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Plastic instability of annular crystalline membrane in circular confinement
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Understanding the mechanical instabilities of two-dimensional membranes has strong connection to the sub-
jects of structure instabilities, morphology control, and materials failures. In this work, we investigate the plastic
mechanism developed in the annular crystalline membrane system for adapting to the shrinking space, which is
caused by the controllable gradual expansion of the inner boundary. In the process of plastic deformation, we
find the continuous generation of dislocations at the inner boundary and their collective migration to the outer
boundary; this neat dynamic scenario of dislocation current captures the complicated reorganization process of
the particles. We also reveal the characteristic vortex structure arising from the interplay of topological defects
and the displacement field. These results may find applications in the precise control of structural instabilities in
packings of particulate matter and covalently bonded systems.
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I. INTRODUCTION

Mechanical instability of two-dimensional membranes in
confined geometry is a common phenomenon in nature and in-
dustry [1–3]. The adaptation of the membrane to the confined
space leads to a wealth of morphologies across length scales
ranging from mesoscopic (e.g., fluid membranes and polymer-
ized membranes) to macroscopic (e.g., paper, metal foils, tree
leaves, and flower petals) that are closely related to biological
applications and materials design [3–7]. Depending on the
constituents composing the membrane and their interaction,
the mechanical instability could be classified into elastic and
plastic categories. Much has been learned about the nature
of elastic instability by mechanical and statistical analysis of
the emergent structures arising in elastic membranes [8–15].
An important illustrative example is the crumpling of a thin
sheet within a confining container of specific shape or by
hand [12,16,17]. A series of characteristic structures are de-
veloped in the self-adaptation process of the sheet, including
developable cones (or d cones) [18–21], ridges [9,22,23], and
folds [23–25]. Crumpled structures may serve as a basis for
creating robust mechanical metamaterials for their desirable
mechanical properties [17,26].

Plastic instability represents a distinct mechanism for re-
structuring the membrane [15,27–31]. In contrast to elastic
instability, the plasticity phenomenon occurring in the regime
of large deformation has not been explored thoroughly. Un-
derstanding the plastic instability, which cannot be avoided in
real systems [23,32,33], has strong connection to the subjects
of structure instabilities and materials failures [33,34]. The
confluence of experimental and theoretical investigations on
the model of the curved 2D crystal fabricated by packings of
particles shows the profound role of topological defects in the
disruption of crystalline order and suggests that topological
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defects offer a unique perspective for understanding plasticity
[35–38].

The goal of this work is to explore the plastic instability in
the annular crystalline membrane system. The model consists
of Lennard-Jones (L-J) particles in triangular lattice confined
in an annulus. The schematic plot of the annular membrane
model is shown in Fig. 1. The featured energy minimum
structure in the L-J potential curve enables the breaking of the
bonds and thus allows one to capture the plastic deformation
process by analyzing the underlying topological defect struc-
ture [39]. The deformation of the annular membrane is driven
by the controllable gradual expansion of the inner boundary;
the outer boundary is anchored. Note that the elastic defor-
mations of the annular membrane by shrinking or twisting
the inner boundary have been investigated [40–43]. Upon the
expansion, the annular geometry of the membrane naturally
leads to focused stress near the inner boundary, which could
trigger mechanical instabilities of different kinds depending
on the interaction of the particles composing the membrane.
In connection to applications, the subject of the plasticity in-
stability of the annular membrane system is related to a series
of biomechanical and mechanical engineering problems, such
as the healing of skin wounds [44] and the mechanical effect
of circular holes introduced in clinical procedures [45].

