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Geometric cohesion in two-dimensional systems composed of star-shaped particles
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Using a discrete element method, we investigate the phenomenon of geometric cohesion in granular systems
composed of star-shaped particles with 3 to 13 arms. This was done by analyzing the stability of columns built
with these particles and by studying the microstructure of these columns in terms of density and connectivity.
We find that systems composed of star-shaped particles can exhibit geometric cohesion (i.e., a solidlike behavior,
in the absence of adhesive forces between the grains), depending on the shape of the particles and the friction
between them. This phenomenon is observed up to a given critical size of the system, from which a transition to a
metastable behavior takes place. We also have evidence that geometric cohesion is closely linked to the systems’
connectivity and especially to the capability of forming interlocked interactions (i.e., multicontact interactions
that hinder the relative rotation of the grains). Our results contribute to the understanding of the interesting and
potentially useful phenomenon of geometric cohesion. In addition, our work supplements an important set of
experimental observations and sheds light on the complex behavior of real, three-dimensional, granular systems.
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I. INTRODUCTION

The mechanical stability of many systems built from gran-
ular materials depends essentially on their shear strength. This
latter is defined as the maximum shear stress τmax that can
be applied to the material before it starts flowing. For coarse
granular systems, τmax is usually predicted using the Coulomb
law:

τmax = c + σ tan φ, (1)

where c is the cohesion, σ is the stress normal to the consid-
ered plane, and φ is the angle of internal friction. The shear
strength is thus built from two contributions: cohesive and
frictional. In most cohesive granular materials, the cohesion is
due to adhesive forces between the grains (e.g., cementation
or partial fluid saturation) [1,2], while the frictional contri-
bution results from friction between grains [3–9] and from
their shape, more particularly from their angularity [10,11],
elongation [11–14], or platyness [15,16].

However, there exist a few granular materials that defy
these explanations. One example is materials composed of
grains with peculiar shapes, which allow each grain to inter-
lock and/or to mutually entangle. Due to these interactions,
these materials exhibit very specific behaviors. One of the
most noteworthy aspects of this behavior is that these mate-
rials do not flow easily. Instead, they behave as solids, even
in the absence of adhesive forces between grains. Because
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this phenomenon depends strongly on the grain shapes, it is
termed geometric cohesion, as originally introduced by S. V.
Franklin in 2012 [17].

Since the nineties, many studies have focused on under-
standing granular materials with geometric cohesion. The first
works focused on identifying the geometrical features (e.g.,
the aspect ratio in rodlike particles) inducing solidlike behav-
ior [18–22]. Then, several research groups started studying
materials made of particles with nonconvex shapes, such as
superballs [23], U-shaped and Z-shaped grains [17,24–27],
spiky particles [28–30], and polypods [29–31]. Some of these
systems exhibit geometric cohesion, which makes them capa-
ble of supporting applied loads and even vibrations [32,33].
Other works have been devoted to the use of geometrical
cohesion for architectural purposes [34–37].

Some numerical studies, mainly in two dimensions, have
also focused on dense states of nonconvex particle assem-
blies (U and cross-shaped particles for instance [26,38,39]).
Depending on the degree of nonconvexity of the grains, the
systems they compose can be hyperstatic or develop long-
range correlations over several grain diameters. Some studies
(few actually) have focused on flow behavior (e.g., granular
systems composed of hexapods in a Couette cell [40]). Fi-
nally, two-dimensional experiments have been carried on the
packing fraction of systems composed of cross-shaped parti-
cles [41]. Together, these works evidence the great potential
of this new family of granular materials and highlight the
urge to investigate their mechanical properties in a systematic
manner [42].

Our main objective was to study the phenomenon of
geometric cohesion in granular materials composed of star-
shaped particles. Specifically, we aimed to answer the
following questions: (i) Do these systems exhibit geometric
cohesion? (ii) How does this property depend on the size of
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the system? (iii) How does this property depend on the specific
shape of the particles? and (iv) How does this property depend
on the friction between grains?

To tackle these questions, we used numerical simulations
in two dimensions using a discrete element method: the
contact dynamics (CD) method. We built several samples
composed of star-shaped particles with a varying number of
arms. These samples were columns of different heights, and
each of these columns was subjected to a stability test. We
found that systems of star-shaped particles can exhibit geo-
metric cohesion, depending on the geometry of the particles
and their frictional properties. We also studied the microstruc-
ture of the columns in their initial state, before they get
released. We evidence that the emergence of geometric cohe-
sion is closely linked to the system’s connectivity, and more
particularly to the possibility for particles to interlock (i.e., to
restrict their relative rotation).

This article is organized as follows. In Sec. II, we present
the geometry of the particles, the numerical method, and the
protocol used to build the samples. In Sec. III, we present
the results from both the macroscopic and the microstructural
viewpoints. Finally, in Sec. IV we summarize our results and
present some perspectives for future works.

