) Representative snapshots of an arch for increasing �y/L, obtained from the numerical simulations; (1)–(4) correspond
to those shown in the horizontal axis in panel (b). The corresponding locations of (i)–(iii) on the phase diagram are also shown in panel (a).

curve shows irregular variations owing to the frictional contact
between the arch and the susbstrate [Fig. 2(c)(ii)].

Note also that the diagram in Fig. 2(a) is constructed based
on the response of the arch in the low-force regime. In the
pinning phase in Fig. 2(a), the two ends remain pinned (i.e.,
�x = 0) in the low-force regime. However, when the arch is
strongly squeezed [Figs. 2(b)(iii) and 2(c)(iii)], the two ends
suddenly snap outward, and the loading force P decreases
discontinuously to reach the same magnitude as that in the
unfolding phase [see Fig. 2(b)(i)].

III. THEORETICAL ANALYSIS

A. Setup of the analysis

Focusing on the linear regime characterized by a suffi-
ciently small vertical displacement �y � L, we rationalize

the above numerical findings in the framework of the inexten-
sible planar elastica theory [33,41]. In the two-dimensional
problem, the position of the centerline of the arch is repre-
sented as r(s) = (x(s), y(s)), where s is defined as the arc
length parameter s ∈ [−L, L]. We assume that the center of
the arch is at s = 0, with the left and right ends at s = −L and
L, respectively [Fig. 1(a)]. In addition to the Cartesian coor-
dinate representation, we define the variable θ (s) to represent
the angle between the tangent line at s and the horizontal axis,
which is suitable for considering the inextensibility conditions
implied in the elastica model. From Fig. 1(a), dx(s)/ds =
cos θ (s) and dy(s)/ds = − sin θ (s). Assuming a symmetric
deflection of the arch about s = 0 as observed in our numer-
ical simulations, we consider the deformation of only half of
the arch, that is, segment 0 � s � L. This indicates that the
arch at s = 0 is clamped horizontally, that is, θ (0) = 0.
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A simple geometric consideration indicates the following
relationship: ∫ L

0
cos θ (s)ds = sin �

�
L + �x, (1)

∫ L

0
sin θ (s)ds = 1 − cos �

�
L − �y. (2)

When a concentrated downward force P is applied at s = 0,
the substrate exerts a reaction force (Fx, Fy ) on the (right) edge
(s = L). The overall vertical force balance is P = 2Fy. The
elastica equilibrium equation [33,41] is given by

Bθ ′′(s) − Fx sin θ (s) − Fy cos θ (s) = 0, (3)

where the prime symbol ()′ represents the derivative with
respect to s, and B is the bending modulus. In addition, we as-
sume moment-free boundary conditions at both ends [17,30],
implying θ ′(L) = �/L. We also assume that there is no in-
flection point in the shape of our elastica considered here.
Integrating Eq. (3) and using the boundary conditions at s = L
given above, we find that

ds

L
= dθ

�

[
1 + 2

�2

(
fx

fy

)
·
(− cos θ + cos θ (L)

sin θ − sin θ (L)

)]−1/2

, (4)

where we define the nondimensional force as

fα = FαL2

B
, (5)

for α = x, y. Equation (4) can be integrated exactly using
elliptical integrals; however, this is notoriously cumbersome
for naturally curved beams [33]. Instead, focusing on a low-
force regime characterized by fα/�2 � 1 for α = x and y, we
linearize Eq. (4), and obtain

ds

L
≈ dθ

�

[
1 − 1

�2

(
fx

fy

)
·
(− cos θ + cos θ (L)

sin θ − sin θ (L)

)]
. (6)

By applying the integrals in Eqs. (1) and (2), using Eq. (6) and
the condition of inextensibility, we obtain a linear relationship
given by

�α

L
= Cαβ

FβL2

B
, (7)

where the Greek indices run in the x and y directions, indi-
cating Einstein’s sum rule. The symmetric compliance matrix
Cαβ in Eq. (7) is defined as follows:

