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In this paper, we study the granular equation of state (EOS) for computer-generated three-dimensional
mechanically stable packings of frictional monodisperse particles over a wide range of densities (packing
fractions), ϕ = 0.56–0.72. As a statistical physics framework, we utilize the statistical ensemble for granular
matter, specifically the “angoricity” ensemble, where the compressional component �p of the force-moment
tensor serves as granular energy and angoricity Ap is the corresponding granular “temperature.” We demonstrate
that the systems under study conform well to this statistical description, and the simple equation of state
�p = 2.8NAp holds very well, where N is the number of particles. We show that granular temperature exhibits
a rapid drop around the random-close packing (RCP) limit ϕ ≈ 0.64–0.65, and, hence, one can say that granular
packings “freeze” at the RCP limit. We repeat these calculation for shear angoricity Ash and shear component �sh

of the force-moment tensor and obtain a similar EOS, �sh = 0.85NAsh. Additionally, we measure the so-called
keramicity, an inverse temperature variable corresponding to the determinant of the force-moment tensor, while
pressure angoricity corresponds to its trace. We show that inverse keramicity κ−1 and angoricity Ap conform to
an EOS 1

Ap

�p

N + 0.11κ ( �p

N )3 = 1.2, whose form is predicted by mean-field theory. Finally, we demonstrate that
the alternative statistical ensemble where Voronoi volumes serve as granular energy (and so-called compactivity
serves as temperature) does not describe the systems under study well.
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I. INTRODUCTION

Granular media are ubiquitous in nature and industrial
applications: sand, grains, avalanches, and formation of aster-
oids and planets are just some examples of granular matter and
granular phenomena. As much as statistical physics for usual
thermal matter is helpful in understanding thermodynamics
and chemistry of the thermal matter, so much (it is hoped)
statistical physics for granular matter will help uncover the
secrets of the latter and explain its behavior. For example, such
a theory can lead to better understanding of avalanches and
earthquakes and help create better early detection systems for
these natural disasters.

In recent years, a model for statistical physics of gran-
ular matter has emerged [1,2]. It treats the trace of the
force-moment tensor as granular energy and defines the
corresponding intensive temperature-like variable called “an-
goricity.” Another version of this framework uses Voronoi
volumes (more precisely, set Voronoi volumes) around parti-
cles as granular energy, while the corresponding temperature
variable is called “compactivity.”

Collections of hard spheres is a popular model in granular
and glass physics to investigate dynamical and static prop-
erties of granular and glassy systems. Thermal hard-sphere
systems are characterized by a single parameter—particle
volume fraction (packing density)—while thermodynamic
temperature can be set to an arbitrary value by rescaling the
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unit of time. At the same time, they are versatile enough to
reproduce multitude of phenomena such as the random-close
packing (RCP) limit, melting and freezing transitions, glass
transition, and others [3,4].

In this work, we apply and verify the statistical mechanics
framework of granular matter to computer-generated mechan-
ically stable isotropic systems of three-dimensional frictional
hard spheres in a wide range of packing densities and demon-
strate that the statistical ensemble based on angoricity seems
to better describe the systems under study than the ensemble
based on compactivity.

A. Related work

The work on hard-sphere systems as a model of granular
media spans decades and is closely related to a large body
of work on thermal hard-sphere systems (as a model of col-
loids and glasses), and it is impossible to cover it concisely.
For some recent reviews, see Refs. [1,2]. For this paper, the
following works are the most relevant.

Works of Edwards and coauthors established a foundation
for treating granular systems statistically and introduced the
concepts of the Edwards entropy, compactivity and angoric-
ity, as well as the assumption that all granular packings in
the microcanonical ensemble are equiprobable [5,6]. Works
of Henkes and Chakraborty and coauthors [7] refined and
extended these concepts. For example, Eq. (23) in Ref. [7]
is an equation of state (EOS) for granular matter derived
theoretically in the mean-field limit for frictionless spheres,
on which we rely further. Reference [8] provides a phase
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diagram for the jammed matter which includes the coordi-
nation number, packing density, and compactivity as coordi-
nates. It does not include angoricity, though. Reference [9]
measures angoricity and compactivity of three-dimensional
(3D) spheres without friction. In the present work, we mea-
sure angoricity and compactivity for 3D spheres with friction.
Reference [10] measures angoricity and compactivity for 2D
frictional disks using the method of overlapping histograms
and the method based on the fluctuation-dissipation theorem
(FDT). The present paper extends this work to 3D frictional
spheres. A more recent work [11] also focuses on 2D frictional
disks but analyzes one more inverse temperature-like variable,
keramicity. Under certain assumptions, this variable corre-
sponds to higher-order terms in log-differences of overlapping
histograms, while angoricity corresponds to the linear term.
In general, keramicity is a variable reciprocal to the determi-
nant of the force-moment tensor, which in 2D corresponds
to the “Maxwell-Cremona force-tile area” and in 3D to the
“Beltrami volume” [12,13]. We estimate keramicity for the
systems under study as well, for the first time, to the best
of our knowlege, for 3D systems. Reference [12] conducts
careful computer simulations to study angoricity, keramicity,
and finite-size effects for 2D systems. Reference [13] pro-
vides a mean-field theory for granular matter and constructs
a framework for angoricity, keramicity, and a combined EOS
from first principles. Reference [14] conducts experiments
with frictional 3D packings but estimates compactivity only.

B. Contributions

The present paper provides the following contributions:
(i) We measure for the first time, to the best of our knowl-

edge, pressure and shear angoricity of three-dimensional
frictional hard-sphere packings in a wide range of packing
densities. We demonstrate that a linear EOS applies.

(ii) Similarly, for the first time, to the best of our knowl-
edge, we estimate keramicity and its EOS for 3D hard spheres
in a wide range of densities.

(iii) We demonstrate that compactivity seems to be an
inferior candidate for temperature in granular systems than
angoricity and keramicity

(iv) We provide a unique view on the “RCP limit” in
frictional systems. The “RCP limit” can be interpreted as a
phase transition at which granular temperature drops to zero,
i.e., granular systems “freeze.”

The paper is structured as follows: In Sec. II, we present
a minimal theory for statistical physics of granular matter.
Section III gives a short introduction to the method of over-
lapping histograms used to measure granular temperatures.
In Sec. IV, we give an overview of computer simulations
to generate the data under study. Section V presents the re-
sults and analysis of calculating different versions of granular
temperature in the systems under study. Section VI contains
summary and conclusions.

II. THEORY

A. Canonical ensemble of granular matter

In this section, we follow Refs. [1,2,5,7,10]. To apply
statistical physics to granular matter, we need to define the

internal energy of the system as well as external parameters.
One approach is to use system volume V as the granular equiv-
alent of the internal energy, which makes the corresponding
intensive variable compactivity X the granular analog of the
temperature: 1

X = ∂S
∂V . Another approach is to use the force-

moment tensor for the granular energy,

�̂ =
∑
i, j

�ri j ⊗ �fi j, (1)

where ⊗ denotes the Kronecker (tensor) product and the sum
is taken over all (touching) particle pairs of the system of N
particles, �ri j is the vector pointing from the center of particle
i to the point of contact with the jth particle, and �fi j is
the interparticle contact force. The force-moment tensor can
be expressed through the Cauchy stress tensor σ̂ : �̂ = V σ̂ .
The so-called inverse angoricity tensor α̂ corresponds then to
the inverse temperature: α̂ = ∂S

∂�̂
. We note that some papers

(e.g., Refs. [9,10]) refer to this variable as to “inverse angoric-
ity” while others [1,7] call it simply angoricity. We will use
A for angoricity and α̂ for inverse angoricity. We note that α̂

corresponds to T −1.
The canonical ensemble for static granular media (the

system itself and the “heat” bath) comprises a granular sub-
packing under study that is part of a bigger mechanically
stable packing (bath).

Recent results suggest that compactivity is not equilibrated
between a small subsystem and a large bath that surrounds the
subsystem, while angoricity is actually equilibrated [10].

In general, forces acting between particles in mechanically
stable configurations may be history dependent. Thus, we
have to include the forces into the phase space. The partition
function for granular media in the angoricity ensemble—if we
do not include V into internal energy and treat it as an external
parameter—looks like

ZN = 1

N!

∫
V

. . .

