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Reversible, irreversible, and mixed regimes for periodically driven disks in random obstacle arrays
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We examine an assembly of repulsive disks interacting with a random obstacle array under a periodic drive
and find a transition from reversible to irreversible dynamics as a function of drive amplitude or disk density. At
low densities and drives, the system rapidly forms a reversible state where the disks return to their exact positions
at the end of each cycle. In contrast, at high amplitudes or high densities, the system enters an irreversible state
where the disks exhibit normal diffusion. Between these two regimes, there can be an intermediate irreversible
state where most of the system is reversible, but localized irreversible regions are present that are prevented
from spreading through the system due to a screening effect from the obstacles. We also find states that we term
“combinatorial reversible states” in which the disks return to their original positions after multiple driving cycles.
In these states, individual disks exchange positions but form the same configurations during the subcycles of the
larger reversible cycle.
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I. INTRODUCTION

There are a variety of systems that can be modeled as a col-
lection of particles driven over a disordered landscape, such as
vortices in type-II superconductors [1,2], colloidal particles
[3], magnetic skyrmions [4,5], emulsions [6], active matter
[7,8], and granular matter [9]. The quenched disorder can be
in the form of pinning sites that act as local traps, such as those
found in superconducting vortex systems, or of obstacles, such
as those found in soft-matter systems. Other examples of this
type of dynamics include particulate matter flowing through
disordered media or bottlenecks, where clogging phenomena
can occur [10–13]. In systems with pinning or obstacles, the
drive responsible for producing flow is generally applied only
along one direction; however, in some situations the drive is
oscillating, and in this case, it is possible for reversible motion
to appear in which the particles return to the same positions
at the end of each drive cycle or after a fixed number of
cycles [14].

Reversible to irreversible (R-IR) transitions in the absence
of pinning or obstacles have been studied in a variety of
systems. One of the simplest of these systems is dilute suspen-
sions of colloids under a periodic shear, where it was shown
that for a fixed colloid density, there is a critical shear ampli-
tude below which the system organizes to a reversible state,
while at high amplitude, the system remains in a chaotic state
where the particles exhibit diffusive behavior [15,16]. If the
drive amplitude is fixed, there is also a critical density below
which the system forms a reversible state. Similar R-IR tran-
sitions have been studied in other periodically sheared dilute
systems where, in some cases, the reversible states were found
to exhibit hyperuniformity [17–21]. For the dilute system, the
reversible states are usually those in which collisions between
the particles no longer occur, and such states have been shown
to be capable of encoding memories of the number of cycles
through which the system passed on the way to the reversible

state [22,23]. R-IR transitions have also been studied in dense
systems where the particles are in continuous contact, such as
granular matter [24,25] or amorphous solids. In this case, the
reversible state of the system is marked by reversible plastic
events [26–31]. Dense systems can also show reversibility
after multiple cycles due to the appearance of multiple plastic
events that interact by long-range strain fields [26,32–34].

R-IR transitions can also occur in systems that exhibit
pinning or clogging dynamics, where the cyclically driven
particles interact with quenched disorder [2]. Such systems
include vortices in type-II superconductors [35–39], magnetic
skyrmions [40,41], and colloidal particles [13]. One difference
between systems with and without quenched disorder is that
when quenched disorder is present, R-IR transitions can be
induced with a uniformly applied drive rather than through
shearing; however, under uniform driving in the absence of
quenched disorder or thermal fluctuations, only reversible
states form. Systems with quenched disorder can behave elas-
tically, where particles maintain the same nearest neighbors
over time, or plastically, where deformations cause particles
to exchange neighbors or lead to the coexistence of flowing
and pinned states [2].

In cyclically driven superconducting vortex systems, plas-
tic deformations were shown to result in the particles
undergoing chaotic motion, while when the drive or pinning
is weak, the system can form reversible orbits [35–39]. In
superconducting vortex and magnetic skyrmion systems, the
quenched disorder takes the form of randomly located trap-
ping sites; however, there have also been studies of R-IR
transitions in cyclically driven disk systems interacting with a
periodic array of obstacles [42]. For the latter case, when the
driving is applied along a symmetry direction of the obstacle
array, the system forms reversible and spatially ordered states;
however, for drives applied along angles that are incommensu-
rate with the array symmetry, the system forms an irreversible
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state even at low drives. Stoop et al. [13] also considered disks
moving over a random array of obstacles under a forward
and backward pulse drive, and found that the system can
form a partially clogged state with different configurations
during different portions of the drive. This work suggests that
R-IR transitions could also be possible in disordered obstacle
arrays.