Cxx(�) = 1

2�2
− cos �

�3

(
3

2
sin � − � cos �

)
, (8)

Cxy(�) = 1

2�3
+ cos �

�3

(
1 − 3

2
cos � − � sin �

)
, (9)

Cyx(�) = Cxy(�), (10)

Cyy(�) = 1

2�2
+ sin �

�3

(
−2 + 3

2
cos � + � sin �

)
. (11)

The inverse of the matrix C, which we write as C−1, is
the (nondimensional) rigidity matrix that can be determined
from � only. The off-diagonal elements of C provide normal
tangential coupling, which quantifies the lateral displacement
induced by the vertical loading force.

B. Effective stiffness of the arch

To characterize the mechanical properties of an elastic arch
on a flat substrate, we derive Hooke’s law of indentation as
follows:

PL2

B
= K (�)

�y

L
, (12)

where K (�) denotes the dimensionless effective stiffness. A
specific form of K (�) can be obtained analytically by using
Eq. (7), once the lateral force Fx is determined by the given
boundary conditions. To encompass the different conditions
imposed along the x direction, we first assume a simple but
general boundary condition in which the end positions of the
arch are constrained by linear springs with the dimensionless
stiffness k; that is,

FxL2

B
= −k

�x

L
. (13)

For k = 0, the elastic strip is free to move horizontally (on
a frictionless substrate), whereas for k → ∞, the ends are
firmly fixed at their initial positions. Substituting Eq.(13) into
Eq. (7), we obtain

Kel(�, k) = Kpin(�)
k + (Cxx )−1

k + (C−1)xx
, (14)

where

Kpin(�) = 2(C−1)yy. (15)

We define (C−1)αβ as the (α, β ) component of the inverse ma-
trix C−1 and (Cαβ )−1 = 1/Cαβ . Kpin(�) = limk→∞ Kel(�, k)
denotes the stiffness of the pinning boundary conditions. In
Fig. 3(a), we plot Kel/Kpin as a function of � for various
values of k [as indicated in the legend of Fig. 3(b)]. A shallow
strip (� � 1) is much softer for a finite k compared with the
pinning case (k = ∞). In particular, we find that

lim
�→0

Kel(�, 0)

Kel(�,∞)
= 3

128
. (16)

The relationship between the lateral and vertical displace-
ments can also be obtained as

�x

�y
= − (C−1)xy

k + (C−1)xx
(17)

and are plotted in Fig. 3(b). An indentation, that is, an increase
in �y, induces a lateral displacement �x, and the magnitude
of this coupling depends on the intrinsic curvature �. As ob-
served in Figs. 3(a) and 3(b), we have Kel/Kpin = 1 at � = �c

irrespective of the value of k, at which |�x/�y| = 0. Thus,
�c is determined by solving (C−1)xy(�) = 0 numerically,
from which we find �c ≈ 142◦. For � = �c, the ends of
the arch are virtually pinned irrespective of the value of k,
which is purely geometric. Note also that Eq. (17) predicts the
unfolding (�x > 0) and folding (�x < 0) phases for shallow
(� < �c) and deep (� > �c) arches [see Fig. 3(b)], which
agrees with the diagram shown in Fig. 2(a). Considering that
the present analytical argument applies to any frictionless
(μ = 0) substrate, we can fully explain the threshold angle
�c observed in the diagram given in Fig. 2(a).