II. METHODS

A. Simulation of star-shaped particles

The simulations were carried out using the CD method,
developed by Dubois and Jean [43,44]. The CD method is
a discrete-element method (DEM) based on an implicit time
integration of Newton’s equations and nonregularized contact
laws. In practice, the CD method can be seen as a combination
of three main ingredients.

First, the equations of motion for each particle are for-
mulated as differential inclusions in which velocity jumps
replace accelerations over a time step �t . Second, a set of
contact laws relate the impulsions exerted at each contact
with the change of relative velocity during �t . The grains
are assumed to be perfectly rigid, and the unilateral contact
interactions and Coulomb friction law are treated as com-
plementarity relations or set-valued contact laws, involving
three physical coefficients: the Coulomb friction coefficient
μ, plus two coefficients of restitution (normal and tangential)
controlling the amount of energy dissipated during collisions.
In all the simulations presented in this paper, the coefficients
of restitution were set to zero. Third, forces and velocities
are solved simultaneously using a nonlinear (and parallelized
[45]) Gauss-Seidel method which consists of solving a single
contact problem, with other contact forces being treated as
known, and iteratively updating the forces and velocities until
a convergence criterion is fulfilled. The iterations in a time
step are stopped when the calculated contact forces are stable
with respect to the update procedure.

Finally, an implicit time-stepping scheme is used to derive
the grains’ displacements. A fundamental difference between
the CD method and other so-called “smooth” approaches
[46] is precisely that no regularization parameters (Hertz-like
approach) or dampers are introduced. This makes the CD
method unconditionally stable and allows the use of larger

FIG. 1. Particles geometry: (a) Schematic representation of an
arm, made from a rectangle and a disk. (b) Schematic representation
of a five-arm particle with a diameter (i.e., of the circumscribing
circle) D. (c) Star-shaped particles with numbers of arms Na from
3 to 13. (d) Cap-cap contact (cc) considered as a disk-disk contact.
(e) Cap-side contact (cs) considered as a disk-rectangle contact.
(f) Side-side contact (ss) considered as two cs-contacts.

time steps than in smooth approaches. This feature is crucial
when dealing with very large numbers of grains, especially
grains with very nonconvex shapes, which can have a pro-
hibitive number of contacts that can make the systems “very”
hyperstatic. A detailed description of the CD method can be
found in Refs. [43,44,47] as well as in the Appendices of
Ref. [48].

Star-shaped particles were constructed by the union of Na

“arms” of thickness d and length D/2 distributed in an equian-
gular manner around the particle’s center of gravity, where
D is the diameter of the circle circumscribing the particle
[see Figs. 1(a) and 1(b)]. One arm was modeled by adding
a rectangle of length L = (D − d )/2 to a disk of diameter
d at its external extremity. In this study, we only considered
particles with thin arms and a fixed D = 9d . Still, we varied
the number of arms, Na, from 3 to 13. The corresponding
family of star-shaped particles is shown in Fig. 1(c).
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FIG. 2. Sample preparation: (a) Initial state of the sample con-
struction, where Np randomly oriented particles were initially laid on
a triangular lattice (here for particles with three arms). (b) Final state,
at the end of the gravity deposition phase; this pile served as an initial
state for the stability test.

The interactions between two star-shaped particles can be
reduced to a combination of contacts between their arms taken
individually. Thus, for contact detection, we used the general
scheme shown in Figs. 1(d)–1(f) where the contact between
two arms leads to three distinct situations: (i) cap-to-cap
cc-contacts [Fig. 1(d)], (ii) cap-to-side cs-contacts [Fig. 1(e)],
and (iii) side-to-side ss-contacts [Fig. 1(f)]. In the framework
of the CD method, it is common to represent ss-contacts as
two points of contact. The choice of these points does not
affect the resultant force, hence a ss-contact can be simply
reduced to two cs-contacts. The implementation of ss-contacts
in the framework of the CD method is described in more detail
in Ref. [13].

For our simulations, we used the LMGC90 platform, a
multipurpose software developed in LMGC laboratory. It is
capable of modeling a collection of deformable or nonde-
formable particles of many different shapes under various
loading conditions.

