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In recent work it was shown that elasticity theory can break down in amorphous solids subjected to nonuniform
static loads. The elastic fields are screened by geometric dipoles; these stem from gradients of the quadrupole
field associated with plastic responses. Here we study the dynamical responses induced by oscillatory loads.
The required modification to classical elasticity is described. Exact solutions for the displacement field in
circular geometry are presented, demonstrating that dipole screening results in essential departures from the
expected predictions of classical elasticity theory. Numerical simulations are conducted to validate the theoretical
predictions and to delineate their range of validity.
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I. INTRODUCTION

The response of amorphous solids to oscillatory strain is
a well-studied subject, mainly in protocols employing simple
shear; cf., for example, [1–3]. While important and indicating
much interesting physics, systems under oscillatory shear do
not succumb easily to analytic scrutiny, making the compari-
son of analytic predictions to experiments or simulations quite
difficult to accomplish. In this work we turn to oscillatory
forcing by another protocol, of an oscillatory inflation of
an inner circular boundary, creating nonuniform oscillatory
strain on an amorphous solids that is contained between this
and a much larger outer circular boundary that is maintained
stationary.

The reason for this choice is twofold. First, in a series
of recent works it was shown that classical elasticity theory
needs to be reconsidered and amended to describe correctly
the mechanical response of amorphous solids subjected to
time-independent nonuniform strains [4–10]. A new phase is
formed in which the elastic fields are being screened by emer-
gent geometric dipoles in the resulting displacement field. The
existence of dipoles in the displacement field was recognized
by the present authors as well as by others [11,12]. It was
stressed, however, by the present authors that the transition
from a quadrupolar screening in the solid phase to a dipolar
screening is reminiscent of the structural transition in 2D
crystals from hexagonal solids to hexatics, except that here
the transition is in the emergent displacement field and the
structure of the solid is always amorphous [9]. Our theory
provides a classical field theory for describing the mechanical
state of a deformed amorphous solid, and it predicts anoma-
lous behavior that is observed in both numerical simulations
and experiments. In this paper we extend the theory in a new
direction, to describe mechanical responses of amorphous
solids to dynamical loading.

The second reason for choosing the present geometry is
that it allows considerable analytic progress. We consider the

effects of inertia and plastic responses in amorphous matter.
For the sake of obtaining analytic solutions we will focus on
an amorphous solid contained in an annulus of outer radius
rout and inner radius rin, such that the inner radius oscillates
with a fixed frequency �. Initially, before oscillations begin,
the material will be brought to mechanical equilibrium in
which the resultant force on each particle vanishes. Once
oscillations start, we will be interested in the time-dependent
displacement field, evaluated with respect to the initial equi-
librated positions. We will show that classical elasticity fails
to predict correctly this displacement field, and that an ap-
propriate theory requires taking into account the screening
introduced by quadrupolar and dipolar charges that form due
to plastic responses.

The structure of the paper is as follows: in Sec. II we
review the dynamics as expected for our configuration from
the solution of the equations of motion dictated by classical
elasticity. We then solve analytically for the displacement field
of a purely elastic medium which is subjected to oscillatory
inflation of an inner boundary. We find that the dynamics is
already nontrivial, exhibiting interesting features. Section III
introduces quadruple and then dipole screening, leading to
predictions of a rich array of expected solutions in which new
length scales emerge spontaneously, breaking down elastic-
ity theory. In Sec. IV we describe simulation results to test
the prediction of the theory. The comparison of theory to
simulations calls for some careful considerations. First, it is
important that the dynamics will describe oscillations around
a well-defined mechanical equilibrium state. Second, we need
to deal with the issue of dissipation. In the numerics we intro-
duce dissipation by damping terms in the particle collisions.
In the theory there are dissipative terms proportional to the
rate of change of displacement fields. This requires careful
discussion. Finally, nonlinear effects should be kept at bay.
When all these are considered, we find indeed dynamical
responses that are in accord with our theory. Section V offers
conclusion and a discussion of the road ahead.
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II. DYNAMICS OF AMORPHOUS SOLIDS
IN TWO DIMENSIONS

A. The displacement field in purely elastic solids

We start by reviewing the classical approach to dynamics
and dissipation as in Landau and Lifshitz [13], and then we
develop the basic ideas that are called for to accommodate the
physics of amorphous solids.