Here, we consider a two-dimensional assembly of disks
cyclically driven over a random array of obstacles. We find
that for high drive amplitudes or high disk densities, the sys-
tem forms irreversible states with diffusive behavior, while
for lower drives and densities, reversible states occur that
return to the original configuration after one or more drive
cycle. We map out the onset of the R-IR transition as a
function of disk density and drive amplitude. In some cases,
the reversible states consist of clogged regions that coexist
with regions of moving disks, while the irreversible states can
also form heterogeneous configurations that change from one
cycle to the next. Near the R-IR boundary, we find what we
call intermediate irreversible states where most of the system
is reversible, but there are localized irreversible regions that
are screened from rapidly spreading through the system by a
trapping effect of the obstacles. This leads to extended times
during which the system behaves subdiffusively. The localized
chaotic regions slowly move through the system after many
cycles. We also find states that do not have long-time diffusion
but contain small chaotic regions that remain localized. We
observe a number of states that are reversible after multiple
cycles, and term these combinatorial reversible states. They
are associated with groups of disks that exchange positions
such that after N cycles, the macroscopic disk configuration
is the same but the microscopic positions of the disks differs.
The system returns to the exact same configuration of the orig-
inal disks after multiples of the N cycles. These combinatorial
multicycle states are distinct from the multiple-cycle states
found in amorphous solids, which occur due to longer-range
elastic interactions. In our disk system, they occur due to
purely local contact interactions.

II. SIMULATION

We examine a two-dimensional system of size L × L con-
taining Nd mobile disks of radius rd = 0.5 and Nobs obstacles
of radius robs = 1.025. The sample has periodic boundary
conditions in the x and y directions. The density ρ is defined
to be the area covered by the obstacles and mobile disks, ρ =
Nobsπr2

obs/L2 + Ndπr2
d/L2, where we fix L = 36. We also fix

the number of obstacles to Nobs = 80, which corresponds to
an obstacle density of 0.204. We vary the number of mobile
disks Nd from 20 to 650 in increments of 50, giving a total
disk density that varies from ρ = 0.216 to ρ = 0.598 in in-
crements of 0.03. The density of mobile disks ranges from a
few percent to about twice the obstacle density, so we span the
very dilute mobile disk limit to the interacting limit.

The dynamics of the mobile disks is obtained from the
following overdamped equation of motion:

αd vi = Fdd
i + Fobs

i + FD. (1)

Here, αd is the damping constant, which we set to unity.
The disk velocity is vi = dri/dt , where ri is the location

of disk i. The disk-disk interaction force Fdd
i = ∑Nd

j �=i k(D −
ri j )�(D − ri j )r̂i j is represented by a short-range harmonic
repulsive potential, where D = 2rd , k is the spring constant,
ri j = |ri − r j |, and r̂i j = (ri − r j )/ri j . The disk-obstacle in-
teraction term Fobs

i has the same form as Fdd but with D =
rd + robs, so that the obstacles are represented as randomly
located nonoverlapping immobile disks of radius robs. Our
disks have no rotational degrees of freedom. Rotation can
be relevant in physical systems of grains and colloids, and it
would be interesting for a future study to see if additional ro-
tational degrees of freedom affect the reversible to irreversible
transitions. This could be particularly relevant for particles
that are not perfectly circular.

The driving force FD = ±Ax̂ is a zero-centered square
wave of amplitude A and period T = 4 × 105 simulation time
steps, where the positive sign is used during the first half of
each period and the negative sign is used during the second
half period. As a measurement of time we use the quantity
Nc, which is the total number of driving cycles that have
elapsed since the beginning of the simulation. We hold T fixed
throughout this work and vary A over the range A = 0.01 to
A = 0.0425 in intervals of 0.0025. To initialize the system, we
first place the obstacles in randomly chosen nonoverlapping
positions, and then add mobile disks in randomly chosen
positions that do not overlap with obstacles or other mobile
disks. Five different disorder realizations are performed for
each set of parameters.