The main results of this work are presented below. Based
on the L-J lattice model, we first resort to the combination
of analytical elasticity theory and numerical simulations to
explore the elastic regime of small deformation and to con-
firm the reliability of the computational approach, which is
used to explore the regime of plastic deformation. In the
large deformation regime of interest, the reorganization of
the particles is analyzed from the perspective of topological
defect. Upon the gradual expansion of the inner boundary, we
observe the collective migration of the continuously gener-
ated dislocations at the inner boundary to the outer boundary.
The reorganization process of the particles is captured by the
dynamic scenario of the dislocation current. We also identify
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FIG. 1. Schematic plot of the 2D annular crystalline membrane.
The model consists of Lennard-Jones particles in triangular lattice
confined in the annulus. The 2D deformation of the annular mem-
brane is driven by the gradual expansion of the inner boundary,
whose radius is denoted as ρ1 and ρ ′

1 in the initial stress-free state
and the deformed state, respectively. To avoid the introduction of
topological defects at the outer boundary, the anchored particles
within the outer annulus (in orange) are in triangular lattice that is
commensurate with the lattice of the annular membrane.

the irregular spots in the displacement field that allow one
to pinpoint the locations of the ensuing topological defects,
and we reveal the characteristic vortex structure arising from
the interplay of topological defects and the displacement field.
These results may have potential practical consequences in the
precise engineering of structural instabilities in packings of
particulate matter and covalently bonded systems.

II. MODEL AND METHOD

We resort to the L-J lattice models to explore the two-
dimensional (2D) plastic deformation of annular crystalline
membranes. The schematic plot of the model system is shown
in Fig. 1. The L-J lattice model consists of particles in trian-
gular lattice under the L-J potential:

V (r) = 4ε0

[(σ0

r

)12
−

(σ0

r

)6
]
, (1)

where r is the distance between two particles, and the param-
eters σ0 and ε0 are related to the length scale and the energy
scale of the L-J potential. The potential energy has the lowest
value −ε0 at the balance distance of �0 = 21/6σ0. In this work,
�0 is set to be the unit of length. The L-J potential is featured
with the energy minimum structure in the potential curve,
which enables the breaking of the bonds and thus allows one
to capture the physical process of the plastic deformation [39].
In simulations, a cutoff length of rc = 3�0 is introduced in the
L-J potential.

The crystalline membrane consisting of L-J particles is
confined in an annulus of inner radius ρ1 and outer radius
ρ2. In the initial configuration, the lattice spacing is set to be
the balance length �0 of the L-J potential. The deformation
of the annular membrane is driven by gradually expanding the
inner boundary. The outer boundary consists of a few layers of

regularly packed particles, as highlighted in Fig. 1. The lattice
of these boundary particles is compatible with that of the
membrane to avoid the introduction of topological defects that
may lead to uncontrollable displacement of the particles near
the outer boundary in the expansion process. In simulations, to
expand the inner boundary, we introduce a circle as a geomet-
ric constraint and gradually increase the radius of this circle to
push the particles outward. The displacement of the particles
is confined on the plane. The amount of the expansion rate h is
set to be as small as 0.2�0 to fulfill the quasistatic condition.
The radius of the inner boundary is increased by h in each
expansion. The new radius of the inner boundary is denoted as
ρ ′

1. After each expansion, the system is mechanically relaxed.
By the standard steepest descend method, the local lowest-
energy particle configuration is identified at the resolution of
the step size s = 10−4�0 [46,47].

III. RESULTS AND DISCUSSION

This section consists of two subsections. In Sec. III A,
we first analyze the small deformation of the annular mem-
brane by the combination of analytical elasticity theory and
numerical simulations. The agreement of the numerical and
theoretical results shows the reliability of the computational
approach, which is used to explore the regime of plastic defor-
mation. In Sec. III B, we explore the phenomenon of plastic
instability in the regime of large deformation. The reorga-
nization of the particles upon the gradual expansion of the
inner boundary is analyzed from the perspective of topological
defect. We reveal the characteristic dynamic structures of the
dislocation current and the concurrent vortices in the plastic
deformation process.