∫
V

∫
�fi j

�N (�ri, �fi j )e
−α̂:�̂d�r1 . . . d�rN d �fi j,

(2)

where α̂ : �̂ = ∑
i j α̂i j�̂i j and �N (�ri, �fi j ) denotes the delta

function that equals infinity when the conditions of valid par-
ticle contacts (i.e., the absence of intersections in case of rigid
grains) and mechanical stability (force and torque balance) are
satisfied and equals zero otherwise.

For isotropic systems, one can simplify treatment of an-
goricity. For such systems, the external stress that acts on
the system in the microcanonical ensemble, as well as the
external stress that acts on the bath plus subsystem in the
canonical ensemble, are by definition also isotropic. It allows
us to describe granular energy by a single parameter, the
compressional component of the force-moment tensor,

�p = (�1 + �2 + �3)/3 = Tr�̂/3, (3)

where �i are the eigenvalues of �̂ and Tr is the trace. The
trace of the force-moment tensor is the hydrostatic pressure
multiplied by system volume and is commonly referred to as
	. Thus, �p = 	/3. By combining Eqs. (1) and (3) we get

�p = 1

3

∑
i, j

�ri j · �fi j . (4)
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The reciprocal variable of the compressional component is
the scalar inverse “pressure angoricity” (as referred to in
Ref. [10]),

αp = ∂S

∂�p
. (5)

For isotropic systems, as argued in Ref. [7], α̂ = αÎ , where
Î is the identity matrix. For such systems, α̂ : �̂ = α	 =
3α�p = αp�p and αp = 3α. The “pressure angoricity” and
angoricity are in turn

Ap = 1

αp
, A = 1

α
= 3Ap. (6)

Thus, we finally write

ZN = 1

N!

∫
V

. . .

∫
V

∫
�fi j

�N (�ri, �fi j )e
− �p

Ap d�r1 . . . d�rN

= 1

N!

∫
V

. . .

∫
V

∫
�fi j

�N (�ri, �fi j )e
− 	

A d�r1 . . . d�rN . (7)

If we utilize packing volume as granular energy, then the
partition function (denoted here as Zχ

N to distinguish from ZN

above) can be written as

Zχ
N = 1

N!

∫
V

. . .

∫
V

∫
�fi j

�N (�ri, �fi j )e
− V

χ d�r1 . . . d�rN . (8)

The volume of a subsystem can be calculated using so-called
set (also called radical) Voronoi tessellation. For monodis-
perse particles, radical Voronoi tessellation is equivalent to a
point Voronoi tessellation, so we omit the “radical” below.

One can include both compactivity and angoricity into the
partition function, see Eq. (15) in Ref. [1]:

Z p,χ
N = 1

N!

∫
V

. . .

∫
V

∫
�fi j

�N (�ri, �fi j )e
− V

χ
− �p

Ap .d�r1 . . . d�rN .

(9)
We denote this version as Z p,χ

N to differentiate from the
versions from Eqs. (7) and (8) above. Existing reports [10]
demonstrate for frictional 2D packings that compactivity does
not seem to equilibrate in granular systems (between a “ther-
mostat” and a subsystem). We also demonstrate below that
compactivity seems to serve the role of granular temperature
worse than angoricity and keramicity (discussed in detail in
Sec. V D below).

B. Shear angoricity

Besides pressure angoricity introduced above, one can also
measure shear angoricity based on the shear component of
the force-moment tensor [1,10]. In 2D systems, the shear
component of the force-moment tensor is written as �sh =
(�1 − �2)/2, given that eigenvalues �1 and �2 are sorted in
descending order [1,10].

To extend this quantity to three dimensions, we temporarily
switch for convenience to the stress tensor σ̂ = �̂/V . At a
given point, the stress acting on a plane with the normal �n
is �t = σ̂ �n. The normal stress acting on this plane is tN (�n) =
�t · �n = (σ̂ �n) · �n while the shear stress for this plane is tsh =
‖�t − tN �n‖ (cf. Eq. (3.4.7) in Ref. [15]).

It can be shown that the maximum shear stress in two
dimensions (meaning maximum over �n) is exactly σsh =

(σ1 − σ2)/2. In three dimensions, the maximum shear stress
is σsh = (σ1 − σ3)/2 (cf. Eq. (3.14.6) in Ref. [15]). Hence, we
use

�sh = (�1 − �3)/2 (10)

as the extension of shear component of the force-moment
tensor to 3D and denote the corresponding shear angoricity
as Ash.

It is also possible to extend the concept of shear angoric-
ity to 3D using the root-mean-square value of shear stress.
One can show (e.g., with the help of a symbolic mathemat-
ics package) that the root mean square of shear stress in
2D (assuming averaging over directions of �n) is σsh,rms =
〈tsh〉 = (σ1 − σ2)/(2

√
2), i.e., proportional to the maximum

shear stress. Integration in 3D leads to a more complex
result, σ 2

sh,rms = 2
15 [(σ1 − σ2)2 + (σ2 − σ3)(σ1 − σ3)], which

transforms to the equivalent shear force-moment tensor

�2
sh,rms = 2

15 [(�1 − �2)2 + (�2 − �3)(�1 − �3)]. (11)

Both Eqs. (10) and (11) turn out to have a very similar EOS,
so we focus on Eq. (10) in the remainder of this work. Here
we denote the corresponding shear angoricity with Ash.

III. METHODS: CALCULATING ANGORICITY
AND COMPACTIVITY

To determine granular temperatures (whether it is an-
goricity or compactivity), we use the overlapping his-
tograms method introduced in Ref. [16] and utilized in
Refs. [10,11,17]. Reference [17] demonstrates that the over-
lapping histograms method and the method based on volume
fluctuations and the FDT produce consistent results for com-
pactivity in 2D packings, while compactivities measured
through fitting Gamma distributions and through quadron
tessellations have incompatible values. Thus, we utilize the
method of overlapping histograms below.

The idea of the method of overlapping histograms is to
analyze differences in distributions of granular energies. We
use the pressure angoricity ensemble as an example in this
section. Under the assumption of Boltzmann-like probability
distributions, the probability density P to find a subsystem in
the canonical ensemble at a granular energy �p shall follow
the Boltzmann distribution,

P(�p, Ap) = �(�p)

ZN (Ap)
e− �p

Ap , (12)

where �(�p) is the density of states and ZN (Ap) is the parti-
tion function.

Although the density of states and the partition function
may be unknown for a given granular system, it is observed
that �(�p) is identical for the same granular system under
different conditions [10,17]. Thus, for two different prepara-
tion protocols labeled 1 and 2, the ratio of the distributions is

P(�p, Ap1)

P(�p, Ap2)
= ZN (Ap2)

ZN (Ap1)
e
−( 1

Ap1
− 1

Ap2
)�p

. (13)

If one takes the logarithm of the equation, then it is possible
to fit the logarithm of the ratio with a linear fit and determine
the slope 1

Ap1
− 1

Ap2
, thus measuring the difference of inverse
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temperatures. This procedure allows measuring inverse tem-
peratures up to a specific constant, 1

Ap
− CA,p. By fitting CA,p,

one can determine final values of Ap. Same considerations
apply to shear angoricity and compactivity ensembles. For the
shear angoricity ensemble, one has to replace Ap and �p in
Eq. (13) with Ash and �sh, respectively. For the compactivity
ensemble, we write

P(V, χ1)

P(V, χ2)
= Zχ

N (χ2)

Zχ
N (χ1)

e−( 1
χ1

− 1
χ2

)V
. (14)

IV. DATA

To prepare packings, we use computer simulations in 3D.
We generate packings of N = 104 particles with periodic
boundary conditions. In the first stage, we prepare mechani-
cally unstable particle configurations with the Lubachevsky-
Stillinger algorithm [18,19] with the implementation from
Refs. [20–22]. These very systems were presented and studied
in Ref. [20]. In the second stage, these particle configura-
tions were stabilized with frictional forces by the protocol
and the TRUBAL software package from Refs. [8,23–25].
The TRUBAL algorithm assumes that spheres have small
soft shells with a harmonic potential and attempts to find the
lowest overlap between spheres to make sure that a pack-
ing is mechanically stable. We used friction coefficient μ =
104. We produced 293 stable packings in the density range
ϕ = 0.56–0.72.

V. RESULTS AND DISCUSSION

In this section, we calculate angoricities, keramicities (dis-
cussed in detail below), and compactivity and discuss the
results. We at first present the steps for calculating pressure
angoricity, inspect the pressure angoricity EOS, then briefly
present the calculation of the shear angoricity and discuss
the shear angoricity EOS. We then investigate keramicities.
Finally, we calculate compactivities and analyze compactivity
EOS.