To quantify the number of disks that return to their original
positions after n driving cycles, we measure the difference be-
tween the disk positions at a reference time t0 and a time t0 +
nT that is exactly n driving cycles later: R(n) = ∑Nd

i [ri(t0 +
nT ) − ri(t0)]. When R(n) = 0, the motion is reversible after n
driving cycles. If R(1) = 0, then the motion is reversible after
only a single driving cycle. A disk is defined to have returned
to its original position if the disk center is within 0.1% of
its original position. The total distance traveled by the disks
after Nc cycles have elapsed from a reference time t0 is given
by d (Nc) = ∑Nd

i |ri(t0 + Nc) − ri(t0)|. In an irreversible state,
d (Nc) will grow continuously as a function of Nc. Since Nc

is proportional to time, we also characterize irreversibility by
fitting d ∝ Nα

c , where α = 0 for reversible motion, α = 1.0
for Brownian diffusion, and 0 < α < 1 for subdiffusion.

III. RESULTS

In Fig. 1(a) we show a snapshot of the obstacle and disk
positions in the completely reversible state at A = 0.02 and
ρ = 0.368. The snapshot is taken at the end of the drive
cycle when the drive is about to switch from the −x direction
back to the +x direction. We find that a reversible state can
appear even when some disks come into contact with other
disks, in contrast with the sheared dilute disk systems, where
the reversible states involve no disk collisions. Some of the
disks become clogged in bottleneck configurations during por-
tions of the drive cycle, and these stuck regions coexist with
other regions where the disks continue to move throughout
the cycle. When the drive direction switches, the bottleneck
regions are released and become mobile again, but new bottle-
necks can form in different locations for the reversed driving
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FIG. 1. Obstacle locations (red circles) and mobile disk locations
(blue) along with trajectory lines indicating the net translation of the
mobile disks from one cycle to the next over a time of Nc = 100
driving cycles. The disk positions are shown at the end of the drive
cycle when the drive is about to switch from the −x direction back to
the +x direction. (a) A completely reversible state at A = 0.02 and
ρ = 0.368, where all of the disks return to the same position at the
end of each driving cycle. The trajectory lines have zero length and
thus do not appear in the panel. (b) An irreversible state at A = 0.015
and ρ = 0.579. The trajectory lines are finite and disordered.

direction. In Fig. 1 we plot the trajectories of the disks show-
ing the motion from the end of one drive cycle to the end
of the next drive cycle during Nc = 100 cycles, but in the
reversible state of Fig. 1(a), these trajectories are of zero
length and do not appear in the panel. Figure 1(b) shows an
irreversible state at A = 0.015 and ρ = 0.579. Here, almost
all of the disks participate in the irreversible behavior. The
system still forms a heterogeneous state in which temporarily
clogged and flowing regions coexist as a function of time, but
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FIG. 2. A sample with total disk density ρ = 0.398 at varied
drive amplitudes A = 0.01 to A = 0.04. (a) The distance R(n = 1)
traveled by the disks in a single driving cycle vs the total number of
elapsed driving cycles Nc, where we have set t0 = Nc − 1 in the cal-
culation of R. (b) The total distance traveled d vs Nc. For A = 0.01,
0.015, and 0.02, the system reaches a reversible state. For A = 0.025,
the system is irreversible but shows subdiffusive behavior, and for
A = 0.03, 0.035, and 0.04, the motion is irreversible with regular
diffusion.

the arrangement and location of the clogged regions changes
over time instead of reaching a permanent repeating cycle.