A. Elasticity analysis in the regime of small deformation

We first resort to analytical continuum elasticity theory
to analyze the 2D elastic deformation of the annular mem-
brane system under the radial expansion of the inner circular
boundary [40,48]. For an isotropic membrane in mechanical
equilibrium, the displacement field �u is governed by the fol-
lowing balance equation in the absence of body force:

∇∇ · �u − 1
2 (1 − σ )∇ × (∇ × �u) = 0, (2)

where σ is the Poisson’s ratio. To discuss the case of radial
expansion of the inner boundary, we work in polar coordinates
(ρ, ϕ). The inner circular boundary is expanded by an amount
of h. The boundary conditions are uρ (ρ = ρ1) = h, uϕ (ρ =
ρ1) = 0, uρ (ρ = ρ2) = 0, and uϕ (ρ = ρ2) = 0.

Consider the axisymmetric solution

�u(ρ) = uρ (ρ)êρ, (3)

where êρ is a unit vector along the radial direction. By insert-
ing Eq. (3) into Eq. (2), the balance equation becomes

∂ρ

[
1

ρ
∂ρ (ρuρ )

]
= 0. (4)

Note that the effect of the Poisson ratio vanishes, because ∇ ×
�u = 0 for the axisymmetric solution in Eq. (3). By substituting
the boundary conditions into Eq. (3), we obtain the following
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solution:

uρ = hρ1

ρ2
2 − ρ2

1

ρ2
2 − ρ2

ρ
, (5)

where ρ ∈ [ρ1, ρ2]. One may check that uρ (ρ1) = h and
uρ (ρ2) = 0 in Eq. (5). From Eq. (5), we derive for the strain
along the radial and azimuthal directions:

uρρ = − hρ1

ρ2
2 − ρ2

1

(
1 + ρ2

2

ρ2

)
,

uϕϕ = hρ1

ρ2
2 − ρ2

1

(
ρ2

2

ρ2
− 1

)
. (6)

Now, we analyze the strain field in the annular membrane
upon the expansion of the inner boundary based on Eq. (6).
Overall, the magnitudes of both uρρ and uϕϕ decrease in
the form of ∼ρ−2 when approaching the outer boundary.
The radial expansion of the circular boundary originally at
ρ = ρ1 leads to radial compression (negative uρρ) and az-
imuthal stretching (positive uϕϕ). The signs of uρρ and uϕϕ

are always opposite over the entire annular membrane (ρ ∈
[ρ1, ρ2]). This observation has implications in the stability
of the membrane. In elastic membrane theory, it has been
proved that an equilibrium configuration cannot be stable or
neutrally stable unless the principal stresses are everywhere
non-negative [49]. By this criterion, pulling the inner bound-
ary inward may lead to wrinkles in the region of ρ/ρ2 < ρ∗;
ρ∗ = √

(1 − σ )/(1 + σ ) (ρ1 > ρ∗) [40,41].
We proceed to perform numerical simulations to study the

elastic deformation of the L-J lattice model, and we compare
the numerical and analytical results. The goal is to check
the reliability of the computational approach, which will be
used to explore the regime of plastic deformation and also to
analyze the region of validity of the linear elasticity theory for
the L-J lattice model.

In order to compare with the theoretical results, we first
count the total number of particles N (ρ ′) within the circle
of radius ρ ′ in the deformed annular lattice in mechanical
equilibrium; the prime symbol in ρ ′ is to indicate that the
variable ρ ′ is defined over the deformed membrane. ρ ′ ranges
from ρ1 + h to ρ2. In the following, we derive N (ρ ′) from
Eq. (6). First of all, the area element dA in the undeformed
lattice becomes dA′ in the deformation. The relation of dA′
and dA is

dA′

dA
= (1 + uρρ )(1 + uϕϕ ). (7)

Note that in the regime of linear elasticity, Eq. (7) is written
as the trace of the strain tensor:

dA′

dA
≈ 1 + uρρ + uϕϕ. (8)

According to Eq. (7), the particle density defined on the
undeformed lattice is changed from λ(ρ) to λ′(ρ), where
ρ ∈ [ρ1, ρ2]. λ′ and λ are related by

λ′

λ
= dA

dA′ = [(1 + uρρ )(1 + uϕϕ )]−1. (9)

Equation (9) clearly shows that stretching the lattice (positive
uρρ and uϕϕ) leads to the reduction of the particle density.