A. Calculating angoricity

For equilibrated subsystems, we use in the main text groups
of Ngrp = 8 particles, following Ref. [10] (see Fig. 3 there)
and Ref. [11] (see also the review [1]). The rest of the packing
will be considered as a “thermal” bath. The value Ngrp = 8 is
not the only one used in the literature: Reference [17] studies
finite-size effects and investigates Ngrp = 1–200 (2D systems,
compactivity only). Reference [12] presents an extensive anal-
ysis of finite-size effects for 2D disks. In Appendix F, we
investigate the effects of the group size on angoricity measure-
ments. We find that the EOS coefficient in the thermodynamic
limit differs only marginally from its value for Ngrp = 8, so we
focus on Ngrp = 8 in the main text.

Prior to splitting packings into groups, calculating force-
moment tensors, Voronoi tessellations, and granular tempera-
tures, we remove rattler particles from the packings. Rattler
particles are those that do not contribute to the jamming
(force-bearing) backbone of a packing, and we mark particles
with less than three contacts as rattlers. Removing rattler
particles was in our experience a crucial step to produce

FIG. 1. Granular energies in the pressure angoricity ensemble
per particle εp = �p/N vs packing density ϕ. Compression compo-
nents of the force-moment tensor (granular energies) per particle are
relatively high at low densities and exhibit a drop at ϕ = 0.64–0.65,
around the RCP limit ϕ = 0.64. It happens because ϕ = 0.64 is the
lowest density where mechanically stable frictionless packings can
exist (and at ϕ = 0.65, crystalline inclusions start to appear). So at
ϕ � 0.64, no friction is needed to keep packings stable, and, hence,
no normal forces are needed. It means that the force-moment tensor
trace can also rapidly drop at ϕ = 0.64–0.65. Error bars indicate
99.7% (3-sigma) confidence intervals, calculated from standard de-
viation of �p for subpackings of size Ngrp = 8.

reasonable results. Without removing rattlers, the method of
overlapping histograms was not applicable (log differences of
granular energy histograms did not typically look linear). We
believe it makes physical sense since rattler particles do not
contribute to the force-bearing network of particle contacts.
Around 2% of particles are rattlers, which means that our
packings contain ∼9800/8 = 1225 nonoverlapping groups of
Ngrp = 8 particles.

To determine a new connected group of particles, we select
an initial “center” particle (among particles not yet partici-
pating in other subsystems), then select a shell of particles
that are in contact with the center particle (which, in addition,
are nonrattlers and do not belong to other groups), then select
particles that are in contact with the first shell, and so on, until
we reach Ngrp particles in this group. We repeat this process of
group selection until all nonrattler particles belong to a group
(or no groups of Ngrp particles can be constructed).

Figure 1 presents compression components of the force-
moment tensor (granular energies in the pressure angoricity
ensemble) per particle �p/N vs packing density ϕ. To cal-
culate �p, we took entire packings of N = 104 particles. As
explained in the caption, the energies exhibit a rapid drop at
ϕ = 0.64–0.65 because for ϕ � 0.64 one can produce me-
chanically stable frictionless packings, and the force-moment
tensor can be zero (given that the TRUBAL algorithm at-
tempts to find the configuration with the smallest forces that
still ensure mechanical stability).

The error bars in Fig. 1 indicate 99.7% (3-sigma) confi-
dence intervals, calculated from averaging over subpackings.
They are relatively small compared to the actual scatter of

044904-4



ESTIMATING ANGORICITY AND GRANULAR … PHYSICAL REVIEW E 109, 044904 (2024)

FIG. 2. Local density and local granular energy clouds in the
pressure angoricity ensemble. Each point represents a nonoverlap-
ping subpacking of Ngrp = 8 particles along with its local density
ϕlocal and local granular energy per particle εp = �p/Ngrp in a given
subpacking. It is a visualization of joint probability density functions
f (ϕlocal, εp). There seems to be no strong dependence of a conditional
distribution f (εp|ϕlocal ) on ϕlocal. Red crosses represent global values
of each packing as a whole.

points. The angoricity estimates determined below also have
relatively small error bars for a particular packing, but they are
also highly scattered between packings. At the same time, the
EOS that we determine below looks much less scattered, so
angoricities and energies align well. We interpret this situation
as follows: variance between subpackings in a given packing
is small enough to lead to high confidences in estimates of
different measurements, but packing properties are subject to
large fluctuations during the process of packing generation. At
the same time, angoricity and corresponding granular energy
in each packing align well and the final EOS holds well.

Since we treat small subpackings of Ngrp particles as equi-
librated subsystems, each subsystem can have a local density
(as computed from Voronoi tessellation) and a local granular
energy εp = �p/Ngrp that are different from average packing
values. We visualize their joint probability distributions in
Fig. 2. Each panel represents a packing at a given ϕ, and
the red cross represents average values for the entire pack-
ing. Each blue dot represents a subpacking with Ngrp = 8
particles, i.e., each panel contains ∼1200 points. The plots
indicate that there is no strong dependence of a conditional
distribution f (εp|ϕlocal ) = f (ϕlocal, εp)/ f (ϕlocal ) on ϕlocal, i.e.,
f (εp|ϕlocal ) ≈ f (εp) where f (εp) = ∫

f (ϕlocal, εp)dϕlocal.
Local subpacking volume can impact the distribution f (εp)

either as an additional external variable or as an additional
energy variable [cf. Eq. (9)]. To exclude potential impact of
local packing volume (or density) on angoricity and com-
pactivity calculations, we ideally need to select subpackings in
a narrow interval of ϕlocal → ϕ (so that local packing density
matches global density). To analyze how large the interval of
local densities around ϕ can be, we select in three packings a
different number of subpackings with ϕlocal closest to ϕ and
build distributions of f (εp) in Fig. 3. Since Fig. 2 hints that
f (εp|ϕlocal ) ≈ f (εp), we expect that the distribution shall be
independent of how many subpackings we take for building

FIG. 3. Probability density functions (PDFs) for local energies
εp = �p/Ngrp of subpackings, depending on how many (Mgrp) sub-
packings with suitable ϕlocal (close to packing ϕ) we select for
calculation. Ideally, we need to calculate f (εp|ϕ), i.e., select only
a small number of subpackings whose local densities are close to
the global packing density, ϕlocal ≈ ϕ. This makes histograms very
noisy and calculations unreliable. Since f (εp|ϕlocal ) ≈ f (εp) (cf. also
Fig. 2), we calculate the PDFs by taking more and more subpackings
with densities ϕlocal closest to ϕ. The plots demonstrate that it is
safe to take all the subpackings (Mgrp ≈ 1200) in a given packing
(i.e., f (εp)) to estimate f (εp|ϕ), which is consistent with Fig. 2.

a histogram, and we can use the entire packing. Figure 3
confirms this assumption. Hence, in the remainder of this
work, to obtain better statistics for the overlapping histograms
method, we use all the subpackings for building histograms.
Conversion between distributions per particle f (εp) and per
subpacking P(�p) from Eq. (12) is explained in Appendix A.

Figure 4 depicts the log-ratios of f1(εp)/ f2(εp) along with
their linear fits. The fits are performed over bins where the
number of subpackings is >10 (for both histograms). The
red dashed lines in Fig. 4 stop at the edges where at least
one of the two overlapping histogram bins has <10 subpack-
ings. Excluding histogram bins with insufficient number of
subpackings is essential to obtain proper estimates of inverse
granular temperatures further in the paper and to produce
low confidence intervals for these estimates. Figure 4 demon-
strates that the assumptions of the overlapping histograms
method [Eq. (13)] are justified. Appendix B and Fig. 9 there
present details on goodness of linear fits in the overlapping
histograms method. They show that the applicability of lin-
ear fits deteriorates at ϕ ∼ 0.65, which is expected because
monodisperse packings contain crystalline inclusions at ϕ >

0.65, and the assumptions of statistical mechanics do not
completely apply in this density range (specifically, the as-
sumption of equiprobable microstates). We found though that
including points with ϕ > 0.65 does not change the final EOS
for pressure angoricity but improves confidence intervals, so
we will estimate the final EOS for pressure angoricity with all
densities [for more details, cf. Fig. 13(d) in Appendix E].

