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Structural parameters of twist-bend nematics and splay-bend nematics in Dozov’s theory
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This paper presents the results of numerical calculations revealing how the structural parameters (i.e., the pitch
pTB, the spatial period pSB, and the tilt angle θTB or θSB) of twist-bend nematics (NTB) and splay-bend nematics
(NSB) depend on the values of elastic constants in Dozov’s theory [I. Dozov, Europhys. Lett. 56, 247 (2001)].
Alternative formulas for pTB, θTB, pSB, and θSB have been derived and it has been proved that they give more
accurate results than the expressions proposed by Dozov. Although the determination of the fourth-order elastic
constants C1, C2, and C3 is not feasible in a simple way, the order of magnitude of the sum C1 + C2 has been
easily estimated and is equal to 10−31 J m. Moreover, the numerical calculations have shown that twist-bend
nematics can exist even when K11 is smaller than 2K22 and thus Dozov’s criterion K11 > 2K22 for the stability of
the NTB phase is not strictly satisfied.
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I. INTRODUCTION

According to numerous studies, banana-shaped molecules
can form nematic liquid-crystalline phases with periodically
modulated structure [1–3]. One of them is a twist-bend ne-
matic phase (NTB), in which twist and bend deformations
coexist spontaneously. The director field nTB characterizing
the NTB structure is given in the Cartesian coordinate system
xyz by the following formula:

nTB = sin θTB cos qTBzx̂ + sin θTB sin qTBzŷ + cos θTBẑ. (1)

Equation (1) describes the heliconical modulation of the
director distribution in twist-bend nematics. This means that
the director nTB is twisted around a certain direction in the
space (in this case the z axis of the coordinate system). The
angle θTB between nTB and ẑ is smaller than 90° and is
called the tilt angle or the heliconical angle. The spatial period
pTB of the NTB phase (commonly termed the pitch) does not
usually exceed several nanometers which is the length of a
few molecules [4,5]. The quantity qTB = 2π/pTB is the wave
number of the NTB structure.

The other liquid-crystalline phase which has been theo-
retically predicted for highly curved molecules is splay-bend
nematic (NSB). In this structure periodic splay and bend dis-
tortions take place and the director field nSB can be expressed
as follows:

nSB = sin (θSB sin qSBz)ŷ + cos (θSB sin qSBz)ẑ, (2)

where θSB is the maximum tilt angle of the director and qSB is
the wave number of the NSB phase.

Experiments confirm that the NTB phase is exhibited in
the bounded temperature range by many liquid-crystalline
compounds (for example, CB7CB [6], CB9CB [7], CB6OCB
[8], and DTC5C7, DTC5C9, and DTC5C11 [9]). It should
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be noted that this fact is questioned by Samulski and his
co-workers [10,11]. These researchers believe that the exper-
imental results are misinterpreted and twist-bend nematics
have not been discovered yet. However, the argumentation
presented in [10,11] has not found acceptance in the scientific
community [12]. For this reason we treat the experimental
results as convincing evidence of the existence of the NTB

phase.
Compared to twist-bend nematics, the splay-bend ne-

matic phase is more elusive and exists only under specific
conditions. It has been shown that the director distribution
characteristic of splay-bend nematics can be induced in the
NTB phase by a strong electric field [13–15]. Moreover, the
NSB structure has been identified in colloidal systems [16] as
well as in defect walls separating domains of opposite handed-
ness in twist-bend nematics [17]. Until now, the observations
have not revealed the transition to the splay-bend nematic
phase occurring in thermotropic liquid crystals as a result of
the temperature change [15,18].

The elastic properties of twist-bend nematics and splay-
bend nematics can be described within the frame of numerous
theories [2,13,18–26]. One of the first elasticity models was
proposed by Dozov in 2001 [2]. In his theory the free en-
ergy density of a liquid crystal is given by the following
formula,

f = 1

2
{K11[n(∇ · n)]2 + K22[n · (∇ × n)]2

+ K33[n × (∇ × n)]2} + 1

4

{
C1

3∑
l=1

3∑
k=1

[
d2

dz2
(nlnk )

]2

+ 2C2

3∑
k=1

[
d2

dz2
(n3nk )

]2

+ C3

[
d2

dz2

(
n2

3

)]2
}

, (3)

where K11 is the splay elastic constant; K22 is the twist elastic
constant; K33 is the bend elastic constant; and C1, C2, and
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C3 are fourth-order elastic constants. In order to decrease the
number of unknown coefficients, it has been assumed that the
director distribution depends only on one coordinate.