In Fig. 2(a), for a sample with ρ = 0.398 under differ-
ent drive amplitudes A, we plot R(n = 1), the distance the
disks travel during a single cycle, as a function of the total
number Nc of elapsed cycles. Here we set t0 = Nc − 1 in the
calculation of R. Figure 2(b) shows the corresponding total
distance traveled d versus Nc. For A = 0.01, 0.015, and 0.02,
the system reaches a reversible state in which d saturates
to a constant value. When A = 0.01, in the steady state the
system is reversible after one cycle, so R(n = 1) drops to zero
in Fig. 2(a), while for A = 0.015 and 0.02, the steady-state
positions recur only after multiple cycles, so the R(n = 1)
curve saturates to a finite value. For A = 0.025 the system is
irreversible, but during an extended period of time d grows
less than linearly with time, indicating subdiffusive behavior.
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FIG. 3. (a) Heat map of the fraction f of the five different dis-
order realizations that reached reversible states plotted as a function
of ρ vs A. (b) Heat map of ln[d (Nc = 3000)], the total displacement
measured during Nc = 3000 driving cycles with t0 = 1000 driving
cycles, as a function of ρ vs A.

In the irreversible states at A = 0.03, 0.035, and 0.04, d grows
linearly with time, a signature of Brownian diffusion.

In Fig. 3(a), we plot a heat map showing the fraction f of
the five different disorder realizations that reached reversible
states as a function of density ρ versus drive amplitude A. As
ρ decreases, the threshold value of A at which irreversible
behavior disappears shifts upward, so that reversible states
appear for small ρ and A while irreversible states appear for
large ρ and A. The boundary separating reversible and irre-
versible states is not sharp; instead, the disorder realizations
are split with a portion of the realizations becoming reversible
and the remaining realizations remaining irreversible. In our
study, we focused on densities less than ρ = 0.6; however, for
higher densities, the system could become completely clogged
or mostly clogged, in which case the fraction of reversible
states could increase again. In Fig. 3(b) we plot a heat map
of the logarithm of d (Nc = 3000), measured using t0 = 1000
driving cycles, as a function of ρ versus A. Near the crossover
from reversible to irreversible behavior, the total displacement
begins to increase significantly.
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FIG. 4. Heat map of n∗, the smallest value of n for which R(n)
reaches zero in the reversible regime, as a function of ρ vs A. When
n∗ > 1, the state is multicycle reversible. In the irreversible regime,
we mark n∗ = 0. In the reversible regime, the value of n∗ is averaged
only over disorder realizations that were reversible.

By measuring R(n) for different values of n in the re-
versible regime, we can determine how many drive cycles
are required for the disks to reach their original positions.
The smallest value of n for which R(n) reaches zero in the
reversible regime is labeled n∗. In Fig. 4, we plot a heat map
of n∗ as a function of ρ versus A. In the reversible regime,
we average n∗ only over the disorder realizations that were
reversible, while in the irreversible regime where the measure
is not defined, we mark n∗ = 0. For low ρ and low A, we
primarily find n∗ = 1, meaning that most of the states are
reversible after one cycle, while near the crossover from re-
versible to irreversible behavior, we find multicycle reversible
states with n∗ = 5 or more, and even observed one state that
was reversible after n∗ = 24 drive cycles.

In Fig. 5, we plot a heat map as a function of ρ versus A of
the exponent α obtained from fits to d ∝ Nα

c . In a reversible
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FIG. 5. Heat map as a function of ρ vs A of the exponent α

obtained from a fit to d ∝ Nα
c . α = 0 indicates reversible behavior,

and α = 1.0 indicates diffusive behavior.
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state, α = 0, while a value of α = 1.0 indicates Brownian
motion. We find regions in which 0 < α < 1, indicating that
subdiffusion is occurring over an extended number of drive
cycles. In these instances, the system forms what we call
an intermediate irreversible state where large sections of the
system act reversibly, but there are localized regions in which
chaotic motion occurs. These localized regions can slowly
move through the sample after many cycles. Such interme-
diate reversible states, where there are localized regions of
irreversible behavior that coexist with reversible regions, are
likely produced by a screening effect from the obstacles,
which prevents irreversible regions from making contact with
spatially separated reversible regions of the sample. In the
irreversible regime of sheared systems without obstacles, no
such screening exists and the irreversible motion can spread
unhindered throughout the sample.