To rationalize the numerically constructed diagram shown
in Fig. 2(a), we consider frictional interactions with the
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FIG. 3. Analytical results of our linear theory for various val-
ues of the boundary stiffness k. (a) Normalized effective stiffness
Kel/Kpin plotted as a function of the opening angle � for various k
[indicated in the legend of panel (b)], based on Eq. (14). (b) Ratio
of the vertical (�y) to horizontal (�x) displacements plotted as a
function of � for various k (indicated in the legend), based on
Eq. (17).

substrate, assuming the Amontons–Coulomb’s friction law.
Based on the classifications shown in Fig. 2, the stiffness
K (�) differs among the three phases. The stiffness of the
pinning phase is expressed in Eq. (15). In the unfolding
and folding phases, the quasistatic loading assumption indi-
cates the critical condition |Fx/Fy| = μ. Combining this with
Eq. (7), we obtain

K±(�,μ) = Kpin
(Cxx )−1

(C−1)xx ± μ(C−1)xy
, (18)

where the positive and negative indices in K± represent un-
folded and folded phases, respectively. Note that Eq. (18) with
μ = 0 agrees well with Eq. (14), where k = 0. In the inset of
Fig. 2(b), we plot the force law based on Eqs. (15) and (18)
and observe consistency with our simulation results.

C. Phase boundaries

Using the aforementioned theoretical framework, we ana-
lytically determine the phase boundaries as shown in Fig. 2(a).
First, we consider an elastic arch in a pinning configuration.
By substituting �x = 0 in Eq. (7), we immediately obtain
Fx/Fy = −Cxy/Cxx. The critical condition μ = |Fx/Fy| is sat-
isfied for the two-phase boundary lines shown in Fig. 2(a). We
can find that Cxy > 0 for � < �c and the pinning–unfolding
boundary line is determined by

μ = Cxy

Cxx
. (19)

Similarly, because Cxy < 0 for � > �c, the pinning–folding
boundary line can be determined as follows:

μ = −Cxy

Cxx
. (20)

We plot Eqs. (19) and (20) in Fig. 2(a), which are consistent
with the simulation results. The critical value of the static fric-
tion coefficient μc, above which the folding phase disappears
for all � values, is directly obtained from Eq. (20) as

μc = −Cxy(180◦)

Cxx(180◦)
= 4

3π
≈ 0.424. (21)

This is in quantitative agreement with the numerical results
shown in Fig. 2(a). We then establish two critical parameters,
�c and μc, which are independent of elastic properties, such
as Young’s modulus; hence, they are purely geometric. Note
that Eq. (19) asymptotically approaches μ = 25/(16�) for
� � 1, indicating that the unfolding region decreases as μ

increases, but remains for an arbitrarily large value of μ.

IV. LARGE INDENTATIONS

When the loading displacement is sufficiently large, the
mechanical response significantly changes. Figure 4(a) shows
a typical force-displacement curve obtained from the nu-
merical simulation. As discussed in Sec. II B, for (�,μ) =
(110◦, 0.2), the curved strip unfolds upon indentation at its
center, and as the displacement increases, the loading force
increases more slowly than its initial linear response slope.
To understand the characteristic force behavior in terms of
the strip configuration, we plot |Fx/Fy| as a function of �y/L
in Fig. 4(b). For μ = 0.2 (red symbols), the strip undergoes
quasistatic slipping because |Fx/Fy| 	 μ holds in Fig. 4(b).
By contrast, for (�,μ) = (110◦, 0.4) (blue symbols), the strip
ends are initially pinned as |Fx/Fy| < μ for a small �y/L.
In fact, Eq. (19) predicts |Fx/Fy| = Cxy(110◦)/Cxx(110◦) ≈
0.36 < μ (= 0.4), which is consistent with the numerical re-
sults shown in Fig. 4(b). Although our linear theory predicts
that |Fx/Fy| is independent of �y, beyond this linear regime,
|Fx/Fy| is observed to increase with increasing �y/L. As soon
as |Fx/Fy| = μ (= 0.4 in the present case), the strip ends snap
outward and the force decreases discontinuously, as shown in
Figs. 4(a) and 2(b)(iii). Beyond this transition point, the criti-
cal condition |Fx/Fy| ≈ μ holds for increasing �y/L, whereas
the magnitude of the force is of the same order as that for
μ = 0.2 [Fig. 4(a)]. For comparison, we numerically investi-
gate an elastic arch firmly pinned at its two ends and loaded
at its center. As observed in Fig. 4(a), the force–displacement
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FIG. 4. Snapping behavior and underlying friction mechanism
along with the arch configurations. (a) Rescaled indentation force
PL2/B plotted as a function of the rescaled vertical displacement
�y/L for � = 110◦ and for μ = 0.2 (red, unfolding) and μ = 0.4
(blue, pinning). The insets show several representative configurations
from the numerical simulations. (b) Plot of |Fx/Fy| as a function of
�y/L for the two cases shown in panel (a). The snap point indicated
in the data for μ = 0.4 corresponds to the snap point of the signifi-
cant force drop in panel (a). The dotted line is the prediction for the
hinge–hinge (i.e., “completely pinned”) boundary condition.