Based on his theory, Dozov derives the formulas for the
characteristic parameters (i.e., the tilt angle and the wave
number) of both phases—twist-bend nematics and splay-bend
nematics [2]. For the NTB structure he obtains

θ2
TB = − K33

3K22
, (4)

q2
TB = − K33

3(C1 + C2)
. (5)

In the case of the NSB phase, his calculations yield

θ2
SB = −4K33

3K11
, (6)

q2
SB = − K33

3(C1 + C2)
. (7)

According to Dozov’s theory, the twist-bend nematic and
splay-bend nematic phases can be formed only if K33 < 0. The
type of appearing structure depends on the values of K11 and
K22. When the condition

K11 > 2K22 (8)

is satisfied, the NTB phase is energetically favorable; otherwise
the NSB phase should be stable [2].

It must be mentioned that Eqs. (4)–(8) have been derived
after introducing some simplifications. For instance, small
values of the tilt angle have been assumed. The aim of this
paper is to verify the formulas (4)–(7) and the criterion (8) by
means of numerical calculations. It will be established how
the tilt angle and the wave number depend on the material pa-
rameters used in Dozov’s model for twist-bend nematics and
splay-bend nematics. The additional purpose of the research
is to estimate the order of magnitude of C1, C2, and C3 on the
basis of computations.

II. METHODS

The equilibrium values of the tilt angle and the wave num-
ber of twist-bend nematics or splay-bend nematics correspond
to the minimum of the free energy density. In Dozov’s theory
the formula for the free energy density of the NTB phase can
be obtained by the substitution of (1) into (3):

fTB = 1
2 K22q2

TBsin4θTB + 1
2 K33q2

TBcos2θTBsin2θTB

+ 1
2 (C1 + C2)q4

TBcos2θTBsin2θTB + 2C1q4
TBsin4θTB.

(9)

Using Eqs. (2) and (3), one can write the analogous expres-
sion for the NSB structure:

fSB = 1
2 q2

SBθ2
SBcos2qSBz[K11sin2(θSB sin qSBz) + K33cos2(θSB sin qSBz)] + 1

2 (C1 + C2)
(
q4

SBθ2
SBsin2qSBz + 4q4

SBθ4
SBcos4qSBz

)
+ C3q4

SBθ4
SBcos4qSBzcos2(2θSB sin qSBz) + 1

4C3q4
SBθ2

SBsin2qSBzsin2(2θSB sin qSBz)

− C3q4
SBθ3

SBcos2qSBz sin qSBz cos (2θSB sin qSBz) sin (2θSB sin qSBz). (10)

For twist-bend nematics, the parameters θTB and qTB are
found by the numerical minimization of formula (9). The
procedure is based on the method of steepest descent [27]. It
is one of the simplest gradient-based optimization algorithms.
In every iteration the starting point is the current approxima-
tion of the minimum x[k] = [θ [k]

TB, q[k]
TB], where k is the step

number. On this basis the antigradient d[k] = −∇ fTB(x[k] ) =
[− ∂ fTB

∂θTB
|
θ

[k]
TB,q[k]

TB

,− ∂ fTB

∂qTB
|
θ

[k]
TB,q[k]

TB

] is calculated because in this di-

rection fTB decreases fastest. The new approximation of the
minimum is equal to x[k+1] = x[k] + α[k]d[k]. The parameter
α[k] > 0 is found by the minimization of fTB(x[k] + α[k]d[k] ).
For this purpose the technique of the golden-section search
is applied. The iterations are interrupted when the norm
of the difference x[k+1] − x[k] is sufficiently small. The
initial approximation x[0] = [θ [0]

TB, q[0]
TB], which is necessary

for starting the computations, is chosen by trial and error
since not every choice ensures the good convergence of the
algorithm.