In a purely elastic medium of mass density ρ, denote the
stress field by σ, and the displacement field by d. The equa-
tion of equilibrium is given by

∇ · σ = 0; (1)

i.e., the force per unit volume is zero in equilibrium. Once we
are not in mechanical equilibrium the force does not vanish
but is equal to the acceleration times the mass per unit volume

ρd̈ = ∇ · σ. (2)

For an isotropic body, one can write ∇ · σ in terms of the
displacement to get [13]

ρd̈ = μ∇2d + (μ + λ)∇(∇ · d), (3)

where μ and λ are Lamé coefficients.

1. Dynamical response to oscillations of an inner circle

Elasticity theory holds equally well in two and in three
dimensions. The theory described below can be easily ex-
tended to three dimensions; see, for example, [8]. In this
paper the simulations are performed in two dimensions (2D)
for computational efficiency, and therefore we specialize the
equations to the case of an oscillating inner circle of initial ra-
dius r0 and time-dependent radius rin(t ), in a system bounded
by a fixed, rigid outer circular boundary of radius rout. The
simulations were done according to the following protocol.
At the beginning of each periodic driving cycle, the inner
circle was inflated to rin(t = 0) = r0 + �, and the system
was equilibrated. Then we periodically inflate and deflate the
central disk according to

rin(t ) = rin(t = 0) − δ sin(�t ) , (4)

where �, δ,� are parameters. After a given number of os-
cillations, the system is again allowed to equilibrate. Then
the procedure is repeated ten times. The reason for this ini-
tial setup is to guarantee that the subsequent oscillations are
around a well-defined equilibrated state and the resulting
dynamics is reproducible. It is important that the oscillating
displacement field is measured with respect to a well-defined
equilibrated state. In order to compare the numerical re-
sponses to the offered theory, we calculate and analyze the
angle-averaged radial displacement.

Clearly, in a realistic amorphous solid such an oscillatory
inflation exerts work, and without dissipation the system will
not reach a stationary state. Thus in the numerical simulations
presented below (cf. Sec. IV) we will add a small dissipative
term to the dynamics of the disks that comprise the amor-
phous solids. This results in the system reaching an oscillatory
steady state. At this point we continue to focus on an ideal
elastic medium to solve Eq. (3) as it stands, without adding
dissipation.

In the presence of circular symmetry we can focus on the
radial component of the displacement field:

dr (r, t ) ≡ d(r, t ) · r/r. (5)

The equation for dr becomes

ρd̈r = 2μ + λ

r2
[r2d ′′

r + rd ′
r − dr]. (6)

This equation of motion is solved with the boundary condi-
tions

dr (rin, t ) = rin(t ) − rin(t = 0) = −δ sin �t,

dr (rout ) = 0. (7)

The displacement field is measured from the equilibrated con-
figuration obtained after the expansion of the inner boundary
to r0 + �. Accordingly we seek a solution of the form

dr (r, t ) = f�(r) sin(�t ), (8)

where

r2 f ′′
�(r) + r f ′

�(r) + f�(r)

(
ρr2�2

2μ + λ
− 1

)
= 0. (9)

The dynamic response solves the Bessel equation (9). Inter-
estingly, this equation is of the same form as that found in
static anomalous elasticity; cf. Ref. [4]. Here the frequency
related expression acts as dynamical screening. The solution
of Eq. (9) together with boundary conditions (7) in terms
of the first-order Bessel J1(rω̃) and von Neumann Y1(rω̃)
functions is

fω̃(r) = −δ
[Y1(rω̃)J1(routω̃) − J1(rω̃)Y1(routω̃)]

[Y1(rinω̃)J1(routω̃) − J1(rinω̃)Y1(routω̃)]
, (10)

where ω̃ ≡ �
√

ρ/(2μ + λ).
An important feature of this solution is that fω̃ is fully

determined by the geometry of the system, the prescribed
frequency, i.e., by rin, rout,�, and the mechanical properties of
the media μ and λ. In particular, the number of nodes of the
oscillating Bessel functions is determined by the prescribed
frequency �. In order to achieve presentation of the results
which does not depend on the system size and material proper-
ties, we rewrite the equation and its solutions in dimensionless
variables χ and τ . This is done using a characteristic length
the outer radius rout and characteristic time tc ≡ rout/cd where
cd is the dilatational speed

cd ≡
√

(2μ + λ)/ρ. (11)