There is significant scatter in the values of the exponent α

in Fig. 5. It might be expected that the highest values of α,
corresponding to the greatest amount of irreversible-induced
diffusion, should appear for the highest values of ρ and A.
This type of behavior has been observed in a sheared system
of dilute colloids as the shear amplitude is increased; however,
going to high particle densities in the presence of obstacles
as we do here can significantly change the behavior at high
amplitude compared with the dilute case. The obstacles pro-
vide locations where localized jammed or clogged states can
appear. Having jammed or clogged regions present in the
sample, even if it is during only a portion of the driving cycle,
can reduce the effective irreversible diffusion of the particles
and lower the value of α as ρ or A increase, rather than giving
larger values of α as would be expected in a dilute system.

We have also found states that show local irreversibil-
ity but do not exhibit long-time diffusion, again due to a
screening effect of the obstacles. For example, if obstacles
completely surround a region of disks, this region can undergo
irreversible or chaotic motion that is effectively trapped and
cannot interact with other parts of the system. These disks can
continuously change their configurations, so their behavior is
irreversible, but the confinement effect limits the maximum
distance they can travel and bounds the maximum possible
diffusion. In this way, a portion of the system would be locally
ergodic, but the overall system is not globally ergodic. If
the confined region is sufficiently small, the disks may be
able to regain their original positions eventually, but they will
not repeatedly return to these original positions in a periodic
manner, so they will never enter a multicycle reversible state.
Figure 6 shows an example of this behavior at A = 0.01 and
ρ = 0.519, where there is no long-time diffusion, but there are
two regions that are locally chaotic.

In our work, we consider five disorder realizations per
parameter set in order to obtain a general outline of the dif-
ferent behaviors. A more careful study is needed to examine
how fluctuations or other quantities would scale near the
boundaries between the different behavior regimes. Several
features complicate such a study compared with systems with-
out quenched disorder. If there are no obstacles, below the
transition to irreversibility the system can enter a reversible
state and eventually organize to a collisionless state. For sys-
tems with quenched disorder, certain regions of the sample
may effectively be cut off from other regions of the sample.

x

y

FIG. 6. Obstacle locations (red circles) and mobile disk locations
(blue) along with trajectory lines indicating the net translation of the
mobile disks from one cycle to the next over a time of Nc = 100 driv-
ing cycles in a state with two local regions of irreversible behavior
but no long time diffusion at ρ = 0.519 and A = 0.01.

As a result, a portion of the disks may not have enough
available space to reach collisionless or reversible states, so
specific disorder realizations might produce entirely reversible
states or regions of irreversibility. This issue does not arise
when quenched disorder is not present. A future direction
for study would be to consider a fixed density and carefully
tune the amplitude through the transition to irreversibility for
a large ensemble of disorder realizations, making it possible
to quantify how the fraction of irreversible realizations varies
as the transition is approached from either side.

IV. MULTICYCLE COMBINATORIAL
REVERSIBLE STATES

In previous work in dense amorphous systems, multicycle
reversible states were observed in which the particles form
complex loop-like orbits that return to the same point after
N = n∗ cycles [26,32–34]. In these systems, the particle orbits
are different during each of the N driving cycles and only
repeat once the entire cycle has been completed. Addition-
ally, multicycle states are linked to the occurrence of distinct
plastic events that can interact with each other through a long-
range strain field. In our system, the reversible multicycle
state is associated with groups of particles which can adopt
the same macroscopic configuration multiple times during the
full cycle, but which only reach the original microscopic disk
configuration after the cycle is complete, creating what we call
a combinatorial reversible state.

In Fig. 7, we show an example of a combinatorial reversible
state where we highlight the positions of 14 disks and three
obstacles in a small portion of a sample with ρ = 0.337 and
A = 0.025 that is multicycle reversible. The white disks re-
turn to their original positions after every cycle, and we give
distinct colors to the nine disks that reach different positions
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FIG. 7. Illustration of a combinatorial reversible state at ρ =
0.337 and A = 0.025 where the obstacle locations (large red circles),
nonexchanging mobile disks (white circles), and exchanging mobile
disks (small colored circles) are shown in only a small portion of the
sample. The small trajectory lines indicate the net distance moved
by each disk compared with its position at the end of the previous
driving cycle. The disks return to their original positions every twelve
cycles. Each panel shows the disk configuration at the end of a drive
cycle. Time increases from left to right and top to bottom so that
the cycle sequence is A1-A2-A3-A4-B1-B2-B3-B4-C1-C2-C3-C4.
The macroscopic disk configurations repeat every four drive cycles,
so that A1, B1, and C1 have the same macroscopic disk configura-
tion, but the individual disks are permuted within this configuration.

from cycle to cycle but only return to their original positions
after twelve cycles. The trajectory lines connect the starting
point of the disk from the end of the previous drive cycle to its
ending point at the end of the illustrated drive cycle.