In the case of splay-bend nematics, the numerical problem
is more complicated because the free energy density given by
Eq. (10) depends on the spatial coordinate z. This creates the
necessity of considering one period (pSB = 2π/qSB) of the
NSB structure, over which the free energy density needs to be

integrated and then averaged. As a result of these operations,
the following quantity is calculated:

〈FSB〉 = 1

pSB

∫ pSB

0
fSBdz = qSB

2π

∫ pSB

0
fSBdz. (11)

Because the formula for fSB is complex, the computation
of 〈FSB〉 is performed numerically in the way described be-
low. Firstly, the area of integration must be discretized and
therefore the set of evenly spaced and numbered nodes is
generated. The distance �z between two adjacent nodes is
equal to

�z = pSB

N − 1
= 2π

qSB(N − 1)
, (12)

where N is the total number of nodes. The spatial coordinate
zi of the node with number i is given by

zi = 2π i

qSB(N − 1)
. (13)

It has been assumed that the zeroth node (i = 0) is situated
in the origin of the coordinate system (z = 0). The next step is
to transform the integral in Eq. (11) into the sum over discrete
elements. For this purpose the continuous spatial coordinate
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z is replaced with zi and �z is introduced instead of the
differential dz. Moreover, it must be taken into account that
the elements connected with the boundary nodes (i = 0 and

i = N−1) have the length of �z/2. Finally, the formula for
the average free energy 〈FSB〉 takes the form convenient for
numerical calculations:

〈FSB〉 =
[

1

2
K33q2

SBθ2
SB + 2(C1 + C2)q4

SBθ4
SB + C3q4

SBθ4
SB

]
1

N − 1
+

N−2∑
i=1

{
1

2
K11q2

SBθ2
SBcos2 2π i

N − 1
sin2

(
θSB sin

2π i

N − 1

)

+ 1

2
K33q2

SBθ2
SBcos2 2π i

N − 1
cos2

(
θSB sin

2π i

N − 1

)
+ 1

2
(C1 + C2)

(
q4

SBθ2
SBsin2 2π i

N − 1
+ 4q4

SBθ4
SBcos4 2π i

N − 1

)

+ 1

4
C3

[
4q4

SBθ4
SBcos4 2π i

N − 1
cos2

(
2θSB sin

2π i

N − 1

)
+ q4

SBθ2
SBsin2 2π i

N − 1
sin2

(
2θSB sin

2π i

N − 1

)

− 4q4
SBθ3

SBcos2 2π i

N − 1
sin

2π i

N − 1
cos

(
2θSB sin

2π i

N − 1

)
sin

(
2θSB sin

2π i

N − 1

)]}
1

N − 1
. (14)

The application of the method of steepest descent to
formula (14) enables the computation of equilibrium values
of θSB and qSB.

The calculations are performed for various values of elastic
constants in order to determine the dependence of the tilt
angle and the wave number on these material parameters.
The comparison of the values of fTB and 〈FSB〉 reveals which
liquid-crystalline phase (NTB or NSB) exists in reality for the
given set of elastic constants. According to thermodynamics,
the structure which is characterized by the lower free energy
is stable and appears in experiments.

A. Estimation of the order of magnitude
of fourth-order elastic constants

From the theoretical point of view, the order of magnitude
of fourth-order elastic constants can be estimated from the
approximate formula for the wave number of twist-bend ne-
matics. Simple mathematical transformations of Eq. (5) yields

C1 + C2 = − K33

3q2
TB

= −K33 p2
TB

12π2
. (15)

According to experimental data, the pitch of twist-bend
nematics ranges from 6 to 20 nm [28]. However, for the vast
majority of liquid-crystalline compounds exhibiting the NTB

phase, the parameter pTB does not exceed 10 nm. CB7CB,
which is the most popular dimer forming the twist-bend ne-
matic structure, is characterised by the pitch of 7–8.7 nm
[21,29–31]. On this basis it is sensible to assume pTB ≈ 8 nm
for further calculations.

The estimation of the bend elastic constant K33 is more
problematic. In Dozov’s theory this quantity must be negative
to ensure the stability of twist-bend nematics. The results of
experiments indicate that K33 takes small (less than 1 pN) but
positive values in the nematic phase, just before the N-NTB

transition [32,33]. In the NTB phase the bend elastic constant
increases rapidly (for example, from 0.25 pN at 99.6 °C to
47.3 pN at 99.3 °C for CB7CB [34]) when the temperature
is decreased. Yun et al. try to explain why the measurements
do not give negative values of K33 [34]. They pay attention to
the hierarchical structure of twist-bend nematics. The elastic

constants which are determined in the nematic phase just
before the N-NTB transition and in the twist-bend nematic
phase refer to the distortions of the optic axis N treated as
a higher-level director. In Dozov’s model the elastic constants
are connected with the deformations of the molecular level
director n and therefore they are not measurable. For this
reason K33 must be estimated from other material parameters.
The starting point for further considerations is Eq. (4) which
can be rewritten in the equivalent form:

K33 = −3K22θ
2
TB. (16)

It is possible to apply Eq. (16) in the calculations only if
the twist elastic constant K22 and the tilt angle θTB are known.
The value of K22 is a relatively rare subject of research, mainly
because of experimental difficulties and high measurement
uncertainties. For various liquid-crystalline compounds and
their mixtures, K22 ranges from 2 to 10 pN in the vicinity
of the N-NTB transition [24,33–37]. The results obtained for
CB7CB reveal that K22 ≈ 5 pN [34]. This value is often
assumed in computations concerning the elastic properties
of twist-bend nematics [21]. The theoretical considerations
presented by Meyer and Dozov suggest that the twist elastic
constants related to the deformations of n and N are approxi-
mately equal [38,39]. This means that the experimental value
of K22 can be used for the estimation of K33, although the
nature of elastic constants obtained from measurements and
those from Dozov’s model is probably different.

The value of the tilt angle of the NTB phase strongly de-
pends on temperature. According to the results of experiments
conducted for CB7CB, this parameter increases from 9° at
101°C (just below the N-NTB transition) to about 33°–38° at
50°C [17]. Because other necessary quantities (i.e., the twist
elastic constant and the pitch) have been determined for the
temperature in the vicinity of the N-NTB transition, the value
θTB ≈ 9◦ seems appropriate for the further calculations.

Finally, the application of Eqs. (15) and (16) leads to
K33 ≈ −0.4 pN and C1 + C2 ≈ 2 × 10−31 J m. Unfortunately,
this simple method based on the approximate formulas given
by Dozov does not allow for separate estimation of parameters
C1 and C2. Nonetheless, the knowledge of the sum C1 + C2 is
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TABLE I. Values of material parameters adopted in the numeri-
cal calculations.

Material parameter Range of values

Twist elastic constant K22 1 − 10 pN
Bend elastic constant K33 −5 to −0.1 pN
Fourth-order elastic constant C1 0 − 5 × 10−31 J m
Fourth-order elastic constant C2 0 − 5 × 10−31 J m
Fourth-order elastic constant C3 0 − 5 × 10−31 J m

also extremely useful when numerical calculations concerning
twist-bend nematics are planned.

B. Parameters

Table I contains the ranges of values of material parameters
which are adopted in the numerical computations conducted
for twist-bend nematics and splay-bend nematics.

It is noteworthy that the fourth-order elastic constant C3

appears only in the calculations concerning the NSB phase
[compare Eqs. (9) and (10)]. The splay elastic constant K11,
which is not included in Table I, is varied between 0 and
the critical value Kc

11, for which the difference 〈FSB〉 − fTB

changes the sign from negative to positive. For K11 < Kc
11 the

splay-bend nematic phase should be stable. The structure of
twist-bend nematics is formed when K11 exceeds Kc

11. In order
to verify the criterion (8), it is necessary to check whether the
equality Kc

11 = 2K22 is satisfied.

III. RESULTS

A. Twist-bend nematics

The results of computations indicate that the pitch pTB of
twist-bend nematics increases with the values of the fourth-
order elastic constants C1 and C2, as shown in Fig. 1(a). The
analysis of Fig. 1(b) reveals that the tilt angle θTB does not
depend on C1 when C2 = 0. In other cases θTB is a decreasing
function of C1. The tilt angle grows when C2 becomes larger.
It should be noted that the variation of θTB with C1 and C2

is weak. This means that the change of the tilt angle does
not exceed a few tenths of a degree when the fourth-order
elastic constants are varied in the range of 0 − 5 × 10−31 J m.

FIG. 1. Pitch pTB (a) and tilt angle θTB (b) of twist-bend ne-
matics as a function of the fourth-order elastic constant C1. The
curves correspond to the results obtained for different values of the
fourth-order elastic constant C2 which are given in the graphs in
10−31 J m. The other material parameters are as follows: K22 = 5 pN,
K33 = −0.5 pN.