With this,

χ ≡ r/rout, τ ≡ t/tc. (12)

In dimensionless units Eq. (10) reads

fω(χ ) = −δ
Y1(χω)J1(χoutω) − J1(χω)Y1(χoutω)

Y1(χinω)J1(χoutω) − J1(χinω)Y1(χoutω)
. (13)

Note that in this result χout = 1, χin = rin/rout, and the fre-
quency ω is dimensionless.

To gain familiarity with the type of functions involved we
show in Fig. 1 a few examples of fω(χ ) as given by Eq. (13).
Later we will learn how dissipation and dipole screening
change this function in realistic situations.
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FIG. 1. Examples of the function fω(χ ) according to the purely
elastic theory as shown in Eq. (13), for different values of the driving
frequency ω = 1.5, 5, 7.5 (dot-dashed green, dashed red, and solid
blue lines, respectively).

2. Adding dissipation

In reality, in any experimental or model system, dissipation
will be crucial to balance the work done by an oscillating
pulsar at the center of the circular system. In the simulations,
we employ disks that interact via Hertzian repulsive forces
(see Appendix A), but we introduce dissipation by adding to
the particle dynamics a dumping force proportional to their
velocity vi, F i ≡ −γ̃ vi, which is applied to all the disks, to
remove any excess energy. In the macroscopic modeling we
need therefore to take into account an effective viscous term.
Since we are in two dimensions, we cannot add a viscous
tensor to the stress field: viscosity suffers from divergences
in two dimensions due to long time tails; cf. [14]. Instead, we
add a term γ (r)ḋ that is added to Eq.(3):

ρd̈ + γ (r)ḋ = μ∇2d + (μ + λ)∇(∇ · d). (14)

At this point the function γ (r) is kept unspecified; later it
will be chosen to accommodate the results of the numerical
simulations. For any choice of γ (r) the appearance of ḋ will
now mix sine and cosine functions. In dimensionless units we
seek a solution for the radial component in the form

dχ (χ, τ ) = fω(χ ) sin(ωτ ) + gω(χ ) cos(ωτ ). (15)

Next we solve for the functions fω(χ ) and gω(χ ) by
substituting the ansatz (15) into the boundary value equa-
tion Eq. (14), matching terms in cos ωτ and sin ωτ . We find

−ω2gω − γ (χ )
tc
ρ

ω fω = 1

χ2

[
χ2 d2gω

dχ2
+ χ

dgω

dχ
− gω

]
,

−ω2 fω + γ (χ )
tc
ρ

ω gω = 1

χ2

[
r2 d2 fω

dχ2
+ χ

dfω
dχ

− fω

]
. (16)

These two coupled real equations can be solved by introduc-
ing one complex variable

z(χ ) = gω(χ ) + i fω(χ ). (17)

Combining Eqs. (16) according to Eq. (17) we find

−ω2z − iγ (χ )
tc
ρ

ωz = 1

χ2

[
χ2 d2z

dχ2
+ χ

dz

dχ
− z

]
. (18)

We can rewrite Eq. (18) as

χ2 d2z

dχ2
+ χ

dz

dχ
+ z

{
− 1 + χ2

[
ω2 + iγ (χ )

tc
ρ

ω

]}
= 0.

(19)

The solutions of Eq. (19) are a combination of a first-order
Bessel J1[ζ (χ )] and von Neumann functions Y1[ζ (χ )] of the
complex variable ζ (χ ) = χ

√
[ω2 + iγ (χ ) tc

ρ
ω].