B. Sample construction and collapse test

All granular columns were prepared following the same
protocol. First, for a given set of particles with a number
of arms Na, 4000 randomly oriented particles were initially
laid at the nodes of a triangular lattice of edge 1.1D inside a
rectangular box of width W0 = 10D [see Fig. 2(a)]. Gravity
is then turned on and particles are left free to fall inside the
box until the deposit comes to rest [see Fig. 2(b)]. During the
deposit, both the local friction coefficient (between grains and
with the walls) and the coefficients of restitution were set to
zero. The assembly was considered in mechanical equilibrium
when a persistent force network was obtained and fluctuations
around the mean values of both the solid fraction and the
connectivity remained below 0.01%. From this tall column,
shorter columns composed of Np particles were extracted by
removing grains from the top. The extracted columns were
again balanced by gravity. This protocol was repeated for
each value of Na ∈ {3, ..., 13}, in such a way that columns of
different initial heights H0 were built by changing Np. These
two initial steps of the protocol correspond to the preparation
of the systems. Then, the friction coefficient μ, between

grains and with the walls, was set to 0.5, and the stability of
the column was tested. This test consisted on removing the
side walls and letting the system evolve under the effect of
gravity until it reached a new equilibrium state. The effect of
intergranular friction was also tested, varying it between 0.01
and 0.7 for a fixed Na.

Finally, for the sake of statistical significance, for every
configuration, (Na, Np), simulations were repeated up to 20
times with independent initial states. Repetitions were stopped
once the average and the standard deviation of the most rele-
vant measures were no longer modified by the addition of new
simulations. In the end, a total number of 1470 simulations
were performed twice: (i) one time for gravity deposition of
the particles and (ii) another time for column collapse tests.
Note that the activation of friction once the preparation stage
is completed is a numerical artifact. It is a way to obtain
initially dense arrangements that could have been reached by
vibrating the system but in a more time-consuming manner.

III. RESULTS

A. Frictional versus cohesive behavior

In Fig. 3 we show the initial and final states of several
columns built with particles with numbers of arms Na = 3 and
Na = 8. The initial height ratio, H0/D, is increased and the
induced stability is observed. Two distinct behaviors can be
observed. For Na = 3, as classically observed in most stability
test problems, the columns collapse into a more or less trian-
gular heap regardless of H0. In the following, we will refer
to this type of response as a frictional behavior. In contrast,
for Na = 8 the observed response is more complex. For this
shape, the integrity of the granular column is maintained,
even in the absence of the side walls, for H0 < 150D. In the
following, we will refer to this type of response as a cohesive
behavior. These columns collapse for larger H0, showing that
the behavior becomes frictional as the size of the system
increases.

In order to identify which grain shapes induce a frictional
or a cohesive behavior, Fig. 4(a) shows the variation of the
final scaled height Hf /D (averaged over all repetition for a
given value of H0) as a function of the initial scaled height
H0/D, for all collapse tests and all particle geometries. We
note that Hf is defined as the height of the highest particle
in the sample after the collapse [see Fig. 4(b)]. Typically,
for a frictional behavior Hf << H0 whereas for a cohesive
behavior H0 � Hf .

Hence, from Fig. 4(a) we can already identify qualitatively
that the star-shaped particles displaying a frictional behavior
are those with a number of arms Na ∈ {3, 4, 5, 13}. For these
systems, Hf is almost independent of H0 and remains close to
15D. Meanwhile, the star-shaped particles displaying a cohe-
sive behavior are those with Na ∈ {6, ..., 12}. In these systems,
H0 � Hf until a “critical” height Hc is reached. Hc can be
defined as the height at which Hf stops being approximately
equal to H0 (i.e., the height from which the collapse process
starts). It is worth noting that very slender and stable columns
can be formed. For example, the column’s aspect ratio can
be as large as 20 (i.e., the height is equal to 20 times the
width of the column) for Na = 10. More interestingly, beyond
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FIG. 3. The initial (dark blue) and final (magenta) states of columns made of star-shaped particles with (a) Na = 3 and (b) Na = 8 are
shown, for increasing values of the scaled initial height H0/D. For Na = 3, the columns collapse towards a more or less triangular heap
regardless of H0. For Na = 8, the integrity of the granular column is maintained, even in the absence of the side walls, for H0 < 150D. Note
that both heights are normalized by the diameter of the particles D.

Hc, Hf does not suddenly decline toward 15D, but a gradual
decrease is observed. In other words, we observe a crossover
from a purely cohesive to a purely frictional behavior, but this
is not a sharp process and metastable cohesive columns persist
beyond Hc. Finally, it can be seen that the cohesive behavior
depends in a nonmonotonic way on Na. Indeed, the value Hc

from which Hf deviates from H0 (indicating a partial collapse)
first increases from Na = 3 to Na = 10 and then decreases. In
the following subsection, a more quantitative description is
proposed through the definition of a “collapse ratio” param-
eter, allowing to continuously describe the crossover from a
cohesive to a frictional behavior as H0 increases.