FIG. 2. Cumulative particle distributions over the deformed an-
nular membrane at varying initial radius of the inner boundary. N (ρ ′)
is the total number of particles within the circle of radius ρ ′ in the
deformed lattice; ρ ′ ∈ [ρ1 + h, ρ2]. The expansion rate h = 0.8. The
simulation data (dots) could be well fitted by the theoretical results
(red curves). The radius of the outer boundary ρ2 = 29.4.

The number of particles within the circle of radius ρ in the
unformed lattice is as follows:

N (ρ) =
∫ ρ

ρ1

λ(ρ)dρ. (10)

Now, we count the total number of particles N (ρ ′) within
the circle of radius ρ ′ from the deformed annular lattice in
mechanical equilibrium. To this end, we consider the move-
ment of a particle from ρ to ρ ′ in the deformation; ρ and ρ ′
are connected by

ρ ′ = ρ + uρ. (11)

The displacement vector uρ is defined on the undeformed
lattice. The expression for uρ is given in Eq. (5). The plots
of N (ρ ′) at varying initial radius of the inner circular bound-
ary (ρ1) are presented in Fig. 2. The simulation data (dots
of different shapes) could be well fitted by the theoretical
results (solid red curves). Simulations show that the results
of simulation and linear elasticity theory agree well up to
h/(ρ2 − ρ1) ≈ 10% for the case of ρ1 = 15.3 and ρ2 = 29.4.

B. Plastic instability in the regime of large deformation

We resort to the computational approach to explore the
regime of large deformation, where the L-J lattice model ex-
hibits plastic deformations. The reorganization of the particles
in the strong expansion of the inner boundary is analyzed from
the perspective of topological defects.

Figure 3 shows the plastic deformations of the annular
lattice with the expansion of the inner circular boundary.
The plastic deformation is characterized by the emergence of
disclinations, which are indicated by colored dots in Fig. 3.
Disclinations are identified by the standard Delaunay tri-
angulation [36]. The five- and seven-fold disclinations are
represented by the red and blue dots. A pair of five- and
seven-fold disclinations constitute a dislocation. To track the
deformation process, we also plot the displacement field asso-
ciated with the expansion of the inner boundary from ρ ′

1 = ρi

to ρ ′
1 = ρ f ; the values of ρi and ρ f are given in the square

brackets below each figure.
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FIG. 3. The pattern of dislocation current is revealed in the 2D plastic deformation of the annular crystalline membrane upon continuous
expansion of the inner boundary. The displacement vectors of the particles as the radius of the inner boundary is increased from ρi to ρ f are
represented by the arrows; the values of ρi and ρ f are given in the square brackets below each figure. (a) The red and blue arrows indicate
the shearing deformation, leading to the emergence of the dislocation and the vortices (as indicated by the blue disks). The dislocation is
composed of a pair of five- and seven-fold disclinations as represented by the red and blue dots. The boxed region in panel (a) is enlarged in
panel (b) for showing the reorganization of the crystal lattice by the dislocation. With the expansion of the inner boundary, we observe the
collective migration of the dislocations from the inner to the outer boundary, as shown in panels (e) and (f). In panel (f), the previous locations
of the dislocations are indicated by red circles for visual convenience. The system is stress-free in the initial state, where the value of the radius
of the inner boundary ρ1 = 5 and ρ2 = 24.4. The annular L-J lattice consists of 1574 particles.

As a signal for the occurrence of the plastic deformation,
the first dislocation appears when the radius of the inner
boundary is increased from ρ ′

1 = 5 to ρ ′
1 = 5.6, as shown

in Fig. 3(a). The zoomed-in particle configuration near the
dislocation is presented Fig. 3(b). The particle arrays indicated
by the blue and red lines show the effect of the dislocation on
the reorganization of the particles upon the expansion. Specif-
ically, in the presence of the dislocation, an extra particle array
along the red line is introduced in the interior side of the
annular lattice. The appearance of this inserted particle array
terminated at the inner boundary reflects the adaptation of the
particle configuration to the increased perimeter of the inner
boundary upon expansion. The perspective of topological de-
fect allows one to capture this neat self-adaption process.