Thus we can write

z(χ ) = GJ1(ζ ) + HY1(ζ ). (20)

To determine the coefficients G and H we need to fit the
boundary conditions. They are fω(χout ) = gω(χout ) = 0 at the
outer boundary. At the oscillating inner boundary fω(χin ) =
−δ, gω(χin ) = 0. Accordingly, z(χin ) = −iδ, and z(χout ) = 0.
Using these boundary conditions, we define

D = J1[ζ (χin )]Y1[ζ (χout )] − J1[ζ (χout )]Y1[ζ (χin )]. (21)

The coefficients in Eq. (20) are computed to be

G = −iδY1[ζ (χout )]/D, H = iδJ1[ζ (χout )]/D. (22)

Finally, fω and gω of Eq. (15) are determined as Re(z) and
Im(z).

These exact solutions are expected to be relevant as long as
dipole screening is absent. To assess the effects of the latter we
now add quadrupole and dipole contributions to the theoretical
discussion.

III. ANOMALOUS DYNAMICS DUE
TO PLASTIC SCREENING

In this section we derive the equations of motion in the
presence of quadrupolar and dipolar screening. This deriva-
tion follows the ideas presented in Ref. [4] for the static
problem, supplemented with inertial and dissipative contribu-
tions as required. In each case we need to write the appropriate
Lagrangian, which reflects the interactions that are taken into
account. We denote the quadrupolar tensor field as Qαβ . Phys-
ically, this is the field associated with the eigenstrains of the
Eshelby quadrupoles that are formed by plastic responses.
The dipolar field Pα ≡ ∂βQαβ is simply the gradient of this
density. The displacement field is the vector field dα and the
strain tensor uαβ ≡ 1

2 (∂αdβ + ∂βdα ). The Euclidean metric is
denoted gμν .

In all cases we start with the Euler-Lagrange equations in
the standard form [15], with � playing the role of a funda-
mental field, which in our case can be the displacement or the
quadrupole density:

∂L
∂�

− ∂ν

(
∂L

∂ (∂ν�)

)
= 0. (23)

A. Quadrupole screening

To derive the equations of motion under quadrupole
screening we assume that the gradients of their density are
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negligible. Thus to quadratic order we can write the La-
grangian for an elastic medium with quadrupoles as

L = ρ

2
gμν ḋμḋν − 1

2
σμνuμν − 1

2
�αβγ δQαβQγ δ

−�
αβ

γ δ ∂αdβQγ δ. (24)

Computing the derivative with respect to the quadrupole field
we find

∂L
∂Qσκ

= −�αβγ δQαβδγ
σ δδ

κ − �
αβ

γ δ ∂αdβδγ
σ δδ

κ

= −�αβσκQαβ − �αβ
σκ uαβ = 0. (25)

At this point we do not have dipoles in the Lagrangian, or

∂L
∂ (∂νQσκ )

= 0. (26)

Returning to Eq. (25) we rewrite it in the form

Qαβ = −�αβσκ�γ δ
σκuγ δ = �̃αβγ δuγ δ. (27)

Here we denoted the inverse of �αβσκ as �αβσκ and defined
another (presently unknown) tensor of coefficients �̃. Equa-
tion (27) is important, showing that the quadrupolar tensor is
not some mysterious entity, but that it is induced by the strain
field in the system, with the quartic tensor �̃ providing the
link.

Next we consider the derivative with respect to ∂ρdσ :

∂L
∂ (∂ρdσ )

= ρgμν ḋμδ
ρ
t δσ

ν − σμνδρ
μδσ

ν − �
αβ

γ δ δρ
αδσ

β Qγ δ. (28)

Using Eq. (23) we find

ρgμσ d̈μ − ∂ρ

(
σρσ + �

ρσ
γ δ Qγ δ

) = 0. (29)

At this point we can define a normalized stress field and write

ρd̈σ = ∂ρσ̃
ρσ , σ̃ ρσ ≡ σρσ + �

ρσ

γ δ Qγ δ = ξσ ρσ , (30)

where the last equality follows from Eq. (27) and homogene-
ity and isotropy, with ξ being a scalar number. The upshot
of this calculation is that the dynamics of the displacement
field is unchanged in form compared to Eq. (2), except for
a renormalization of the elastic moduli. Thus in the present
case the introduction of the dissipative term and the analytic
solutions for the displacement field follow verbatim the theory
presented in the previous section.