After calculating the differences of inverse pressure an-
goricities between all the packings according to Eq. (13) we
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FIG. 4. Log energy differences for the overlapping histograms
method [Eq. (13)] in the pressure angoricity ensemble. Here we
display the ratio of logarithms of probability density functions for
energies per particle from Fig. 3, f1(εp)/ f2(εp), along with their fits.
We omit from the fitting procedure bins with < 10 subpackings, and
the red dashed lines stop at the edges where at least one of the two
overlapping histograms has < 10 subpackings in a bin. The differ-
ences of logarithms look like straight lines indeed, so the method of
overlapping histograms is applicable.

estimate inverse pressure angoricities up to an unknown con-
stant 1

Ap
− CA,p. The plot of 1

Ap
− CA,p vs ϕ can be found in

Fig. 5. In more detail, for each packing, we determine his-
togram differences with 10 other packings of higher densities
and take the average value of 1

Ap
− CA,p. We start from the

highest packing density and in an iterative manner determine
1

Ap
− CA,p for all the packings going to lower densities. We

FIG. 5. Inverse pressure angoricities up to an unknown con-
stant 1

Ap
− CA,p vs packing density ϕ. Error bars represent 3-sigma

(99.7%) confidence intervals, where standard deviations are taken
from 10 estimates of inverse pressure angoricities from histogram
overlaps with 10 packings of higher densities.

FIG. 6. Pressure angoricities Ap vs packing densities ϕ. Pressure
angoricities exhibit a drop at ϕ ≈ 0.64–0.65, similarly to granular
energies �p in Fig. 1. Error bars correspond to 95% confidence
intervals estimated from the delta method, where we incorporate
uncertainty in fits as well as uncertainties from the estimates from
Fig. 5.

perform the final step for calculating angoricities Ap (fitting
CA,p and EOS) in the next subsection.

B. Pressure angoricity EOS

Following Refs. [1,7,10], we aim to fit the granular EOS
for pressure angoricities with

〈�p〉 = NgrpkA,pAp, or 〈εp〉 = kA,pAp, (15)

where averaging is over subpackings. If we denote 1
Ap

− CA,p

determined up until now as x, then we in fact fit the nonlinear
relation,

〈εp〉 = kA,p
1

x + CA,p
, (16)

with two unknowns kA,p and CA,p. For εp, one can either take
〈εp〉 (average of energies per particle over subpackings) or the
values from Fig. 1, i.e., granular energies of entire packings
divided by the total number of particles.

The values of Ap vs ϕ are depicted in Fig. 6. The values
of εp = �p/Ngrp vs Ap along with the linear fit are depicted
in Fig. 7(a), where kA,p = 2.81 ± 0.08 (95% confidence in-
tervals, the calculation includes uncertainties from Fig. 5).
For completeness, CA,p = 969 ± 4. Figure 7(a) also depicts
the values for shear components of the force-moment tensor
�sh/Ngrp vs shear angoricities Ash, which we discuss in the
next subsection.

Figure 7(a) demonstrates that the EOS Eq. (15) works very
well for granular systems under study. The R2 value of the
fit for pressure angoricity is 0.995. Figure 9 in Appendix B
provides more details on the goodness of fit of overlapping
histograms.

Reference [7] introduces a version of the EOS that in-
cludes the average coordination number z [Eq. (17) there].
To check the influence of z of a subpacking on the pres-
sure angoricity EOS, we include z into the EOS and fit the
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FIG. 7. Granular energy (pressure and shear components of the force-moment tensor) vs different versions of granular temperature (pres-
sure angoricity, shear angoricity, and inverse keramicity). (a) Pressure components of the force-moment tensor per particle 〈εp〉 = 〈�p〉/Ngrp

vs angoricities Ap and shear components of the force-moment tensor 〈�sh〉/Ngrp vs shear angoricities Ash along with respective linear
fits 〈�p〉 = NgrpkA,pAp and 〈�sh〉 = NgrpkA,shAsh. Here kA,p = 2.81 ± 0.08 and kA,sh = 0.85 ± 0.01 (95% confidence intervals). (b) Pressure
components of the force-moment tensor per particle 〈εp〉 = 〈�p〉/Ngrp vs angoricities Ap when determined from full fits [Eq. (20)] to histogram
log-differences, which also account for keramicities κ . The red line is from the EOS fit in the form of Eq. (22), which can be interpreted as
dependence 〈εp〉 = f (Ap, κ

−1). The full depiction of the data from simulations and the EOS fit in 3D can be found in Fig. 13(c) in Appendix E.
The present panel is the projection of the 3D data onto the plane Ap, 〈εp〉.

latter in the form 〈�p〉/Ngrp = kA,pAp + az(z − z0) + bz(z −
z0)2, which actually means that we perform a nonlinear
fit 〈�p〉/Ngrp = kA,p

1
x+CA,p

+ az(z − z0) + bz(z − z0)2. The re-
sulting fit reads 〈�p〉/Ngrp = 2.73Ap + 0.00166(z − 4.52) +
0.00096(z − 4.52)2 with goodness of fit R2 = 0.996. Given
that the goodness of fit barely changes, we conclude that it
is not necessary to include the average coordination number
of a subpacking into the EOS. If we use the more formal
Akaike information criterion or the Bayesian information
criterion to compare the two models, we reach the same
conclusion.

The form of Eq. (15) is predicted for frictionless particles
by the mean-field theory [1,7]. Our packings are frictional,
and applicability of the theory is not granted. The mean-
field theory (Eq. (23) in Ref. [7]) predicts at the isostatic
point

〈�p〉 = ziso

2
NgrpAp, (17)

where ziso is the isostatic contact number, which for 3D sys-
tems is 6. The original paper uses 	 and α, α = Ngrpziso

2	
, and

in our notation A = 1/α and 	/A = �p/Ap, so the same pro-
portionality constant remains. Our simulation result is very
close to the theoretical prediction of kA,p = 3. Interestingly,
Ref. [10] reports for 2D frictional packings that the form of
the equation holds but the proportionality coefficient in their
simulations differs stronger than in our case (1/0.153 = 6.53
from simulations vs 2 from theory).

C. Shear angoricity EOS

To calculate shear angoricities [cf. Eq. (10)] and their EOS,
we repeat the steps for pressure angoricities and present them
in Appendix C and Fig. 10 there. The data for shear an-
goricities looks quantitatively similar to the data for pressure
angoricities.

Figure 7(a) presents final results for shear angoricity cal-
culations, i.e., shear components of the force-moment tensor
�sh/Ngrp from Eq. (10) vs corresponding shear angoricities
Ash.

One difference between shear and pressure angoricities is
that we found it impossible to include points with ϕ > 0.67 to
estimate the EOS for shear angoricities, so we only include
points with ϕ � 0.67 into Fig. 7(a) for Ash. We speculate
that it is because packings are not completely random at
high densities (it is known that crystalline inclusions start ap-
pearing at ϕ > 0.65 [26]), the underlying assumptions of the
statistical theory do not apply completely (like the assumption
of equiprobable microstates), and the overlapping histograms
methods also does not apply fully, hence goodness of linear
fits deteriorates too much. Goodness of fit is presented in
Figs. 10(e) and 10(f) in Appendix C, and the drop at ϕ = 0.65
is pronounced there. A similar drop in the goodness of linear
fits for Ap is visible in Fig. 9 in Appendix B, but it turned out
that our estimates for Ap EOS where consistent for density
ranges ϕ � 0.65, ϕ � 0.67, and ϕ < ∞, and, hence, for Ap,
we used and presented in Fig. 7(a) all available data points [cf.
also Fig. 13(d) in Appendix E].

Figure 7(a) demonstrates that shear angoricity and shear
granular energy follow a linear EOS 〈�sh〉 = NgrpkA,shAsh very
well, with coefficient of determination R2 = 0.998. The slope
of the fit is kA,sh = 0.85 ± 0.01 and the constant CA,sh, equiv-
alent to CA,p for pressure angoricities, is CA,sh = 998 ± 4.

Interestingly, the ratio between slopes for both angoricities
in our measurements (2.8/0.85 = 3.29) is similar to the ratio
between equivalent slopes for 2D frictional packings from
Ref. [10]. Reference [10] presents angoricity vs granular en-
ergy, so we invert their slopes, which gives 0.450/0.153 =
2.94.

We confirm that the results for the shear angoricity cal-
culated from Eq. (11) (the root mean square of the shear
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component of the force-moment tensor) are quantitatively
very similar and proportionality constant in the EOS is
kA,sh = 0.83 ± 0.01.