B. Crossover from cohesive to frictional columns: A measure
of column stability

In the previous section, we highlighted that the crossover
from a cohesive to a frictional behavior is a smooth transition
whose onset is around a critical height, Hc, which depends on
the number of arms Na. In this section, we aim to characterize
quantitatively this crossover. For this purpose, let us introduce
the collapse ratio r defined in Ref. [32], as a measure of
column stability:

r = Nout

Np
. (2)

As illustrated in Fig. 4(b), Nout is the number of parti-
cles standing outside the initial column area (in red) while
Np is the total number of particles. For cohesive granular
columns, r is expected to be close to zero, while for frictional

columns r is significantly higher, close to one. Between these
limits, r can be used as an implicit measure of the phe-
nomenon of geometric cohesion by quantifying the level of
stability of the cohesive columns.

Figure 5(a) shows the evolution of the collapse ratio r as
a function of the initial height H0/D, for all studied parti-
cles. Interestingly, for all columns with a purely frictional
behavior (i.e., those with Na ∈ {3, 4, 5, 13}), ratios collapse
on a master curve, in which r increases rapidly with H0

towards a plateau tending asymptotically to 1 for the tallest
columns. In contrast, for cohesive columns (i.e., those with
Na ∈ {6, ..., 12}), the evolution of r presents two horizontal
plateaus. The first, lower, plateau characterizes initially short
columns in which r → 0 when H0 → 0. In this regime, the
integrity of the columns is preserved. The second, upper,
plateau characterizes tall columns for which r → 1 when
H0 → ∞. In this second regime, columns collapse, exhibiting
a frictional behavior. In between, r increases monotonically
with an inflection point near r = 0.5. Note that, in every case,
r slowly tends towards unity without reaching it, since after
the collapse a fraction of the particles necessarily remains
within the initial column area [see Fig. 4(b)].

Our data are well fitted by the following function intro-
duced by [32]

r = 1

(H50/H0)α + 1
, (3)

where H50 is the height for r = 0.5 and α is a fitting parameter
following a trend similar to that of H50: first, it increases from
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FIG. 4. (a) Scaled final height Hf /D as a function of the nor-
malized initial height H0/D, for columns composed of grains with
different numbers of arms Na. Error bars represent the standard error
between several repetitions for each H0. (b) Schematic representation
of H0 and Hf . Particles in the initial state are shown in gray color.
In the final state, the particles that remain inside the initial area are
shown in blue, while that particles that fall outside this area are
shown in red.

1.2 to 8.7 for Na = 10, and then it decreases to 1.5. H50 can be
understood as the crossover height from a metastable cohesive
behavior to a predominantly frictional behavior, where more
than 50% of the particles fall outside of the column. From
Eq. (3), we can define Hc in a more accurate way. It corre-
sponds to the height for which r = 0.1, which approximates
the height where r undergoes a sharp increase. Thus, one gets
Hc = 9−1/αH50.

Figure 5(b) shows a color map of the collapse ratio, r, as a
function of the number of arms Na. This can be seen as a sta-
bility diagram of the granular columns. In this phase diagram,
the evolution of the crossover height H50 as a function of Na

is plotted with a dashed black line, and the critical height Hc

is plotted as a function of Na in orange. This figure confirms
that the stability of cohesive columns increases progressively
with Na and reaches a maximum for Na = 10. Then the sta-
bility sharply decreases until the behavior becomes frictional
again for Na = 13. Such nonmonotonic behavior reveals com-
plex mechanisms at the microscale when reaching Hc and
H50. These mechanisms will be discussed in more detail in
Sec. III D.

C. Effect of friction on the stability
of geometrically cohesive columns

It is natural to assume that the awakening of geometric
cohesion is not only a function of the particle shape but

FIG. 5. (a) Evolution of the collapse ratio r of the columns as a
function of the scaled initial height H0/D, for columns composed of
star-shaped particles with different numbers of arms Na. Error bars
represent the standard error between several repetitions for each H0.
The lines show a fit of Eq. (3). (b) Stability phase diagram as a
function of Na and the scaled initial height H0/D. The color scale
is proportional to r. The evolution of the critical height Hc and the
crossover height H50 (see text for a definition) is also shown using
dashed lines.

also of the contact friction. To explore this interplay, we first
considered columns of particles with Na = 6, for different
initial heights H0. We then vary the value of the interparticle
friction μ ∈ {0.01, 0.3, 0.4, 0.5, 0.6, 0.7}. As for the previous
data, simulations were repeated several times on initially inde-
pendent configurations until the mean collapse ratio r and the
corresponding standard deviation did not evolve. We carried
out up to new 420 simulations.