B. Dipole screening

The situation changes qualitatively with dipole screen-
ing, the equations of motion change their form. To derive
these equations we will assert that the renormalization due to
quadrupole screening is already included in our Lagrangian,
in the form of a renormalized stress tensor (that will be again
denoted as σμν). To quadratic order in the fields we therefore
write

L = ρ

2
gμν ḋμḋν − 1

2
σμνuμν − 1

2
�αβPαPβ − �α

β dαPβ

= ρ

2
gμν ḋμḋν − 1

2
σμνuμν − 1

2
�αβ∂γ Qγα∂δQδβ

−�α
β dα∂γ Qγ β . (31)

Computing the derivative with respect to the dipole field
we find

∂ρ

∂L
∂ (∂ρQσκ )

= −∂σ

[
�ακPα + �α

κ dα

] = 0. (32)

The expression in the square brackets is a constant, that can be
taken as zero using the translational invariance of the displace-
ment field. From this point onward we lose the gauge freedom
of the displacement field since we chose a gauge. As before,
we use this equation to express the dipole field in terms of the
fundamental displacement field:

Pα = −�ακ�β
κ dβ. (33)

Computing the derivatives with respect to the displacement
field and its derivative we find

∂L
∂dσ

= −�α
β∂γ Qγ βδσ

α = −�α
β Pβδσ

α , (34)

∂L
∂ (∂ρdσ )

= ρgμν ḋμδ
ρ
t δσ

ν − σμνδρ
μδσ

ν . (35)

Combining these two equations together we write

−�σ
β Pβ − gμσ d̈μ + ∂μσμσ = 0. (36)

Inverting for d̈μ we find the modified equation of motion

d̈μ = ∂μσμσ − �σ
β �βκ�γ

κ dγ . (37)

In a homogeneous and isotropic medium we find

�σ
β �βκ�γ

κ = κ2gαγ . (38)

We note that Eq. (37) breaks translational symmetry together
with the introduction of a length scale, since κ has the di-
mension of an inverse scale. This is further discussed at great
length (and excuse the pun) in Sec. V below.

C. Solutions of anomalous dynamic dipole screening

As done before, we write ∇ · σ in terms of the dis-
placement to get the explicit equation in the case of dipole
screening. As before, we add the dissipative term to the re-
sulting equation and end up with

ρd̈ + γ (r)ḋ = μ∇2d + (μ + λ)∇(∇ · d ) + κ2d. (39)

We note that the addition of the screening term κ2d does
not change the linearity of the equation, and therefore we
can use the solution presented in Sec. II A 2 with very little
modification. Referring again to a solution in the form of
Eq. (15), to solve for fω(χ ) and gω(χ ) we only need to change
the variable ζ to a variable ζ̃ where

ζ̃ (χ ) ≡ χ
√

κ̃2 + ω2 + iγ̃ (χ ) ω, (40)

where κ̃ = κ tc/
√

ρ, γ̃ = γ (χ ) tc/ρ. Equations (21) and (22)
are unchanged except that everywhere ζ is replaced by ζ̃ .

To provide a feeling to the nature of the solutions of
Eq. (39) we show in Figs. 2 and 3 the functions fω(χ ) and
gω(χ ) for various frequencies and different values of the
screening parameter κ̃ . In all cases the dissipation function
γ̃ (χ ) = γ0[χ/χin(t = 0)]ε with γ0 = 1.0 and ε = 0.5. The
choice of this value of ε has been made purely by comparison
to simulations. But one can rationalize it by noting that the
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FIG. 2. (a), (b) Functions gω(χ ) and fω(χ ) as predicted with
the screening theory, for fixed driving frequency ω = 1.5, and fixed
dissipation, γ0 = 1.0 and ε = 0.5, for three values of the screening
parameter κ̃ = 3, 5, and 7 (dot-dashed green, dashed red, and solid
blue line, respectively). The boundary value δ = 0.3.

geometric spreading of 2D waves originating from a point
source is expected to decay like r−0.5 [16]. On the other hand,
since the number of collisions between disks is increasing like
r, in balance one can expect that a dissipation that increases
like r0.5 should suffice to keep the energy budget finite.