We believe that the results for shear angoricity in 3D are
less trivial than for the pressure angoricity. Specifically, if
we assume that every element of the force-moment tensor
�̂i j has a Boltzmann distribution, then its compression com-
ponent Tr�̂ = (�̂11 + �̂22 + �̂33)/3 = (�1 + �2 + �3)/3 is
expected to have at least the Gamma distribution (and in
fact seems to be exponential—which may follow from the
systems being isotropic). But the maximum shear component
(�1 − �3)/2 is not a tensor invariant, and its calculation from
an arbitrary frame of reference involves nonlinear operations
(finding principal axes and eigenvalues). Finding the RMS
shear from Eq. (11) involves even more nonlinear calcula-
tions. In our view, it is nontrivial that the shear component of
the force-moment tensor obeys the same statistical mechanics
(has the Boltzmann distribution) as the compressional com-
ponent. We are not aware of theoretical works that explain
this empirical observation, and it requires further analysis and
explanation.

D. Higher-order terms in log-differences: Estimating keramicity

Recent results [11–13] suggest that there is another exten-
sive quantity in granular systems, which for 2D systems is
the so-called Maxwell-Cremona force-tile area b = det�̂/V ,
where V is system volume [cf. Eq. (34) in Ref. [12], where
it is denoted as AR]. It was introduced in Refs. [27,28]. For
2D isotropic systems, given that �̂i, j = �pδi, j (where δi, j is
the Kronecker delta), b = �2

p/V . For 3D isotropic systems,
b = �3

p/V . Theoretical work in the mean-field limit [13] de-
rives such an equivalent additive quantity, b = ∫

dV det�̂/V
(cf. Eq. (13) in Ref. [13]). It indeed seems to be a good
candidate for granular energy since determinant is one more
tensor invariant with respect to rotations, along with trace.
The authors of Ref. [13] call such quantity for 3D systems
the Beltrami volume, we will adopt this term below as well.
For discrete particle systems, this quantity simply extends to
det �̂. The authors of Ref. [11] call the corresponding recip-
rocal temperature-like variable “keramicity” κ (denoted as λ

in Ref. [12]). Keramicity is an inverse temperature variable,
similarly to α from Eq. (6).

After introducing keramicity and the corresponding recip-
rocal extensive energy variable det �̂ for granular systems, the
exponent in Eq. (12) becomes

exp

(
−�p

Ap
− κ det �̂

)
(18)

and histogram differences shall be fitted with a plane. As dis-
cussed in Refs. [11,12,28,29], under the assumption that det �̂
is strongly peaked around �3

p (for 2D systems, around �2
p),

one can replace det �̂ in this exponent with �3
p. For generality,

we assume det �̂ = a�3
p. The exponent then becomes

exp

(
−�p

Ap
− κa�3

p

)
, (19)

Eq. (12) in Ref. [12] includes a finite-size scaling factor for
κ , subsystem volume V , which is proportional to the number

of particles in the group. We perform investigations with a
fixed Ngrp = 8, so we omit this factor for simplicity, following
Ref. [11]. When fitting log-differences of histograms, one
obtains as fitted parameters differences in both quantities,
�αp = 1

Ap1
− 1

Ap2
[cf. Eq. (13)] and �κ:

ln P1

ln P2
= B + �αp�p + �κa�3

p. (20)

Similarly to 1
Ap

, we accumulate κ (by using log-differences
with previous 10 packings) and get the estimates up to an
unknown constant Cκ .

Appendix E presents details on using higher-order fits.
Figure 12 there demonstrates that even for subpackings of
Ngrp = 8 the relation det �̂ = a�3

p applies. For packings in the
range of densities ϕ = 0.58–0.65, a ≈ 0.91, so we can utilize
Eq. (19) for packings in this density range.

Figure 13 in Appendix E presents the details of fits with
Eqs. (19) and (20). Figure 13(a) demonstrates that inverse
angoricities remain quantitatively similar to the results from
linear fits. Figure 13(f) demonstrates that inverse keramicities,
if estimated from Eq. (19), strongly deviate from expected
behavior for ϕ > 0.644. For the range ϕ > 0.65, one reason
is that replacing det �̂ with a�3

p is not valid, presumably
because packings become partially crystallized, so the full fit
with Eq. (18) shall be used. Thus, for studying keramicities,
we only take packings in the range ϕ = 0.58–0644.

Reference [13] provides a theoretical framework for con-
structing a combined EOS 〈�p〉 = Ngrp f (Ap, κ

−1). Specifi-
cally, for repulsive isotropic 2D materials, they derive, in our
notation, αp〈εp〉 + κ〈εp〉2 = const [cf. Section IV B there, as
well as Eq. (64) there]. Equation (64) in Ref. [13] includes one
more parameter, η, but the authors argue in Sec. IV A of that
paper that this parameter and the corresponding term can be
neglected for systems with purely repulsive potential near the
jamming point. Hence, we also neglect this parameter in the
present paper. Extension of this EOS to 3D systems leads to

αp〈εp〉 + κ〈εp〉3 = const. (21)

A simpler approach from Ref. [11] is to fit a separate EOS
for 〈�p〉 vs Ngrpκ

−1. The authors of Ref. [12] were able to fit
the EOS for 2D systems in the form 〈�p〉 ∼ Ngrpκ

−1/2. When
using such a simplified approach, we could not fit keramicity
either with a linear EOS 〈�p〉 ∼ Ngrpκ

−1 or with a cubic EOS
〈�p〉 ∼ Ngrpκ

−1/3. We could describe the data with a form
〈�p〉 ∼ Ngrpκ

−1/2 well, but it is nonphysical since it implies
that the proportionality constant in 3D is dimensional. At
the same time, our data comply well with the theoretically
predicted form (21) of the EOS. Given that theoretical results
are derived in the mean-field limit, we allow some freedom in
proportionality constants and fit the EOS with keramicity in
the form αp〈εp〉 + Dκ〈εp〉3 = C or

1

Ap
〈εp〉 + Dκ〈εp〉3 = C. (22)

Similarly to Eq. (16), it is a more complex fit. If we
denote with x and y inverse angoricity and keramicity val-
ues determined from simulations up to constants CA,p and
Cκ , respectively, then the full fit is (x + CA,p)〈εp〉 + D(y +
Cκ )〈εp〉3 = C.
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FIG. 8. Compactivity χ fits. (a) Average volume of Voronoi
cells, Vcell = 〈Vgrp〉/Ngrp, where Vgrp is the volume of a subpacking
of Ngrp = 8 particles. Apart from a small noise due to averaging, it
follows an analytical curve Vcell = π

6 D3 1
ϕ

, where the sphere diameter
D = 1. (b) Inverse compactivity 1/χ up to an unknown constant Cχ

determined by the method of overlapping histograms. (c) EOS Vcell

vs χ after fitting it with the form Vcell = aχ + b/χ (the unknown
constant Cχ is fitted implicitly). The red dashed line is the fit. The fit
was performed for ϕ � 0.65. (d) χ vs ϕ. Compare with Fig. 4 from
Ref. [17] for 2D. (e) Vcell × (1/χ − Cχ ) vs Vcell. If the EOS had the
form Vcell = aχ , this plot would be linear, a − VcellCχ . It is not, which
means that the EOS is nonlinear. (f) Vcell/χ vs ϕ. If the EOS had the
form Vcell = aχ , this plot would be a constant, but it is not. Compare
with Fig. 2(c) from Ref. [10].

Numerical fit of EOS (22) to our data in the range ϕ =
0.58–0.644 produces 1

Ap
〈εp〉 + 0.11κ〈εp〉3 = 1.2 with pa-

rameters D = 0.11 ∈ [0.03, 0.21] and C = 1.2 ∈ [1.15, 1.32]
(95% confidence intervals). We display the 3D version of the
fit in Fig. 13(c) in Appendix E. Blue dots there depict triples
(Ap, κ

−1, 〈εp〉) determined from simulations for each granular
packing. The surface represents the EOS fit (22), which can
be interpreted as a 3D plot 〈εp〉 = f (Ap, κ

−1). Figure 7(b)
presents a projection of this 3D plot onto axes Ap and 〈εp〉,
since Ap has a much stronger influence on 〈εp〉. These plots
demonstrate that the theoretically predicted EOS (22) is able
to describe our data well. The differences with the works of
Refs. [11,12], i.e., inability to fit the data with a simple EOS
independent of Ap, can be the target of future studies.