Figure 6 shows the evolution of the collapse ratio r as a
function of H0/D, for all values of μ. Again, our data are
well fitted by Eq. (3) whatever μ. We see that the curves
shift progressively from the left to the right as μ is increased.
This evidences that both Hc and H50 depend on μ. This is
shown in the inset of Fig. 6, where both Hc and H50 increase
to 50D and to 100D, respectively, as μ increases. Note that
the parameter α also depends on μ and increases from 1.5
to 3.0. This is most likely because the stability of interlocked
interactions increases with μ. The definition and the role of
these interactions will be explained in Sec. III D 1. Finally, it
is worth noting that geometric cohesion disappears completely
when the internal friction tends to zero, at least for the Na = 6
grain shape, where interlocking is impossible.
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FIG. 6. Collapse ratio r as a function of the scaled initial height
H0/D, for columns composed of grains with Na = 6 arms and for
contact friction, μ, from 0.01 to 0.7. Error bars represent the standard
error of the collapse ratio. The inset shows the evolution of the
critical height Hc/D and the crossover height H50/D as functions
of μ.

D. Microstructure of the initial state

In the previous sections, we described the macroscopic
effects of both particle shape and contact friction. To go
deeper into the description of these effects, we now explore
the microstructure of the systems starting from the study of the
initial states of the columns, before the sidewalls are removed,
just after the gravity deposition phase. We investigated the
geometric organization of the particles in terms of packing
fraction and grain connectivity, for different numbers of arms
Na and initial heights H0. We aim to identify and possibly
quantify micro-scale mechanisms that induce the vanishing
of the cohesive response, explaining the crossover from a
cohesive to a frictional behavior.

1. Packing fraction and grain connectivity

The first and most natural approach when dealing with the
resistance of granular materials is to study their density and its
relationship with strength. The packing fraction is a measure
of how dense the material is. It is calculated as

ν = Vp

V
, (4)

where Vp is the volume occupied by the particles and V is the
total volume.

Figure 7 shows the evolution of the average packing frac-
tion, 〈ν〉, as a function of the number of arms, Na. It should
be noted that, for a fixed value of Na, the average runs over
all initial heights H0. As a general observation, 〈ν〉 increases
with Na, reaches a maximum for Na = 11, and then remains
at high values until Na = 13. Moreover (although not shown
here), we verified that packing fraction profiles [i.e., ν(y/D)]
are almost constant within the bulk; thus, ν fails to explain the
emergence and disappearance of geometric cohesion. Simi-
larly, Table I presents the global packing fraction 〈ν〉 for the
largest systems analyzed. It should be noted that the height
H0/D of all systems depends on Na. As it will be shown in the
following paragraphs, a clearer link between microstructure

FIG. 7. Averaged packing fraction, 〈ν〉, as a function of the num-
ber of arms Na. Data points and bars (too small to be seen) represent
the mean and standard error over all repetitions and for all column
heights H0.

and geometric cohesion can be established by analyzing the
systems’ connectivity.

Along with the packing fraction, the “compactness” of the
initial states can also be analyzed in terms of the connectivity
of the particles. More precisely, the main effect of shape
nonconvexity is to allow several types of contacts between the
particles as illustrated in Fig. 8 for Na = 8. In this case, up
to four contacts can be formed between two star-shaped parti-
cles. These contacts can be point-contacts (i.e., a combination
of cc and/or cs contacts) or a mix between point-contacts
and linear contacts, with two cs and one ss contact. Note
that, since ss contacts represent two geometrical constraints,
they should be counted twice when enumerating contacts. In
the following, we will refer to “simple” (i1), “double” (i2),
“triple” (i3), and “quadruple” (i4) interactions when particles
interact through, one, two, three, and four contacts, respec-
tively. Note that although we used a particle with eight arms
as an example, the same types of interactions occur between
star-shaped particles with different numbers of arms.

Then, we can identify several ways of computing the coor-
dination number. First, it can be defined as the mean number
of neighbors per particle (i.e., multiple contacts are only seen

TABLE I. Global packing fraction 〈ν〉 and maximum average
initial height H0/D for the largest systems analyzed. The number of
arms Na and the number of particles Np are also presented.

Na Np H0/D 〈ν〉
3 4000 133.4 0.47
4 4000 167.6 0.49
5 2000 93.7 0.52
6 4000 206.8 0.56
7 4000 224.4 0.60
8 4000 242.5 0.62
9 4000 257.5 0.64
10 4000 270.8 0.66
11 2000 141.8 0.67
12 2000 149.6 0.67
13 1000 80.5 0.66
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FIG. 8. Schematic representation of the types of contacts that can
be observed between the strongly nonconvex grains explored in this
study. Without any loss of generality, here examples are given for
particles with Na = 8 arms. Red lines represent cc or cs contacts,
and green lines represent ss contacts (counted twice since a ss contact
represents two geometrical constraints).

as one interaction). In this case, we call it Z . Then, it can
be defined as the connectivity number, Zc, which is the mean
number of contacts per particle. Note that, for the ideal case
of circular particles (i.e., for Na → ∞) Z = Zc.