FIG. 2. Pitch pTB (a) and tilt angle θTB (b) of twist-bend nematics
as a function of the twist elastic constant K22. The curves corre-
spond to the results obtained for different values of the fourth-order
elastic constant C1 which are given in the graphs in 10−31 J m.
The other material parameters are as follows: K33 = −0.5 pN, C2 =
2 × 10−31 J m.

The case C1 = C2 = 0 is not the subject of research because
then the free energy density is unbounded from below and
does not reach a minimum value. For twist-bend nematics and
splay-bend nematics, at least one of the fourth-order elastic
constants must be nonzero.

It is apparent from Fig. 2(a) that the value of the twist
elastic constant K22 does not have a significant influence on
the pitch of the NTB structure. The spatial period pTB can
either increase or decrease with K22, depending on the value
of C1, but these changes are very subtle. The tilt angle θTB

gets smaller when K22 is increased. The results presented in
Fig. 2(b) confirm that the dependence of θTB on the fourth-
order elastic C1 is really weak.

When the bend elastic constant K33 becomes more neg-
ative, the pitch of the NTB phase declines, whereas the tilt
angle rises, as demonstrated in Fig. 3. It is obvious that the
negative values of K33 stimulate the formation of a twist-bend
nematic structure. The detailed analysis indicates that the ap-
proximate formula (5) gives acceptable values of pTB, which
differ from those obtained numerically by no more than 5% in
the majority of cases. Figure 3(b) suggests that the situation
looks totally different for the tilt angle. Indeed, the difference
between the numerical value of θTB and that calculated from
Eq. (4) can surpass 30% for some sets of material parameters.
Such considerable divergences occur when K33 is smaller than

FIG. 3. Pitch pTB (a) and tilt angle θTB (b) of twist-bend nematics
as a function of the bend elastic constant K33. The solid lines corre-
spond to the results pn

TB and θn
TB obtained by means of numerical

calculations. The dashed curves have been plotted on the basis of
values pf

TB and θ
f

TB calculated from Eqs. (4) and (5). The insets
present how the percentage differences �pTB = [(pf

TB−pn
TB)/pn

TB] ×
100% and �θTB = [(θ f

TB−θ n
TB)/θn

TB] × 100% depend on K33. The
other material parameters are as follows: K22 = 5 pN, C1 = C2 =
2 × 10−31 J m. In (a) the solid curve and the dashed one almost
overlap.
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−3 pN and consequently θTB takes relatively large values
exceeding 20°. These results are consistent with expectations
since Dozov derived the formulas (4) and (5) assuming small
values of the tilt angle.

According to the results of numerical computations, the
pitch of the NTB phase depends on K22 and the tilt angle is a

function of C1 and C2, although Eqs. (4) and (5) exclude such
relations. This raises a question of whether it is possible to de-
termine more accurate formulas for qTB and θTB in the frame
of Dozov’s theory. The answer is affirmative. The application
of standard methods of multivariable calculus to Eq. (9) leads
to the following results:

qTB = ±
√

−3(C1 + C2)(K33 − K22) − √
(C1 + C2)(K33 − K22)[9(C1 + C2)(K33 − K22) − 8K33(C2 − 3C1)]

4(C1 + C2)(C2 − 3C1)
, (17)

sin2θTB = 3(C1 + C2)(K33 − K22) + √
(C1 + C2)(K33 − K22)[9(C1 + C2)(K33 − K22) − 8K33(C2 − 3C1)]

4(C2 − 3C1)(K33 − K22)
. (18)

It must be emphasized that Eqs. (17) and (18) have
been derived without making any redundant simplifications.
The wave number of twist-bend nematics can be positive
or negative for the right-handed and left-handed structures,
respectively.

When the fourth-order elastic constants satisfy the con-
dition C2 − 3C1 = 0, Eqs. (17) and (18) cannot be used
any longer. The calculations show that in this specific
case the formulas for qTB and θTB take the following
form:

qTB = ±
√

−K33

3(C1 + C2)
, (19)

sin2θTB = K33

3(K33 − K22)
. (20)

It is provable that Eqs. (17)–(20) really correspond to
the minimum of the free energy density. Not only is the
gradient of (9) equal to zero, but also the Hessian matrix
is positive definite for qTB and θTB given by Eqs. (17)–
(20). It has been assumed that the material parameters
fulfill the standard criteria (K22 > 0, K33 < 0, C1 � 0, C2 �
0, C1 + C2 > 0). Under these assumptions, the values of
sin2θ calculated from Eqs. (18) and (20) meet the necessary
conditions sin2θTB > 0 and sin2θTB < 1. These inequalities
do not impose any additional restrictions on the elastic
constants.