IV. NUMERICAL SIMULATIONS

A. Setup

The numerical setup consists of a 2D concentric circu-
lar enclosure with an inner circle of radius r0, filled with

0 0.2 0.4 0.6 0.8 1
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0.2

g(
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0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

f(
)

(a)

(b)

FIG. 3. (a), (b) Functions gω(χ ) and fω(χ ) with the same dissi-
pation parameters as in Fig. 2 and the screening parameter κ = 7,
for three values of the frequency, ω = 1.5 (solid dark blue line, the
same as in Fig. 2), 5 (dashed light blue line), and 7.5 (dot-dashed
cyan line).

a bidisperse mixture of frictionless disks. The disks inter-
act through normal Hertzian forces only (see Appendix A).
The interaction with the outer wall is also Hertzian, with the
interaction coefficient equal to the interaction coefficient Kn

between disks. Additional viscous dumping force F i = −γ̄ vi

is applied to all disks to remove excess of energy from the
system. Here γ̄ is the microscopic damping coefficient [to be
distinguished from the macroscopic γ (r) of Eq. (14)], and vi

is the velocity of the ith disk. The simulations are carried out
using LAMMPS [17] for the dynamics of the granular system.
The driving is realized by periodic inflation of the radius of
the inner enclosure wall, which is placed at the center of the
system.

The granular system was prepared at a desired packing
fraction and pressure, starting with the creation of a ran-
domly distributed set of N = 10 000 particles, half of which
have a radius ra = 0.5 and and the other half with rb =
0.7, with r0 = 4. Next the system is equilibrated by energy
minimization. Then the radius of the enclosing circle rout is
decreased by small decrements from the initial radius to a
value corresponding to the largest desired packing fraction
φ according to rout =

√
(r2

a + r2
b )N/2φ + r2

0 . At each step,
the system is again equilibrated. A set of configurations for
various pressures p, or equivalently packing fractions φ, was
obtained.

Having a system at mechanical equilibrium we can start
oscillating the radius of the inner circle. The procedure fol-
lowed was explained in Sec. II A 1. As stated there, to see
reproducible results it is important to guarantee that the oscil-
lations take place around a true stationary state, in the sense
that one is guaranteed that stopping the oscillations at any
point and performing energy minimization would result in the
same mechanical equilibrium independent of when and where
the oscillatory driving is stopped.

Another lesson from the numerical experiments is that for
the present system of Hertzian disks one is limited in the
frequencies of driving that can be simulated. Increasing the
frequency too much results in the creation of a hole around the
oscillating boundary; the system does not have enough time
to return to contact with the boundary when this boundary
recedes too rapidly. We therefore limited the simulations, and
the comparison with the theory, to relatively low frequencies,
as we will see next. It is likely that in systems in which
there are attractive forces between the constituents the cre-
ation of the hole can be eliminated, and higher frequencies
could be studied. On the other hand, it is possible that for any
system higher frequencies would trigger nonlinear interac-
tions, requiring additional scrutiny of the equations of motion.
At this point we leave these interesting questions to future
study.

B. Results for the dominant radial mode

To compare the theory with the numerical experiments, we
note that the measured functions gω(χ ), fω(χ ) are calculated
by angle averaging over a band of finite width, and therefore
we amend the boundary conditions at the inner boundary as

fω(χin ) = −δ1, gω(χin ) = δ2, (41)

044902-5



H. GEORGE E. HENTSCHEL et al. PHYSICAL REVIEW E 109, 044902 (2024)

0 0.2 0.4 0.6 0.8 1
-0.3

-0.2

-0.1

0

0.1

f(
)

0 0.2 0.4 0.6 0.8 1
-0.1

-0.05

0

0.05

0.1

g(
)

(b)

(a)

FIG. 4. (a) Comparison of the measured functions gω(χ ) and
fω(χ ) to the predictions of the screening theory, taking account of
dissipation. The frequencies are ω = 1.90 (green circles), ω = 4.44
(red squares), and ω = 6.34 (blue diamonds). The respective fitting
parameters are γ0 = 0.75, κ̃ = 1.8 (green line), γ0 = 0.9, κ = 4.5
(orange line), and γ0 = 1, κ = 6.5 (light blue line). The value of the
displacement at the boundary δ1 differs from the amplitude of the
oscillations δ due to finite size of the angular-averaging band. For
the shown examples the values of δ1 and δ2 [cf. Eq. (41)] correspond
to the values of fωand gω, respectively, at the first available point of
χ . Here and everywhere the value of the initial inflation � = 0.3.