Figure 9(a) shows Z and Zc, as functions of the number
of arms Na. It can be seen that Z is almost constant with
Na. This means that the number of neighboring particles is
similar in all samples and independent of Na. On the contrary,
Zc increases from � 6 to � 10 when Na goes from 3 to 10,
and then decreases to � 7 for Na = 13. This is surprising
since a Zc � 6 is expected for every shape because the ini-
tial packings were built with frictionless particles [49,50].
Indeed, frictionless noncircular particles are characterized by
3 degrees of freedom (two translations and one rotation) so
that the isostatic condition implies Zc = 6. This means that
assemblies of star-shaped particles are hyperstatic, and the
degree of hyperstaticity of the columns at the initial state
varies nonmonotonically with Na. We note that the hyperstatic
character of assemblies of nonconvex grains has been already
reported for highly nonconvex shapes, more precisely for
U-shaped and star-shaped particles in 2D [26,39]. Interest-
ingly, the maximum in Zc occurs at Na = 10, which also
corresponds to the most stable (i.e., geometrically cohesive)
columns (see Sec. III B). Nevertheless, we notice that a high
degree of hyperstaticity is not a sufficient condition to obtain
geometric cohesion. For instance, the columns with Na = 4,
5, and 13 are hyperstatic but they exhibit a frictional behavior.

For further insight, in Fig. 9(b) we plot the evolution of
the partial connectivity numbers, Zi1 to Zi4, as functions of
the number of arms Na, such that Zc = Zi1 + Zi2 + Zi3 + Zi4.
We see that Zi1 and Zi2 decrease with Na, while Zi3 increases.
More interestingly, Zi4 presents a peak value for Na = 10. As

FIG. 9. (a) Coordination number Z and connectivity number Zc

as functions of the number of arms Na. (b) Evolution of the partial
connectivity numbers Zi1 (dark red circle), Zi2 (clear red square),
Zi3 (dark green lozenge), Zi4 (clear green cross) as functions of Na.
(c) The connectivity numbers distinguishing Zi1 + Zi2 and Zi3 + Zi4.
The bars represent the standard error of the plotted data.

highlighted before, this value of Na corresponds to the most
cohesive columns. Thus, the increase in Zc is explained by
the gain in local interactions with more than 3 contacts up to
Na = 10. Beyond, the decrease in Zc is explained by the loss
of these highly connected local interactions.

More fundamentally, Zi3 and Zi4 quantify locally inter-
locked and closely packed structures preventing, or at least
restricting, the relative rotation of the grains. With this in
mind, in Fig. 9(c) we distinguish the total contribution of
i1 and i2 interactions (Zi1 + Zi2) from that of i3 and i4
(Zi3 + Zi4). Remarkably, for shapes that only exhibit a fric-
tional behavior (i.e., for Na ∈ {3, 4, 5, 13}) simple and double
interactions dominate, meaning that: Zi1 + Zi2 > Zi3 + Zi4.
On the contrary, for shapes that exhibit a cohesive behavior
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FIG. 10. Collapse sequence for a column with (a) Na = 3 arms and an initial height H0/D = 66 and (b) for Na = 8 and H0/D = 240.
t f corresponds to the final time from which the heap is at rest. The color scale represents the particles’ velocity.

(i.e., for Na ∈ {6...12}), complex, multicontact, and thus po-
tentially interlocked interactions are dominant.

Thus, it can be assumed that geometric cohesion is a
complex phenomenon requiring the interplay of at least three
conditions: (i) hyperstaticity, (ii) interlocking interactions
avoiding grain rotation in “sufficient” proportions, and (iii) a
sufficiently large local friction coefficient.

2. Collapse sequence and connectivity profiles

To reinforce the hypothesis formulated above, in this sec-
tion, we focus more specifically on the collapse mechanism
and how observables evolve in the system around Hc and
eventually display a crossover.

In particular, we analyzed the evolution of the connectivity
as a function of the height, Zc(y), in a given column before
removing the sidewalls. We expect this quantity to vary as
y increases so that at least one of the conditions formulated
above is lost. For the sake of clarity, in the following, we will
focus only on the columns composed of particles with Na = 3
(frictional behavior) and with Na = 8 (cohesive behavior). In
both cases, the friction coefficient is fixed to μ = 0.5.

Figure 10 shows the collapse sequence of two different
columns: (a) for Na = 3 arms and an initial height of H0/D =
66 and (b) for Na = 8 and H0/D = 240. For this latter case,
we consider a cohesive metastable column with H0 > Hc. The
color scale is proportional to the particles’ velocity. Basi-
cally, for the frictional column, the system forms an initial
barrel which then spreads laterally. On the contrary, for the
metastable cohesive column, the particles start to fall from the
top, while the bottom remains relatively stable. This suggests
that particles are better connected at the bottom of the column
than at the top, preventing a generalized collapse.