curve is in excellent agreement with that for μ = 0.4 provided
that |Fx/Fy| < μ. Therefore, the critical displacement for the
pinning-to-slipping transition (accompanied by snapping) can
be precisely predicted using this comparison.

In the presence of friction, a distinctive hysteretic behavior
can appear during the cyclic indentation process. Figure 5
shows the typical hysteresis loop observed in the unfolding
phase [Fig. 5(a)] and pinning phase [Fig. 5(b)]. In the unfold-
ing phase, as the critical condition |Fx/Fy| ≈ μ always holds,
the frictional force acting on the ends of the strip changes di-
rection during the forward (pushing) and backward (relaxing)
processes. This is most evident in the difference in the linear
slopes in the small-force regimes. According to the linear
theory expressed in Eq. (18), the linear slope in the backward
process should become K+(−μ) = K−(μ), as indicated by the
solid line in Fig. 5(a) and is in excellent agreement with the
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FIG. 5. Numerical simulation results on the hysteretic force re-
sponse during a cycle process consisting of the forward (pushing) and
backward (relaxing) indentations. Rescaled indentation force PL2/B
plotted as a function of the rescaled vertical displacement �y/L for
� = 110◦, and (a) for μ = 0.2 (unfolding phase), and (b) μ = 0.4
(pinning phase). The dashed and solid lines represent the predictions
from our linear theory. See Eq. (18). (c) Schematics of off-center
indentation geometry. A point of indentation is at a distance e away
from the center of the arch. (d) PL2/B plotted as a function of �y/L
observed in the off-center indentation of e/R = 0.077, � = 110◦,
and μ = 0.4, together with the representative configurations of the
arch.

numerical data. In contrast, in the pinning phase, the force
response is perfectly reversible before the snapping transition,
which is evident, considering that the cycle process is under-
taken virtually under fixed boundary conditions. However, a
substantial hysteresis appears when the direction of the in-
dentation changes after the snapping transition. As the arch is
considerably unfolded during snapping, the strip behavior in
the backward process becomes similar to that in the unfolding
phase. In this case, both the asymmetry originating from the
nature of the dry friction and the asymmetry arising from the
strip configurations contribute significantly to the remarkable
hysteretic force behavior shown in Fig. 5(b).

V. DISCUSSION AND CONCLUSION

By combining numerical simulations and analytical the-
ory, we quantify the mechanical responses of an elastic arch
loaded at its center and frictionally supported at both ends
on a flat substrate. We formulate a compliance matrix for the
arch against indentation, which is a function of the intrinsic
geometry of the arch. When combined with specific boundary
conditions, this allows us to obtain the effective Hooke’s law.
Our theoretical framework quantitatively predicts a numeri-
cally constructed phase diagram.

We also numerically investigate the deformation behavior
of the arch at large indentations. The arch exhibits a snapping
shape transition that cannot be captured by linear response
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analysis. We also show that the force drastically decreases
during the snapping transition, which is potentially useful for
application to efficient energy-absorbing materials [32,43,44].