The question of why the dislocation appears upon the ex-
pansion of the inner boundary is discussed in the preceding
discussion. We further inquire how the dislocation arises. To
address this question, we carefully analyze the displacement
field associated with the incremental expansion of the inner
circular boundary, as shown in Fig. 3(a). Near the dislocation,
we find antiparallel arrays of the displacement vectors (indi-
cated by the pair of red and blue arrows) that are perpendicular
to the line connecting the five- and seven-fold disclinations
composing the dislocation. Such a pattern of the displacement
field is an indicator of the shearing deformation. As such,

the appearance of the dislocation is caused by the shearing
deformation of particle arrays. Note that the crystal instability
phenomenon is conventionally analyzed in terms of fluctua-
tions of varying wavelength in the approach of statistical field
theory [50,51]. Here, the computational approach enables the
analysis of the microscopic shearing process, which reveals
the detailed information on the crystal disruption process.

We further observe that the shearing deformation leads to
the emergence of a pair of clockwise and counterclockwise
vortices as highlighted by the blue disks in Fig. 3(a). In other
words, the reorganization of the particles upon the expansion
involves the collective movement of the particles, where the
coherent vortex structure emerges in the displacement field.
While the shear-driven emergence of vortices is common in
fluids, the observed vortex structure in our solid mechanical
system and its crucial role in reorganizing the particles upon
stress are remarkable. Figure 3(b) shows that in the regions of
the vortices indicated by the blue disks, the crystalline order
is well preserved. Here, we point out that, due to the matched
lattices of the particle array in the outer boundary and in the
crystalline membrane, the entire annular region near the outer
boundary is free of defects in the expansion process until ρ ′

1
is increased from the initial value of 5 to about 6.6.

Further expanding the inner boundary leads to the emer-
gence of the second dislocation, as shown in Fig. 3(c).

044802-4



PLASTIC INSTABILITY OF ANNULAR CRYSTALLINE … PHYSICAL REVIEW E 109, 044802 (2024)

Simultaneously, an extra vortex (the left one among the three
indicated by blue disks) is observed. We further notice the ir-
regular distribution of the displacement vectors in the regions
indicated by green disks, where the crystalline order is still
well preserved. Upon further slight expansion as shown in
Fig. 3(d), either dislocations or compound defects appear in
these irregular spots in the displacement field. Therefore, the
irregular spots in the displacement field serve as precursors
for the ensuing appearance of topological defects in the lat-
tice. Specifically, identifying these irregular spots allows us
to pinpoint the location of the occurring topological defects.
Here, it is shown that scrutiny of the displacement field yields
useful insights into the plastic deformation.

Here, it is of interest to discuss the dynamics of the vortices
in the displacement field with the expansion of the inner
boundary. We observe the generation of vortices accompany-
ing the shearing deformation, as shown in Figs. 3(a) and 3(b).
Comparison of Figs. 3(c) and 3(d) also shows the annihilation
of a vortex. Furthermore, from Figs. 3(a) to 3(d), we see that
a gentle expansion by a fraction of one lattice spacing leads
to a large displacement of the vortex center at the order of ten
lattice spacings, indicating the fast dynamics of the vortices.

Under stronger expansion, we observe a proliferation of
dislocations as shown in the lower panels in Fig. 3. In the
presence of these dislocations, the entire displacement field is
further distorted; more vortices and irregular spots arise. The
microscopic scenario of the plastic deformation of the annular
lattice exhibits complicated interplay of topological defects
and displacement field.