FIG. 4. Spatial period pSB (a) and tilt angle θSB (b) of splay-bend
nematics as a function of the splay elastic constant K11. The curves
correspond to the results obtained for different values of the fourth-
order elastic constant C1 which are given in the graphs in 10−31 J m.
The other material parameters are as follows: K22 = 5 pN, K33 =
−0.5 pN, C2 = 2 × 10−31 J m, C3 = 0. In (b) the curves overlap.

The situation when one of the fourth-order elastic constants
is equal to zero deserves separate consideration. For C1 = 0,
Eqs. (17) and (18) can be rewritten as follows:

qTB = ±
√

−3(K33 − K22) − √
(K33 − K22)(K33 − 9K22)

4C2
,

(21)

sin2θTB = 3(K33 − K22) + √
(K33 − K22)(K33 − 9K22)

4(K33 − K22)
.

(22)

When C2 = 0, the wave number of twist-bend nematics and
the tilt angle can be calculated from the following formulas:

qTB = ±
√

3(K33 − K22) + √
(K33 − K22)(33K33 − 9K22)

12C1
,

(23)

sin2θTB = −3(K33 − K22) − √
(K33 − K22)(33K33 − 9K22)

12(K33 − K22)
.

(24)

The analysis of Eqs. (22) and (24) reveals that the tilt
angle does not depend on the value of C2 when C1 = 0.
Analogously, θTB does not vary with C1 for C2 = 0. Similar
conclusions have been formulated on the basis of results of
numerical calculations. Generally, the values of qTB and θTB

obtained numerically are closely akin to those calculated from
Eqs. (17)–(20).

FIG. 5. Spatial period pSB (a) and tilt angle θSB (b) of splay-bend
nematics as a function of the splay elastic constant K11. The curves
correspond to the results obtained for different values of the fourth-
order elastic constant C2 which are given in the graphs in 10−31 J m.
The other material parameters are as follows: K22 = 5 pN, K33 =
−0.5 pN, C1 = 2 × 10−31 J m, C3 = 0. In (b) the curves overlap.
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FIG. 6. Spatial period pSB (a) and tilt angle θSB (b) of splay-
bend nematics as a function of the splay elastic constant K11. The
curves correspond to the results obtained for different values of the
fourth-order elastic constant C1 which are given in the graphs in
10−31 J m. The other material parameters are as follows: K22 = 5 pN,
K33 = −0.5 pN, C2 = C3 = 2 × 10−31 J m. The inset in (b) shows
the enlargement of the region bounded by the dashed rectangle.

The formulas (4) and (5) given by Dozov can be obtained
from the linear approximation of Eqs. (17) and (18) in the
vicinity of K33 = 0. The expressions for qTB and sin2θTB must
be treated as functions of the bend elastic constant K33 and
expanded into power series up to terms proportional to K33:

qTB(K33) ≈ qTB(0) + K33
∂qTB

∂K33

∣∣∣∣
K33=0

, (25)

sin2θTB(K33) ≈ sin2θTB(0) + K33
∂ (sin2θTB)

∂K33

∣∣∣∣∣
K33=0

. (26)

The further calculations yield

qTB(0) = 0,
∂qTB

∂K33

∣∣∣∣
K33=0

= − 1

3(C1 + C2)
,

sin2θTB(0) = 0,
∂ (sin2θTB)

∂K33

∣∣∣∣∣
K33=0

= − 1

3K22
. (27)

Taking these results into account and assuming the approx-
imation of small angles sin2θTB ≈ θ2

TB, one can redetermine
Eqs. (4) and (5) presented by Dozov. These formulas are appli-
cable when K33 is slightly less than 0. The identical conclusion
has been drawn from the output of numerical computations
[see Fig. 3(b)].

B. Splay-bend nematics

The results of numerical calculations indicate that the
spatial period pSB of the NSB phase and the tilt angle θSB

decrease with the splay elastic constant K11. The value of pSB

grows when the fourth-order elastic constants C1 and C2 are
increased [Figs. 4(a), 5(a), 6(a), and 7(a)]. For C3 = 0 the
tilt angle θSB does not vary with C1 and C2, as is visible in
Figs. 4(b) and 5(b). When C3 �= 0, θSB becomes an increasing
function of C1 and C2, although Figs. 6(b) and 7(b) reveal that
this dependence is very weak.