This study has several possible extensions. First, the con-
figuration of a naturally curved elastica is mathematically
equivalent to the so-called “sticky elastica” problem [45].
Sticky elastica refers to the delaminated configuration of an
elastic strip that initially adheres to a wet substrate or liquid
surface. In this setup, the ends of the strip must satisfy the
boundary condition θ ′ ∝ 1/�ec, where �ec is often termed as
“elastocapillary length” [46]. Therefore, the proposed theo-
retical framework can be applied to quantitatively estimate
the adhesion energy of an elastic sheet or strip on a sticky
surface [46–48].

Second, the effects of self-weight need to be investigated
to determine the configuration of a heavy structure. This is
particularly relevant to either a soft object or a structure with
a sufficient weight. A balance between the gravitational pull
and the elastic restoring force naturally sets the characteristic
length scale, called the gravitobending length, which is given
by Lgb = (B/ρgS)1/3, where ρ is the mass density, and S is
the cross-sectional area of the slender rod and beam [49].
Therefore, the relative significance of the weight to elasticity
for a naturally curved beam is quantified by the nondimen-
sional parameter R/Lgb [50], where R is the intrinsic radius
of curvature of the arch. For R/Lgb � 1, the arch deforms
only slightly; however, for R/Lgb � 1, the arch exhibits an
M-shape similar to that observed in Fig. 2. A detailed study of
a gravity-driven shape transition of a naturally curved elastic
line will be reported elsewhere.

Third, extending our study to thin-shell mechanics is an in-
teresting but challenging endeavor. The indentation behavior
of a semicylindrical shell has been extensively studied, usually
under clamped boundary conditions for lengthwise edges,
where the remaining two edges are free [51]. The localized
deformation of a cylindrical shell is inevitably accompanied
by in-plane stretching [2,41], which leads to stress focusing
and the creation of a pair of defects [20,52]. These individual
structures can migrate to the free edges, where they disappear,
thereby reducing the stretching energy and drastically de-
creasing the indentation force. At this point, the shell recovers
its isometrically deformed shape, which is similar to the M-
shape observed in the planar elastica model [51,52]. It needs
to be investigated how such generic behavior is modified if the
edges of the shell are supported by frictional interactions with
a flat substrate.

Finally, the theoretical findings must be verified through
physical experiments. In the present study, we have inves-
tigated the symmetric deformation of an ideal arch with
uniform natural curvature and elastic modulus, assuming an
indentation at the center of the arch. However, in our prelim-
inary experiments, the arch was often observed to undergo
asymmetric buckling deformation upon indentation. One of
the major causes of the observed symmetry breaking is the
intrinsic variation in the geometric parameters, such as the
thickness and natural curvature, of the fabricated physical
models. This suggests the need to increase the fabrication
accuracy for the quantitative experimental verification of our
analytical and numerical findings. Another major reason may
be the accuracy of the indentation position [53]. To examine
the significance of this, we investigate the slightly off-centered
indentation of a perfectly uniform, ideally shaped, elastic
arch in our numerical simulation. In Figs. 5(c) and 5(d), we
show the typical arch behavior observed for off-centeredness
e/R = 0.077, μ = 0.2, and � = 110◦. The initial response in
terms of both the configuration and force is almost identical to
that for e/R = 0. However, as the indentation depth increases,
far end from the indentation point snaps first, accompanied
by a discontinuous drop in the force response. At this point, a
highly asymmetric configuration is observed [Fig. 5(d), inset],
which is not observed for e/R = 0. Further indentation then
induces a second snapping of the remaining end, again involv-
ing a discontinuous force decrease to a value comparable to
that for e/R = 0. Therefore, for an off-centered indentation,
the unique snapping point for e/R = 0 bifurcates into the
second-step process, and the resulting force curve becomes
more complicated. Overall, these numerical findings are con-
sistent with those observed in our preliminary experiment.
However, a large parameter space remains to be explored
for a thorough characterization of the buckling behavior of
indented curved elastic strips with various levels of imperfec-
tions. Further theoretical and experimental investigations are
required to understand the complex mechanical responses of
curved elastic structures supported by friction substrates.
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