Is there any pattern underlying the plastic deformation
process? To address this question, we track the movement
of the dislocations by comparing the particle configurations
in the gradual expansion of the inner boundary. Simulations
show that the circled dislocations in Fig. 3(e) move to the
locations in the blue circles in Fig. 3(f), where the previous
locations of the dislocations are indicated by red circles for
visual convenience. We also observe the rotation of the dislo-
cation, as shown in the lowest circled dislocation in Fig. 3(e).
The expansion-driven radial migration of dislocations towards
the outer boundary continues under stronger expansion. As
such, the migrating dislocations form a radial current across
the annular membrane. The inner boundary that is filled with
defects serves as the source, and the outer boundary plays
the role of the sink in the current of the dislocations. Upon
their arrival at the outer boundary, the dislocations are an-
chored therein, leading to the accumulation of dislocations at
the outer boundary in the expansion of the inner boundary.
The plastic deformation process in Fig. 3 is recorded in a
movie presented in the Supplemental Material [52]. Note that
the dynamic scenario of the current of dislocations is invariant
under the finer expansion rates of h = 0.1�0 and h = 0.2�0 for
the case in Fig. 3.

The accumulation of topological defects at the outer
boundary is quantitatively analyzed. In Fig. 4(a), we show the
variation of the number of α-fold disclinations (Nα) near the
outer boundary in the expansion of the inner boundary.
The radius of the inner boundary ρ1 = 5 in the initial stress-
free state. The defects within the region of 1.5 lattice spacings
away from the outer boundary are counted. The four-, five-,
seven-, and eight-fold disclinations are indicated by orange,

FIG. 4. Statistics of the emergent disclinations in the plastic de-
formation of the annular membrane driven by the expansion of the
inner boundary. (a) Plot of the number of α-fold disclinations Nα

accumulated near the outer boundary vs the inner radius ρ ′
1 of the de-

formed membrane. The defects within the thin annular region of 1.5
lattice spacings away from the outer boundary are counted. (b) Plot
of the relative number of α-fold disclinations within the annular
membrane vs the inner radius ρ ′

1 of the deformed membrane. The
thin rims (1.5 lattice spacings) near both inner and outer boundaries
are excluded. The four-, five-, seven-, and eight-fold disclinations
are indicated by orange, red, blue, and yellow dots, respectively. In
the initial stress-free state, the radius of the inner boundary ρ1 = 5,
ρ2 = 24.4, and N = 1574.

red, blue, and yellow dots, respectively. Figure 4(a) shows that
the five- and seven-fold disclinations dominate over the other
types of disclinations. We see that the value of Nα becomes
nonzero when ρ1 exceeds about 6.6 for the case of ρ1 = 5. In
other words, the first dislocation arrives at the outer boundary
when the amount of the expansion of the inner boundary ex-
ceeds some critical value δρc; δρc = 1.6 for the case of ρ1 = 5
and ρ2 = 24.4. Simulations show that the value of δρc is
insensitive to the initial radii of the inner and outer boundaries.
Specifically, the value of δρc is in the range of 1.4 ± 0.2 for
ρ1 = {5, 10, 15} and ρ2 = {20.4, 24.4, 28.4, 32.4}.

Here, we point out that the geometric incompatibility of
the triangular lattice in the crystalline membrane and the cir-
cular inner boundary leads to the formation of disclinations
within the annular region near the inner boundary. While the
dislocations migrating to the outer boundary may be regarded
as being pulled out of the crowd of these disclinations, the
absence of isolated dislocations therein makes it difficult to
describe their nucleation analytically. Especially, it is a chal-
lenge to analytically determine the critical value of ρ ′

1, above
which the first batch of dislocations starts to move out of
the crowded disclinations at the inner boundary. However, the
common value of δρc in systems of varying geometry in the
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preceding discussion gives an upper bound estimate for the
critical value of ρ ′

1.
In Fig. 4(b), we also show the expansion-driven variation

of the relative number of α-fold disclinations Nα within the
annulus of the L-J lattice. Note that in the counting of the
disclinations, the thin rims (1.5 lattice spacings) near both
inner and outer boundaries are excluded. Similar to the case in
Fig. 4(a), the five- and seven-fold disclinations (indicated by
red and blue dots) dominate over the other types of disclina-
tions. Figure 4(b) shows that the proportion of defects is only
about 4% even when the value of ρ1 is enlarged by over three
times. The small amount of topological defects in the interior
of the annular membrane suggests that the current of dislo-
cations provides the mechanism for protecting the crystalline
order. This result may have implication to the restoration of
the crystalline order by creating a flow of disclinations in 2D
packings of particles.