E. Compactivity EOS

Figure 8 presents results of the compactivity analysis
through the method of overlapping histograms, similarly to
the angoricity and keramicity results above.

Figure 8(a) depicts average Voronoi cell volumes (granu-
lar energies) computed as 〈Vcell〉 = 〈Vgrp〉/Ngrp, where Vgrp is

the volume of a subpacking of Ngrp = 8 particles. It follows
an analytical curve Vcell = π

6 D3 1
ϕ

(with the sphere diameter
D = 1), apart from small noise due to averaging.

Figure 11 in Appendix D presents additional related pan-
els: Figure 11(a) provides probability density functions of
Voronoi volumes of subpackings Vgrp and is equivalent to
Fig. 3. Figure 11(b) demonstrates differences between proba-
bility density functions of Voronoi volumes of subpackings in
the log scale and is equivalent to Fig. 4 for pressure angoricity.
Figures 11(c) and 11(d) present goodness of linear fits for the
method of overlapping histograms.

Figure 8(b) is equivalent to Fig. 5 and presents inverse
compactivities 1/χ up to an unknown constant Cχ as deter-
mined from the method of overlapping histograms. There is
a kink at ϕ ≈ 0.65, where packings start obtaining crystalline
structure (cf. Ref. [26]). At this density, the assumptions of
the method of overlapping histograms break since the loga-
rithms of overlapping histograms stop following linear fits [as
depicted in Figs. 11(c) and 11(d) in Appendix D].

Figure 8(c) represents the final compactivity EOS 〈Vcell〉 =
〈Vgrp〉/Ngrp vs χ and the fit (red dashed line) in the form

〈Vcell〉 = 〈Vgrp〉
Ngrp

= aχ + b

χ
. (23)

We implicitly determined the unknown constant Cχ with this
fit. More precisely, if we denote with x the value 1/χ − Cχ

determined from the overlapping histograms method, then the
final fit looked like Vcell = a

x+Cχ
+ b(x + Cχ ). The form of

Eq. (23) is unnatural for an EOS since it implies that granular
energy Vcell diverges at zero granular temperature. Divergence
of Vcell is not physical, and we interpret it as being impossible
for χ to reach zero. We could not find a better fitting form, and
the fact that this is the only simple EOS form that fits our com-
pactivity data is one of the reasons we believe compactivity is
a less suitable temperature-like variable for granular matter.
We note that we could only fit the range of ϕ � 0.65 for
compactivity EOS, contrary to pressure angoricity fits (see the
kinks in Fig. 8 at ϕ ≈ 0.65). Reference [10] [Fig. 2(c) there]
presents similar data for 2D frictional disks.

Figure 8(e) demonstrates that the function Vcell(χ ) is non-
linear, even prior to explicit fits. We present the values of
Vcell × (1/χ − Cχ ) vs Vcell. If the EOS Vcell(χ ) had the form
Vcell = aχ , then this plot would be linear, a − VcellCχ . It is not,
which means that the EOS is nonlinear.

Figure 8(f) presents the plot Vcell/χ vs ϕ. Similarly, if the
EOS Vcell(χ ) had the form Vcell = aχ , then this plot would be a
constant, but it is not. The same approach is used in Ref. [10],
Fig. 2(c) there. The authors of Ref. [10] shifted χ so that it is
∞ at the RLP limit. We take the values of χ (i.e., the constant
Cχ ) as determined by the fit in Fig. 8(c), Eq. (23).

VI. SUMMARY AND CONCLUSIONS

In this work, we investigated statistical mechanics of gran-
ular media for three-dimensional frictional monodisperse hard
spheres. We measured pressure and shear angoricities, as well
as keramicity and compactivity for systems under study. To
the best of our knowledge, this is the first time when pressure
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angoricities, shear angoricities, and keramicities are estimated
for frictional three-dimensional spheres.

As Fig. 7(a) demonstrates, pressure angoricity and the
compression component of the force-moment tensor, as well
as shear angoricity and shear component of the force-
moment tensor, follow a simple and theoretically supported
EOS Eq. (15), 〈�p〉 = 2.8NgrpAp for pressure angoricity and
〈�sh〉 = 0.85NgrpAsh for shear angoricity. It shows that an-
goricities and force-moment tensor components can play a
role of granular temperature and granular energy, respectively.
The recovered EOS is in close correspondence to the theo-
retical predictions from the mean-field theory for frictionless
particles [1,7], which for pressure angoricity in 3D predicts
〈�p〉 = 3NgrpAp. We note that simulations for 2D frictional
spheres [10] uncovered a similar linear EOS but with a coeffi-
cient that differs from the theoretical predictions stronger.

Figure 7(b) presents a projection of the EOS when another
inverse temperature-like variable is introduced, keramic-
ity κ [11,12]. Keramicity is reciprocal to the determinant
of the force-moment tensor. When determinant values are
distributed narrowly around �3

p, one can fit histogram log-
differences as 1D curves against �p with Eq. (20) and deter-
mine both keramicities and pressure angoricities. Keramicity
corresponds to the third term in log-differences of granular
energy histograms, while angoricity corresponds to the lin-
ear term. Theoretical mean-field considerations [13] predict a
combined EOS for both keramicities and pressure angoricities
in the form of Eq. (21). We could fit our data well with a
slightly more generic form (22). Equation (22) essentially
defines a surface 〈�p〉/Ngrp = f (Ap, κ

−1). We present the 3D
surface and corresponding data points (Ap, κ

−1, 〈�p〉/Ngrp) in
Fig. 13(c) in Appendix E and present its projection onto the
variables (Ap, 〈�p〉/Ngrp) in Fig. 7(b), given that Ap influences
〈�p〉 much stronger. Both figures demonstrate that inverse
keramicity and pressure angoricity can serve as state vari-
ables for granular systems and conform to the theoretically
predicted EOS.

Compactivity χ , on the other hand, seems to follow a more
complicated and controversial EOS Eq. (23), which implies
that Vcell diverges at χ = 0. Divergence of Vcell is not physical,
and we interpret it as being impossible for compactivity to
reach zero values. We conclude that angoricity is therefore a
better candidate for granular temperature than compactivity.

As Fig. 6 demonstrates, pressure angoricity experiences a
drop at ϕ = 0.64–0.65 and remains ≈0 for higher densities.
The same behavior occurs for shear angoricity and keramicity.
It happens because frictionless monodisperse packings can be
produced for ϕ � 0.64 [20,30–33], with crystalline inclusions
appearing at ϕ = 0.65 [34–38]. Our previous results suggest
that if crystallization were suppressed, ϕ = 0.65 would in fact
be the maximum attainable density for monodisperse pack-
ings (the glass close packing limit) [20,39,40]. It means that
tangential forces are almost not required to keep a packing at
ϕ > 0.64 stable, and hence normal forces can be negligible,
which is why the average value of the compression component
of the force-moment tensor �p drops at ϕ = 0.64–0.65 in
Fig. 1 and the distribution of local values of �p shifts to the
left and becomes narrower (cf. Fig. 3). The drop in granular
energies (�p) can be almost considered trivial from this per-
spective. If one considers the EOS (7), the drop in pressure

and shear angoricities is also natural, but to the best of our
knowledge this form of EOS is only proved for frictionless
particles. The drop in angoricity for frictional particles has yet
to be proved from first principles. Our results thus provide a
distinct view on the “random-close packing” limit ϕ = 0.64–
0.65 as the density interval where granular systems “freeze,”
i.e., angoricity (granular temperature) exhibits a drop to a
near-zero value.

The data that support the findings of this study are available
from the corresponding author upon request.
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APPENDIX A: CONVERTING VALUES PER PARTICLE
INTO VALUES PER SUBPACKING

To make Figs. 1–3 comparable, we depicted values per
particle. To convert the distributions of energies per particle
f (εp) into the distributions of total energies of subpackings
from Eq. (12), we use a standard method for changing a
variable in probability distributions, P(�p)d�p = f (εp)dεp.
Since εp = �p/Ngrp, then P(�p) = f (�p/Ngrp)/Ngrp.