Figure 11 shows the connectivity profiles Zc(y) (left side)
and the partial connectivity number (right side) at the initial

FIG. 11. Connectivity profiles Zc(y) as functions of the vertical
position y, scaled by the diameter D, for columns with (a) Na = 3
arms and (b) Na = 8. On the left side of the figure, the average of Zc

is shown using a full line, and the limit ziso is shown using a purple
dashed line. On the right-hand side, we show the partial connectivity
number profiles Zi1 to Zi4 as functions of y/D; the data for all
initial heights H0 are shown using the same color for the sake of
clarity.
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state, as functions of the vertical position, y, scaled by the
particle diameter D, for columns composed of particles with
(a) Na = 3 arms and (b) Na = 8, and for various values of the
initial height H0. For a given H0, the profiles are averaged over
several independent initial states. For columns with Na = 3,
Zc(y) is approximately constant and close to the expected
isostatic value of Zc � 6. On the contrary, for columns exhibit-
ing a cohesive behavior (here for Na = 8) Zc(y) significantly
evolves with y/D. More precisely, for H0/D � 59, Zc(y) val-
ues are very high, close to 8 or 9. These columns exhibit a
solidlike behavior (see also Fig. 3). For larger values of H0/D,
Zc(y) progressively declines towards 6 as y/D increases. It
is interesting to note that, for all y/D, Zc(y) nearly coincides
whatever the initial height of the columns. This finding results
from the column construction protocol presented in Sec. II B.
More specifically, for Na = 8, Zc(y) is close to 9 in the first
layers of the column, and then it decreases almost linearly
to � 7, as y/D increases from 30 to 90. It then continues to
decrease less rapidly beyond y/D ∼ 90, tending towards the
expected isostatic value of Zc � 6 for the highest altitudes. In
other words, the transition from a metastable to a frictional
behavior is correlated with a change from a hyperstatic to
an isostatic nature of the contact network as y/D increases.
This is consistent with the collapse mechanism of the cohe-
sive columns starting at the top (i.e., for the largest values
of H0).

A deeper insight can be achieved by analyzing the partial
connectivity profiles Zi1, Zi2, Zi3, and Zi4, as presented on the
right-hand side of Fig. 11 for (a) Na = 3 and (b) Na = 8. For
Na = 3, all the profiles remain nearly constant, regardless of
the initial height H0/D. In particular, Zi1 + Zi2 > Zi3 + Zi4.
In contrast, for Na = 8, Zi3 + Zi4 is higher than Zi1 + Zi2 in
the first layers. A crossover is observed around y/D � 70.
Near this point, cohesive columns transform into metastable
ones. This is also explained by the decrease of Zc(y) in this
range of heights. Finally, Zi3 and Zi4 vanish with y, while
Zi1 and Zi2 remain nearly constant and close to three. Note
that interactions with three or four contacts correspond to the
maximal possible connectivity between star-shaped particles,
as it was shown in Fig. 8. Thus, it is indeed the loss of local
interlocked structures with three or more contacts that induces
a progressive destabilization of cohesive columns. This leads
to their collapse for the highest values of H0.

3. Improving the stability of geometrically cohesive columns

The connectivity profiles shown in the previous subsection
are the result of the sample preparation method presented in
Sec. II B. The gravitational deposition method is somehow
biased by the fact that the velocity acquired by the particles
when deposited depends on their initial height. As a result,
grains at higher altitudes experience greater dynamic states
than those at the base of the column. At the same time,
particles at the top part of the columns are less subjected to
the weight of the upper layers and therefore require fewer
contacts to be stabilized. So, to further strengthen the hy-
pothesis of the necessary role of local interlocked structures
with three or more contacts to obtain geometric cohesion,
we conducted the following test. We considered all the ini-
tial states previously constructed for Na = 8 and H0/D ∈

FIG. 12. (a) Evolution of the collapse ratio r for Na = 8 arms,
for both uncompressed and compressed columns. Error bars rep-
resent the standard error. (b) Profiles of the connectivity number
Zc(y) (black) and partial connectivity numbers Zi1 + Zi2 (red) and
Zi3 + Zi4 (green), as functions of the vertical position y/D for initially
uncompressed (full lines) and compressed (dashed lines) columns
with H0/D = 240.

{117, 145, 175, 240}. Then, these columns were compressed
vertically by imposing a constant stress on the top wall, while
maintaining the side walls position and zero friction between
the particles. The imposed force to compress the columns
was approximately equal to the weight of the column. The
compression was stopped as soon as mechanical equilibrium
was reached (i.e., when a persistent contact force network
was obtained). Note that as explained in Sec. II particles are
rigid. Regarding the solid fraction, for the shortest column 〈ν〉
increased from 0.65 to 0.66, and for the tallest column 〈ν〉
increased from 0.64 to 0.65. Once stabilized, a collapse test
was carried out as described in Sec. II B, by setting the contact
friction to 0.5 and removing the side walls. This represented a
total of 85 simulations.