It is important to remember that in between the snapshots
shown in each panel of Fig. 7, the disks move back and
forth through a complete driving cycle, so that although their
net motion is small, their actual motion is not small. Panel
A1 shows the starting configuration. The sample progresses
through configurations A2, A3, and A4, and after a total of
four drive cycles, the macroscopic disk configuration in panel
B1 is exactly the same as that of panel A1. The individual disk
positions are not the same, however; the blue, green, and blue-
green disks at the center of the image have exchanged places.
After four more cycles, the system has passed through states
B2, B3, and B4, and reached configuration C1. This is again
macroscopically the same as A1 but microscopically different,
with the blue, green, and blue-green disks having rotated
into yet another arrangement. Four cycles later, the system
passes through C2, C3, and C4, and reaches the original state
A1. Similar combinatoric swaps separate the macroscopically
identical but microscopically distinct states A2, B2, and C2.
The same is true for states A3, B3, and C3 as well as states A4,

FIG. 8. Illustration of a different small region of the combinato-
rial reversible state from Fig. 7 at ρ = 0.337 and A = 0.025, showing
the obstacle locations (large red circles) and exchanging mobile disks
(small colored circles). The small trajectory lines indicate the net
distance moved by each disk compared with its position at the end of
the previous driving cycle. The disks return to their original positions
every 18 cycles. Each panel shows the disk configuration at the end
of a drive cycle. Time increases from left to right and top to bottom.
The macroscopic disk configurations repeat every six drive cycles, so
that A1, B1, and C1 have the same macroscopic disk configuration,
but the individual disks are permuted within this configuration.

B4, and C4. In this way, the disks are fully reversible after 12
cycles, but their macroscopic configuration is reversible every
four cycles. This particular region of the sample acts like a
small rotating gear.

In Fig. 8, we illustrate a different small portion of the
sample from Fig. 7. Here the disks return to their original
positions every 18 drive cycles but the macroscopic disk con-
figuration repeats every six drive cycles. The lines highlight
the net motion of the particles from their locations at the end
of the previous driving cycle. To understand the motion of the
disks, it is even more important to keep in mind the fact that
the disks translate through an entire drive cycle in between
consecutive frames of the figure. As a result, rather than the
relatively simple rotation illustrated in Fig. 7, we find in Fig. 8
that the disks can do a leapfrog position exchange. The initial
configuration is labeled A1. After one drive cycle, in A2, the
dark blue disk has interposed itself between the green and
yellow disks. Small adjustments of the disk positions occur
during cycles A3, A4, A5, and A6, until on the sixth cycle, in
B1, the macroscopic disk configurations of A1 are reproduced
but with a permutation in the disk positions. The same pattern
repeats, with the light blue disk interposing itself between
the yellow and dark blue disks in panel B2, followed by
small disk adjustments for four cycles and a return to the A1
macroscopic configuration in the twelfth cycle, C1. After 18
cycles the original disk configuration is restored. The leapfrog
exchange does not occur while the disks are surrounding the
pictured obstacle; instead, it is as the disks move during the
driving cycle and make contact with other obstacles (out of
frame) and disks that their positions are swapped. The local-
ized nature of the multicycle reversible states illustrated in
Figs. 7 and 8 makes it possible for a single system to have
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numerous multicycle states present simultaneously, so that the
entire system becomes fully reversible only after all of the
multicycle states have reached their starting configurations
at the same time. In the case of the combination shown, a
12-cycle reversible state with an 18-cycle reversible state,
full reversibility happens only after 36 cycles. The number of
possible multicycle regions increases as the boundary between
the reversible and irreversible behavior is approached, and
the necessity for simultaneous synchronization of multiple
reversible regions is responsible for the large values of n∗
found near the reversible-irreversible boundary in Fig. 4.