giving

G = (δ2 − iδ1)Y1[ζ̃ (χout )]/D,

H = (−δ2 + iδ1)J1[ζ̃ (χout )]/D,

D = J1[ζ̃ (χin )]Y1[ζ̃ (χout )] − J1[ζ̃ (χout )]Y1[ζ̃ (χin )], (42)

and ζ̃ (χ ) is defined by Eq.(40).
In Fig. 4 we present comparisons between the measured

functions gω(χ ) and fω(χ ) and the prediction of the theory
with dissipation and screening for a number of driving fre-
quencies. The parameters κ̃ and γ0 that were used to fit the
analytical solution defined by Eqs. (15), (20), (40), and (42)
are typical for our system. The quality of the fits is typical, as
long as the frequency of oscillations is not too high, and we
find very consistent agreement between the analytical theory
and the simulations. As can be seen in Appendix B, the trans-
verse components of the displacement field (as well as the
nonlinear contributions) are much smaller than the radial ones,
and thus we do not refer to these components in this paper.
For additional discussion on the relative importance of various
parameters in the solutions (40)–(42), see Appendix C.

The dependence of the inverse scale κ̃ and the dissipative
parameter γ0 on the frequency of oscillations appears linear.
In Fig. 5 we plot an ensemble-averaged values (over ten in-
dependent configurations) of κ̃ and γ0. The observed linearity
is a reflection of the linear regime of the system’s dynamics.

1 2 3 4 5 6
0

5

1 2 3 4 5 6
0

0.5

1

1.5

0

(a)

(b)

FIG. 5. Frequency dependence of (a) the anomalous screening
parameter κ̃ and (b) the prefactor of the damping term γ0. The values
of κ̃ and γ0 were averaged over ten different configurations. The error
bars correspond to the standard deviation from the mean values. The
lines serve to guide the eye only.

It is likely that for higher frequencies, with nonlinear effects
becoming relevant, also this observed linearity will be lost.

Our results indicate that as the frequency decreases, κ̃ goes
to zero. This means that the low-frequency limit does not
coincide with a single inflation of the inner circle [4]. The
training of our system by repeated oscillation until a stable
steady state is obtained removes the anomalous responses to a
single inflation step. The system becomes quasielastic and not
static-anomalous.

V. CONCLUSIONS AND THE ROAD AHEAD

It is important to stress that consistent and reproducible
results for the measured displacement field under oscillatory
forcing depend crucially on insisting upon the existence of a
true stationary state around which the oscillations take place.
As explained, the requirement is that stopping the dynamics
at any point and applying energy minimization algorithms
result in the same equilibrated configuration up to some se-
vere tolerance requirements. This requires repeated training
of the system until such a stable steady-state configuration is
attained. In terms of the energy picture such a stable steady
state corresponds to a sufficiently deep local minimum around
which the oscillations take place.

A second requirement for the successful correspondence
between the analytic theory and the simulations is a syn-
chronization between the oscillatory driving and the system’s
dynamics. In the present case, when the driving frequency
exceeds 2π in dimensionless units, the system reaction cannot
follow the driving, entering a dynamical regime that cannot
be treated with the present linear theory. Needless to say, this
regime is of interest, but is beyond the scope of the present
paper.

Finally, the results of this study indicate very strongly that
linear classical elasticity fails to provide a valid description
of the response of amorphous solids to oscillatory driving,
in much the same way as it fails to describe the response to
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FIG. 6. Azimuthal contribution to the displacement field
(a) gφ

ω(χ ) and (b) f φ
ω (χ ) at the driving frequency (blue circles), which

are much smaller than the dominant radial ones gχ
ω(χ ) and f χ

ω (χ )
(green squares). The radial functions are the same as in Fig. 4 with
ω = 6.34.

static driving as has been shown in recent work. It is therefore
worthwhile to study in the near future the effect of screening
on oscillatory driving by simple or pure shear, since these
modes of forcing have attracted significant recent interest due
to the presence of shear banding and fracture. Such a future
direction will automatically necessitate a nonlinear extension
of the screening theory, an effort that is under present active
research.
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APPENDIX A: HERTZIAN INTERACTION