Figure 12(a) shows the evolution of the collapse ratio r
as a function of the scaled initial height H0/D for Na = 8
arms (same as in Fig. 5), together with the four points cor-
responding to the mechanically compressed columns. We see
that the first three metastable cohesive columns (i.e., H0 ∈
{117, 145, 175}D) become now fully cohesive. Similarly, the
column that initially exhibited a frictional behavior (i.e., H0 =
240D) now exhibits a metastable cohesive behavior, with r
changing from 0.9 to 0.4. This result, although remarkable,
is not completely new and has been observed by other au-
thors, comparing experimentally the stability of columns of
nonconvex grains initially compacted by vibration [32,33].
Figure 12(b) shows the evolution of the connectivity profile
Zc(y) of the two averaged initial states, i.e., for uncompressed
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(plain lines, full symbols) and compressed (dashed lines,
empty symbols) columns for H0/D = 240. We see that, in the
compressed columns, the connectivity profile remains roughly
constant around 9 up to an altitude of y/D ∼ 150. This
evidences a higher connectivity than that of uncompressed
columns. Similarly, the crossover observed in the evolution
of partial connectivity occurs at a higher altitude for the com-
pressed columns.

IV. SUMMARY AND DISCUSSION

In summary, using contact dynamics simulations, we in-
vestigated the phenomenon of geometric cohesion in granular
systems composed of star-shaped particles. To do so, we
built several samples composed of particles with a varying
number of arms. We built columns of different heights that
were subjected to a stability test. We aimed at answering the
following questions: (i) Do these systems exhibit geometric
cohesion? (ii) How does this property depend on the size of
the system? (iii) How does this property depend on the shape
of the particles? (iv) How does this property depend on the
friction between the grains? In the following paragraphs, we
present our main conclusions.

First, we found that some of the granular systems investi-
gated do exhibit geometric cohesion. This property is closely
linked to the shape of the particles, and in our case to the
number of arms of these particles. Specifically, we did not
observe geometric cohesion for particles with 3, 4, 5, and
13 arms. In contrast, we observed geometric cohesion for
particles with 6 to 12 arms. For the set of shapes explored
here, the cohesive response is maximized for particles with
10 arms, and the columns can behave in a solidlike manner
up to heights as large as 20 times the width of the column.
This is consistent with experimental observations for rodlike
particles [18–22], staples [17,24,25], Z-shaped particles [27],
and hexapods [32,33,38]. We also show that these systems
behave as solids up to a certain critical height. From this point,
following gradual crossover, the systems transition from a
cohesive behavior to a frictional one.

Second, we see that geometric cohesion cannot be fully
attributed to the geometry of the particles; in fact, friction
between the particles also plays a crucial role. We found that
geometric cohesion, quantified in terms of the critical height
at which the crossover starts, strongly increases with the local
friction. This is to be expected, since friction enhances the
stability of local interactions, thus reinforcing the global sta-
bility of the column. The importance of the local friction has

also been shown experimentally, by comparing the response
of polypods composed of different materials with different
friction coefficients [33].

Third, we studied the microstructure of the columns in their
initial state, in terms of packing density and connectivity. We
found that geometrically cohesive columns tend to be denser
than frictional columns, but this correlation is not sufficient
to explain or predict the emergence of solidlike behavior. We
found that the microstructural feature that is the most useful
to explain and predict geometrical cohesion is the particles’
connectivity. In particular, geometrically cohesive granular
systems tend to be hyperstatic and are characterized by a large
proportion of interlocked interactions between grains. In these
interactions, the relative rotation between particles is hindered
by being composed of three or four contacts. We hypothesize
that, without the possibility of forming interlocked or entan-
gled interactions, geometric cohesion cannot occur.

We emphasize that geometric cohesion in granular matter
is a physically interesting phenomenon, but also a potentially
useful one for engineering purposes. Important examples are
granular structures made to protect coastlines or riverbanks
against erosion, or more generally free-standing structures
that can be disassembled easily and undergo strong external
loading. This could be a way of making strong constructions
while decreasing their carbon footprint. Even if the results
obtained in this study are only valid for two-dimensional
systems, they constitute an exploration and a description of
a microstructure that must stay valid in real systems. In other
words, the study allowed us to identify the physical origin of
these types of complex phenomena, which remain true what-
ever the system dimension. We are currently extending our
work to three-dimensional systems, using both experiments
and simulations, and we plan to present our results in future
publications. Additionally, it must be noted that the simula-
tions presented in this article were carried out for one thick-
ness of the arms and one width of the system; thus, it would be
important to verify these results in a more general framework.
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