To convert the ratios of f1/ f2 from Fig. 4 and fit parame-
ters to inverse angoricity differences from Eq. (13), we write
ln(P1/P2) = A + ( 1

Ap2
− 1

Ap1
)�p and ln( f1/ f2) = A + ( 1

Ap2
−

1
Ap1

)Ngrpεp. If we fit ln( f1/ f2) with a + kεp, then 1
Ap2

− 1
Ap1

=
k

Ngrp
.
When fitting log-differences for determining keramic-

ities with the form ln( f1/ f2) = k0 + k1εp + k3ε
3
p, which

shall correspond to Eq. (20), the following conver-
sion applies: ln(P1/P2) = ln( f1/ f2) = k0 + k1εp + k3ε

3
p =

FIG. 9. Goodness-of-fit data for log-differences linear fits for
compression angoricity (cf. Fig. 4). (a) Log-likelihoods of fits to log
energy differences, Eq. (B1). Red dashed line depicts goodness of fit
for linear fits and the purple solid line is constructed for third-order
polynomial fits for log-differences. The panel shows that third-order
polynomials are sufficient at ϕ > 0.65 and for ϕ � 0.65 linear fits are
as good as third-order fits. At the same time, for pressure angoricity,
points at ϕ > 0.65 comply with the same EOS as points ϕ � 0.65, so
we include them in the final plot Fig. 7(a) for Ap. (b) p values for χ 2

statistics calculated for linear fits as a measure of quality of these fits.
The panel shows that for none of the densities we can for sure reject
the hypothesis that a fit is linear (p values are never below 0.05) but
confirms that fit quality deteriorates for ϕ > 0.65.
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FIG. 10. Details of shear angoricity calculation. Panels (a)–
(d) are equivalent to Figs. 1, 3–5, respectively. Panels (e) and (f)
are equivalent to Figs. 9(a) and 9(b). (a) Probability distributions
of shear components of the force-moment tensor per particle εsh =
�sh/Ngrp. Histograms are calculated for Mgrp ∼ 1200 subpackings
(i.e., over Mgrp ∼ 1200 values of εsh). Red dashed line (circles):
ϕ = 0.605; green solid line (diamonds): ϕ = 0.641; and purple
solid line (squares): ϕ = 0.669. (b) Log energy differences for
compactivity calculations from the overlapping histograms method,
Eq. (14). Similarly to the main text, we display here the ratio of
logarithms of probability density functions for energies per parti-
cle, f1(εsh )/ f2(εsh ), along with their linear fits. Left blue line: ϕ =
0.6430/0.6431. Right blue line: ϕ = 0.6047/0.6082. (c) Granular
energies per particle �sh/Ngrp vs packing density ϕ. Error bars have
the same meaning as in Fig. 1 (3-sigma confidence intervals). The
plot looks qualitatively similar to Fig. 1. (d) Inverse shear angoricities
up to an unknown constant 1

Ash
− CA,sh vs packing density ϕ. Error

bars represent 3-sigma (99.7%) confidence intervals, as in Fig. 5. The
plot looks qualitatively similar to Fig. 5. (e) Log-likelihoods of fits to
log energy differences, Eq. (B1). Red dashed line depicts goodness of
fit for linear fits and the purple solid line is constructed for third-order
polynomial fits. For ϕ � 0.65, linear fits are as good as third-order
fits. (f) p values for χ 2 statistics calculated for linear fits as a measure
of quality of these fits. The panel shows that for none of the densities
we can for sure reject the hypothesis that a fit is linear (p values are
never below 0.05).

k0 + k1�p/Ngrp + k3�
3
p/N3

grp = B + �αp�p + �κ�3
p. Hence

�αp = k1/Ngrp and �κ = k3/N3
grp.

APPENDIX B: GOODNESS OF FIT FOR COMPRESSION
ANGORICITY CALCULATION

Figure 9 presents goodness of fit data for log-differences
linear fits of pressure angoricities (cf. Fig. 4).

FIG. 11. Details of compactivity calculation. Panels (a)–(d) are
equivalent to Figs. 3, 4, 9(a), and 9(b), respectively. (a) Probabil-
ity distributions of Voronoi volumes per particle Vcell = Vgrp/Ngrp.
Histograms are calculated for Mgrp ∼ 1200 subpackings (i.e., over
Mgrp ∼ 1200 values of Vgrp). Red dashed line (circles): ϕ = 0.605;
green solid line (diamonds): ϕ = 0.643; and purple solid line
(squares): ϕ = 0.669. (b) Log energy differences for compactivity
calculations from the overlapping histograms method, Eq. (14). For
ϕ � 0.65, the differences of logarithms look like straight lines, so
the method of overlapping histograms is applicable. Left blue line:
ϕ = 0.6685/0.6937. Middle blue line: ϕ = 0.6430/0.6431. Right
blue line: ϕ = 0.6047/0.6082. (e) Log-likelihoods of fits to log en-
ergy differences, Eq. (B1). Red dashed line depicts goodness of fit
for linear fits and the purple solid line is constructed for third-order
polynomial fits for log-differences. For ϕ � 0.65, linear fits are as
good as third-order fits. Contrary to angoricity plots, even third-order
fit quality seems to deteriorate for ϕ > 0.65. (f) p values for χ 2

statistics calculated for linear fits as a measure of quality of these fits.
The panel shows that for none of the densities we can for sure reject
the hypothesis that a fit is linear (p values are never below 0.05).

Figure 9(a) presents log-likelihoods of fits per bin under the
assumption of independent and identically distributed (nor-
mally distributed) residuals,

l = 1

Nbin
ln

[
�

Nbin
i=0

1

σres

√
2π

e− 1
2 ( xi−μres

σres
)2

]

= − ln(σres

√
2π ) − 1

Nbin

1

2

Nbin∑
i=0

(
xi − μres

σres

)2

, (B1)

where Nbin is the number of bins for fitting the log-differences,
σres is the standard deviation of residuals over the bins in
the given fit, and μres is the mean of residuals. At each
density, we present average values computed for a given
packing over 10 histograms with other 10 packings at higher
densities. Figure 9(a) presents two lines, the red dashed line
depicts goodness of fit for linear fits and the purple solid
line is constructed for third-order polynomial fits. Parabolic
fits produce log-likelihoods between the two lines. This
panel demonstrates that third-order fits have almost constant
quality in the entire density range, while the quality of lin-
ear fits deteriorates at ϕ ∼ 0.65. Despite this, points with
ϕ > 0.65 match the same angoricity EOS as points with
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FIG. 12. Investigation of the applicability of using �3
p = ( 1

3 Tr�̂)3 instead of det �̂, i.e., of fitting histogram differences as one-dimensional
curves with Eq. (20) instead of the full fit with a plane B + �αp�p + �κ det �̂. For purely isotropic systems, we expect det �̂ = det �pI =
�3

p, while for any systems by definition [Eq. (3)] 1
3 Tr�̂ = �p. The simplified fit with Eq. (20) is applicable only when det �̂ is narrowly

distributed around �3
p. The plots demonstrate the applicability of this assumption for three distinct packings with different densities. The

panels present heat maps (2D histograms) of subpackings vs �3
p and det �̂. We take subpackings of eight particles, as used in the main text

(∼1200 subpackings per packing). Colors in each square cell represent the number of subpackings with values of �3
p and det �̂ inside narrow

ranges corresponding to a cell. The colorbar maps colors to a number of particles in a cell. Black dashed lines represent mean values of det �̂
vs �3

p. They are very close to linear lines. Blue dots follow the line det �̂ = ( 1
3 Tr�̂)3.

ϕ � 0.65, so we include them in the final plot Fig. 7(a)
for Ap.

Figure 9(b) presents p values for χ2 statistics calculated for
linear fits as a measure of quality of these fits. It shows that for
none of the densities we can for sure reject the hypothesis that
a fit is linear (p values are never below 0.05).

APPENDIX C: DETAILS OF SHEAR
ANGORICITY CALCULATION

This Appendix presents the details of shear angoricity cal-
culations omitted in the main text. They are summarized in
Fig. 10. Figures 10(a)–10(d) are equivalent to Figs. 3, 4, 1,
and 5, respectively. Figures 10(e) and 10(f) are equivalent to
Fig. 9(a) and Fig. 9(b). The results in Fig. 10 look quantita-
tively similar to the data for pressure angoricities.

APPENDIX D: DETAILS OF COMPACTIVITY
CALCULATION

This Appendix along with Fig. 11 presents some de-
tails of compactivity calculations omitted in the main text.
Figure 11(a) presents local energy distributions given that
Voronoi volumes are granular energies. This panel is equiva-
lent to Fig. 3 for pressure angoricity calculation. Figure 11(b)
presents histogram differences in the log scale for Voronoi
volumes. This figure is equivalent to Fig. 4 for angoricity
calculation. Figures 11(c) and 11(d) present goodness of fit
for log-difference fits.