In the preceding discussions, we reveal the scenario of the
current of dislocations underlying the expansion-driven plas-
tic deformation of the annular lattice. It is of interest to inquire
about the generality of this physical scenario. We perform
further simulations for the elliptic system, where the lattice
is confined between an inner circular boundary and an outer
elliptic boundary. The current of dislocations is also observed
in the elliptic system. The disruption of the crystalline order in
the elliptic system upon the expansion of the inner boundary
is recorded in a movie presented in the Supplemental Material
[52].

Migration of dislocations has also been reported in the
transport of interacting vortices in the superconducting film of
the Corbino disk geometry [53,54]. The motion of the vortices
is driven by an electric current that is injected at the center of
the disk and flows radially towards the boundary. With the
increase of the current, the vortex array that is initially in
triangular lattice experiences a tearing transition from rigid
rotation to plastic flow as characterized by the nucleation of
dislocations at the center of the disk. Under a stronger current,
the dislocations are organized into radial grain boundaries,
coherently gliding in the tangential direction and forming a
laminar flow over the disk [54].

Here, we compare these two kinds of systems: the vortex
array in Corbino disk geometry and the crystalline mem-
brane in annular geometry [53,54]. The vortex array and the
electric current in the former system are analogous to the
L-J lattice and the mechanical expansion in the latter sys-
tem, respectively. Both studies focus on the plastic behavior
of regularly packed elementary constituents in response to
an external driving force of increasing strength. Despite the
distinct physical settings, both systems share a common topo-
logical scenario in terms of the migration of dislocations in
the plasticity phenomena. The topological perspective based

on the dynamics of dislocations offers a unified frame to
understand nonequilibrium collective properties of a host of
ordered self-assemble structures. Regarding the difference of
the two kinds of systems, the Corbino disk system exhibits a
second transition to the formation of the coherent laminar flow
along the tangential direction under an even stronger current
[54]; such a transition is absent in the mechanical membrane
system due to the lack of a tangential force on the particles.
Furthermore, in the Corbino disk system, the Lorentz force
caused by the imposed external current is applied to each
vortex, and the direction of the force is azimuthal. In contrast,
the external force is applied to a single layer of particles at the
inner boundary in the mechanical membrane system, and the
force is along the radial direction.

We finally briefly discuss the possible extensions of the
current work. First, one may extend the planar geometry,
where the 2D crystalline membrane lives, to curved surfaces.
The geometric frustration of the crystalline order on various
curved surfaces has been well studied in the regime of me-
chanical equilibrium, and a series of defect motifs has been
revealed [37,38]. It is of interest to utilize the stress-focusing
effect around the pre-existent topological defects in curved
crystals to regulate the patterns of plastic instability upon ex-
ternal mechanical stimuli [27,31,36]. Second, the quasistatic
process, on which the current work focuses, may be extended
to the dynamical regime by applying temporally varying ex-
ternal stress [30]. The dynamical annular membrane system
provides a suitable model to explore the interplay of topologi-
cal defects and elastic waves, which has potential connections
to the control of the dislocation current as revealed in this
work and that of the plastic instability process.

IV. CONCLUSION

In summary, we study the plastic instability of the crys-
talline membrane system in annular geometry. The expansion
of the inner boundary leads to the reorganization of the par-
ticles, which is analyzed from the perspective of topological
defect. We reveal the dynamic pattern of the plastic deforma-
tion in the form of the dislocation current. The continuously
generated dislocations at the inner boundary collectively mi-
grate to the outer boundary. We also identify the characteristic
vortex structure arising from the interplay of topological de-
fects and the displacement field in the process of plastic
deformation. These results may find applications in the pre-
cise control of structural instabilities in packings of particles
(colloids, proteins, etc.) and covalently bonded systems.
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