At low ρ, it might be expected that the system would
always reach a reversible state except for large driving am-
plitudes, as found in the periodically sheared low density
colloidal system. In systems without quenched disorder at low
densities, each particle has ample space to organize into an ar-
rangement where particle-particle collisions no longer occur.
In our system, the obstacle positions are fixed so the obstacles
are unable to move out of the way to prevent disk-obstacle
collisions. If the density of obstacles is sufficiently high, such
disk-obstacle collisions become unavoidable, and at best the
disks can organize themselves to prevent disk-disk collisions
from occurring. The fixed obstacles limit the amount of space
available for this rearrangement, making disk-disk collisions
more likely since the disks are being forced into a smaller total
area. We find that the low density states contain a combination
of disks that never undergo collisions and have reversible
motion, disks that collide only with obstacles but are still
reversible, and, crucially, disks that continue to collide with
each other and with obstacles but still reach a reversible state.
The latter set of disks do not return to the same state after each
cycle but instead undergo a permutation or effective rotation
that causes the original state to reappear only after multiple
drive cycles have elapsed. Hence, the reversible states we
illustrate in Figs. 7 and 8 are distinct from the random organi-
zation states since collisions are never eliminated but continue
to occur permanently.

V. DISCUSSION

In this work, we have introduced our reversible-irreversible
system of disks cyclically driven past obstacles, but there
are many future directions to consider. For example, for a
given disorder realization, it would be interesting to mea-
sure whether an initially irreversible portion of the sample
grows in extent as the system is pushed deeper into the ir-
reversible regime, or whether the irreversible patch remains
roughly the same size and instead the number of irreversible
patches increases. In the latter case, the irreversible patches
might merge through a percolative process. We considered
monodisperse mobile disks, but it would also be possible to
introduce bidisperse mobile disk sizes, where one species is
much larger than the other. Here, it could be possible to reach
a state where one species is jammed or reversible and the other
species remains mobile and irreversible. We concentrated on
the reversible-irreversible transition for low and intermediate
densities; however, at higher densities, there could be a tran-
sition from reversible-irreversible behavior to jamming or the

formation of a rigid solid that moves elastically back and forth
over some distance. If this were the case, there could be a
second irreversible to reversible transition that occurs at high
densities. It would also be interesting to explore the effect
of making the particles flexible, adding rotational degrees of
freedom, or introducing thermal fluctuations.

VI. SUMMARY

We have examined the crossover from reversible to ir-
reversible behavior in a system of disks moving through
a random obstacle array under cyclic drive. We measure
the net displacement of the disks after n cycles for differ-
ent disk densities and drive amplitudes. For high densities
and high amplitudes, we find an irreversible state in which
the disks undergo diffusive motion. In the reversible state,
for low densities and low amplitudes the system returns to
its original configuration after every drive cycle, but as the
reversible-irreversible boundary is approached, multicycle re-
versible states appear in which the disks return to their original
configurations after two or more driving cycles. We also
observe multicycle combinatorial reversible states in which
the macroscopic disk configurations repeat after a subset of
cycles but the individual disk positions have been permuted,
so that the original positions are restored only after a sufficient
number of permutation cycles occur. This can produce very
large multicycle reversibility when more than one multicycle
combinatorial region is present in the sample and the regions
do not have the same reversible period. We find that some
irreversible states have what we call intermediate irreversible
properties, where regions of disks exhibit chaotic irreversible
behavior that remains localized for long times due to a screen-
ing effect from the obstacles. In the intermediate state, these
irreversible regions gradually move around the system. In
other cases, the localized irreversible regions become com-
pletely trapped, so there is no long time diffusion in the
system even though the behavior remains irreversible. Our re-
sults show that disks driven through obstacles have behaviors
similar to what is found for dilute sheared systems, where
reversible orbits form when no collisions occur between the
particles, as well as behaviors similar to what is observed
in sheared dense amorphous systems, where interactions be-
tween reversible regions can produce multicycle reversibility.
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