APPENDIX E: DETAILS OF KERAMICITY CALCULATION

In this Appendix, we provide more details in Sec. V D
for using higher-order fits for histogram log-differences and
calculating keramicity.

Figure 12 demonstrates that it is justified to replace det �̂
with a�3

p. It presents data for three packings at different
densities, and in all of them det �̂ is very narrowly dis-
tributed around a�3

p, with a = 0.91. We confirm that the
same applies for all the packings in the range of densities
ϕ = 0.58–0.65. For packings in this range, a = 0.89–0.93,
so we can in fact use this range to fit histogram differences
with a 1D curve Eq. (20) instead of using the full 2D fit
Eq. (18). For ϕ < 0.58, a decreases below 0.89. For ϕ > 0.65,
a also rapidly decreases (we omit the plot for brevity). For
ϕ > 0.65, the distribution of det �̂ becomes wider as well, and
for higher densities it becomes strongly nonlinear, presum-
ably because the packings contain more and more crystalline
inclusions.

Figure 12 also indicates why fitting with the full Eq. (18)
would be error prone: Histogram differences in coor-
dinates �p, det �̂ follow a narrow curve �p, a�3

p, and
the parameters of fitted planes have very high uncer-
tainty, so the method of 1D fits with Eq. (19) is almost
inevitable.

In the case that different packings would have different pro-
portionality constant a, we could still use modified Eq. (20).
If two packings had two proportionality constants a1 and a2,
then we would determine through histogram differences for
them a cubic term κ1a1 − κ2a2, with both κ unknown. By
setting κ0 as an unknown constant for the very first packing in
the sequence, we could determine all the values κi for all the
packings iteratively, up until κ0. In our case, we do not need
to use this more complicated scheme, because there exists a
wide range of densities where a ≈ const.

Figure 13 presents the results of using Eq. (20) for fit-
ting histograms log-differences. Figure 13(a) presents inverse
pressure angoricity estimates from these fits and corresponds
to Fig. 4. It demonstrates that inverse pressure angoricity
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(c)

FIG. 13. Fitting histogram log-differences with higher-order fits (estimating keramicity), cf. Ref. [12] and Eq. (19). (a) Inverse pressure
angoricities up to a constant when simultaneously estimating keramicities. This panel is equivalent to Fig. 5 but estimated from Eq. (20). The
panel is qualitatively similar to Fig. 5. (b) Keramicity, or inverse “Beltrami volume temperature” [cf. Eq. (20)] up to an unknown constant. The
error bars in panels (a) and (b) represent 3-sigma (97%) confidence intervals. (c) Complete angoricity-keramicity EOS [Eq. (22)] estimated
from inverse angoricity and keramicity values from panels (a) and (b). Blue dots depict triples (Ap, κ

−1, 〈εp〉), where εp = �p/Ngrp, determined
from simulations for each granular packing. The surface represents the EOS from fitting Eq. (22), which can be interpreted as a 3D plot
〈εp〉 = f (Ap, κ

−1). Figure 7(b) is a projection of this panel onto the axes Ap, 〈εp〉. (d) Inverse pressure angoricities up to a constant from a
linear fit (13), keramicity not included, vs granular energy per particle εp = �p/Ngrp. Red circles are from packings with ϕ � 0.644; blue circles
are points with ϕ > 0.644. The plot is a hyperbola and can indeed be fitted by Eq. (16). It shows that one can fit the data at all densities with
the same Eq. (16), which we do in the main text, Fig. 7(a). (e) Same as panel (d) but with inverse angoricities from panel (a). (f) Keramicities
up to a constant from panel (b) vs granular energy per particle εp = �p/Ngrp. Red circles are from packings with ϕ � 0.644; blue circles are
points with ϕ > 0.644. Points from packings with ϕ � 0.644 seem to lie on the same curve, meaning they can be fitted with Eq. (22). The plot
shows that packings with ϕ > 0.644 do not comply with a EOS, presumably because keramicity is more sensitive to packings having a random
structure, so we exclude them from fitting keramicity EOS [cf. panel (c) and Fig. 7(b)].

estimates from Eq. (20) are qualitatively close to the ones
from Fig. 4. Confidence intervals are wider, though, because
we are using higher-order fits.

Figure 13(b) depicts the estimates of κ up to an unknown
constant Cκ . The plateau in the values to the left is explained
as follows: As Figs. 4 and 9 hint, histogram log-differences for
ϕ � 0.65 are almost linear, and higher-order terms for fitting
them are small. Hence, �κ is close to zero for ϕ � 0.65, and
κ − Cκ is almost constant. Still, it is very remarkable that
small changes in κ − Cκ , as well as 1

Ap
− CA,p, can match large

differences in granular energies from Fig. 1 after final EOS fits
in Fig. 7.

Figure 13(c) presents the complete pressure angoricity-
inverse keramicity EOS Eq. (22) estimated from inverse
pressure angoricity and keramicity values found in Figs. 13(a)
and 13(b). Blue dots depict triples (Ap, κ

−1, 〈εp〉), where εp =
�p/Ngrp as determined from simulations for each granular
packing. The surface represents the EOS fit (22), which can
be interpreted as a 3D plot 〈εp〉 = f (Ap, κ

−1). Figure 7(b) is

a projection of this figure onto the axes Ap, 〈εp〉, because Ap

has much stronger impact on 〈εp〉.
Figures 13(d)–13(f) provide an analysis in which range

we can reasonably fit angoricities and compactivities.
Figure 13(d) shows that the data for inverse pressure angoric-
ity determined from linear fits to histogram log-differences
[no keramicity, Eq. (13)] look consistent (hyperbolic) in the
entire range of ϕ and we can fit all the data with the same
EOS (15), which we do in the main text [Fig. 7(a)]. For
comparison, we provide in panel (e) an equivalent plot for
1

Ap
− CA,p from cubic fits (19). Blue points correspond to ϕ >

0.644. Figure 13(f) provides data for κ − Cκ vs 〈�p〉/Ngrp.
It clearly shows that points at ϕ > 0.644 deviate from the
curve at ϕ � 0.644, presumably because keramicity is more
sensitive to how random packing structure is. Given that
the data for keramicity clearly deviates from a simple curve
at ϕ = 0.644, we exclude points at ϕ > 0.644 from fitting
the linear EOS for pressure angoricities as well [Figs. 13(e)
and 13(f)].
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APPENDIX F: FINITE-SIZE EFFECTS

In this Appendix, we investigate finite-size effects on an-
goricity measurements. We repeated the measurements that
we did in the main text with different group sizes, Ngrp =
7, 8, 12, 16, and 32, i.e., calculated granular energy his-
tograms, calculated log-differences of histograms, estimated
inverse temperatures, and fitted the EOS coefficient kA,p from
Eq. (16).

To avoid potentially using data where the statistical the-
ory might not apply, we used only data points in the range
ϕ � 0.65 for EOS estimation, where the packings are ran-
dom. It slightly increases confidence intervals for the kA,p

estimates.
Figure 14 presents the corresponding measurements and

extrapolation to the thermodynamic limit Ngrp → ∞. We rep-
resent the finite-size dependence in the form kA,p = f (1/N2

grp)
and fit the data with the second-order polynomial, i.e., kA,p =
a + b 1

N2
grp

+ c 1
N4

grp
. The error bars denote 95% confidence in-

tervals. The estimate of kA,p in the thermodynamic limit
Ngrp → ∞ is kA,p = 2.60 ± 0.27. When using a simpler form,
a parabolic fit over 1/NgrpkA,p = a + b 1

Ngrp
+ c 1

N2
grp

, the result is

2.459 ± 0.61 (not shown for brevity).

FIG. 14. Analysis of finite-size effects on the granular EOS for
pressure angoricity. We repeated the measurements from the main
text to estimate kA,p from Eq. (16) for different group sizes of sub-
packings, Ngrp = 7, 8, 12, 16, and 32. All the results for different
group sizes look qualitatively similar to the results presented in the
main text. We fitted this curve in the form kA,p = f (1/N2

grp ), where
f is the second-order polynomial. The estimate of kA,p in the ther-
modynamic limit Ngrp → ∞ is kA,p = 2.60 ± 0.27. The error bars
represent 95% confidence intervals.
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