The disks interact via normal Hertzian forces

F =
√

δ̃

√
rarb

ra + rb
[Knδni j − meffγnvn]. (A1)

Here δ̃ is the overlap distance of two discs, Kn is the elastic
constant of the normal contact, γn is the viscoelactic constant
for normal contact, and meff = mamb/(ma + mb) is the effec-
tive mass. In our simulations all mj = 1, Kn = 2 × 104, γn =
500. Additional viscous dumping force Fv

i = −ν̃vi is applied
to all discs to remove excess of energy from the system. Here
ν̃ = 0.9 is the damping coefficient and vi is the velocity of the
disk. The simulations are carried out using LAMMPS [17] for
the dynamics of the granular system using LJ units.

APPENDIX B: THE DOMINANCE OF THE DRIVING
MODE OVER NONLINEAR AND AZIMUTHAL

CONTRIBUTIONS

Here we present evidence that the driving mode gχ
ω, f χ

ω is
dominant in the considered range of parameters. The original
displacement field d(r) has both radial dr (r) and azimuthal
components defined as dφ (r) ≡ d(r) − dr (r)r̂. In principle we
can solve our equations for both components, but it turns out
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FIG. 9. Dependence of the solution of Eq. (39) on the spatial
form of the dissipation function. Here γ0 = 1, κ̃ = 0. Blue diamonds
denote the results of the numerical simulations (same as in Fig. 4).

that the azimuthal component is small compared to the radial
one, and we did not consider it for the present conditions.
In Fig. 6 we compare the radial contributions at the largest
driving frequency in our range with the azimuthal contribu-
tion at the same frequency, gφ

ω(χ ) and f φ
ω (χ ). This justifies

the present neglect of this component. In addition, we con-
firm that the radial components of the lowest order nonlinear
contribution with double frequency, gχ

2ω(χ ) and f χ

2ω(χ ), are
also negligible at our range of frequencies, as is shown in
Fig. 7.

APPENDIX C: THE RELEVANCE
OF THE FITTING PARAMETERS

The analytical solution of the Eq. (39) with the argument
Eq. (40) has three parameters: κ̃, γ0, and ε. They have well-
defined physical meaning, but there is some freedom in the
choice of the particular values. Since both functions g(χ ) and
f (χ ) are fit with the same set of parameters, the quality of
the fit is judged by the minimizing the sum of the squares
of residues for two functions. To give some idea of how
the parameters influence the solutions, we plot the solutions
for ω = 6.34 and some of the parameters set to zero. In all
figures below, the blue diamonds stand for the results of the
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FIG. 10. Dependence of the solution of Eq. (39) on the screening
parameter κ̃ with no dissipation γ0 = 0. Blue diamonds denote the
results of the numerical simulations (same as in Fig. 4).

numerical simulations (cf. Fig. 4), and the red line corre-
sponds to the solution with no screening and, in Figs. 8 and
10, no dissipation. Clearly, the solution that does not take into
account the anomalous screening misses completely the main
features of the measured functions. As is shown in Fig. 8,
with increasing strength of the (constant) dissipation, the so-
lution converges to a wrong shape for both functions. Adding
in Fig. 9 the spatial dependence to the dissipation function
with γ0 = 1, we note that the solution quickly decays with
χ for increasing power index ε, converging to a featureless
function.

Next, we omit the dissipation but retain the anomalous
screening. The representative solutions for various κ̃ are
shown in Fig. 10. The solution strongly depends on the value
of κ̃; however, it is not possible to obtain adequate fit for
both g(χ ) and f (χ ) without invoking the dissipation. For each
value of κ̃ , there is a narrow valley of similar values of the
sums of residues in the plane of γ0 − ε around ε = 0.5. Since
we have physical arguments in favor of ε = 0.5, we fix it and
then minimize the residues in the plane κ̃ − γ0. In this plane,
the dependencies of the solution on the parameters for g(χ )
and f (χ ) are opposite, so there are typically a small number
of parameters combinations that give similar fit quality. They
are covered by the error bars in Fig. 5.
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