The in-depth analysis shows that the mutual interchange of
C1 and C2 alters neither the spatial period nor the tilt angle
of the NSB phase. However, the stability ranges of splay-bend
nematics are different in these two cases. This fact can be
easily explained. According to Eq. (9), the interchange of
constants C1 and C2 in the case of the NTB structure leads
to different values of the free energy. For this reason the

FIG. 7. Spatial period pSB (a) and tilt angle θSB (b) of splay-
bend nematics as a function of the splay elastic constant K11. The
curves correspond to the results obtained for different values of the
fourth-order elastic constant C2 which are given in the graphs in
10−31 J m. The other material parameters are as follows: K22 = 5 pN,
K33 = −0.5 pN, C1 = C3 = 2 × 10−31 J m. The inset in (b) shows
the enlargement of the region bounded by the dashed rectangle.

difference 〈FSB〉 − fTB becomes zero for different values of
K11 in both considered cases. In this way the stability ranges
of the NSB phase are not the same when the values of C1 and
C2 are swapped.

The twist deformation does not appear in the NSB phase and
therefore the values of pSB and θSB do not depend on the twist
elastic constant K22. On the other hand, the negative value
of the bend elastic constant K33 has considerable influence
on the quantities characterizing splay-bend nematics. When
the absolute value of K33 becomes larger, the spatial period
declines and the tilt angle increases, as presented in Fig. 8.
This effect (similar to that observed for twist-bend nematics)
is understandable because the negative value of K33 favors the
appearance of spontaneous bend deformations and thus the
periodically modulated nematic structure can be formed.

The results shown in Fig. 9 indicate that the spatial pe-
riod of splay-bend nematics rises with the fourth-order elastic
constant C3 and simultaneously the tilt angle decreases. The
changes of pSB and θSB are relatively small in this situation.
It can be supposed that the term with C3 in the formula (10)
for the free energy density inhibits the formation of the NSB

structure.
In most cases the values of pSB and θSB obtained as a

result of numerical calculations are clearly different from
those calculated from Eqs. (6) and (7) given by Dozov. The
NSB structure is usually characterized by the large tilt angle
and for this reason the approximate formulas give extremely

FIG. 8. Spatial period pSB (a) and tilt angle θSB (b) of splay-
bend nematics as a function of the splay elastic constant K11. The
curves correspond to the results obtained for different values of the
bend elastic constant K33 which are given in the graphs in pN. The
other material parameters are as follows: K22 = 5 pN, C1 = C2 =
2 × 10−31 J m, C3 = 0.
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FIG. 9. Spatial period pSB (a) and tilt angle θSB (b) of splay-
bend nematics as a function of the splay elastic constant K11. The
curves correspond to the results obtained for different values of the
fourth-order elastic constant C3 which are given in the graphs in
10−31 J m. The other material parameters are as follows: K22 = 5 pN,
K33 = −0.5 pN, C1 = C2 = 2 × 10−31 J m. The inset in (b) shows
the enlargement of the region bounded by the dashed rectangle.

inaccurate results. Generally, the values of the tilt angle cal-
culated from Eq. (6) are overestimated in comparison to the
outcome of numerical computations, whereas Eq. (7) yields
too low values of the pitch. Figure 10 presents that the con-
gruence between the values calculated from the approximate
formulas and those obtained numerically is quite good if the
tilt angle is sufficiently small. This situation takes place when
K33 is slightly less than 0 and K11 approaches the critical value
Kc

11.

FIG. 10. Spatial period pSB (a) and tilt angle θSB (b) of splay-
bend nematics as a function of the splay elastic constant K11.
The solid lines correspond to the results pn

SB and θn
SB obtained

by means of numerical calculations. The dashed curves have
been plotted on the basis of values pf

SB and θ
f

SB calculated from
Eqs. (6) and (7). The insets present how the percentage differences
�pSB = [(pf

SB−pn
SB)/pn

SB] × 100% and �θSB = [(θ f
SB−θ n

SB)/θn
SB] ×

100% depend on K11. The other material parameters are as follows:
K22 = 5 pN, K33 = −0.1 pN, C1 = C2 = 2 × 10−31 J m, C3 = 0.

Unfortunately, it is not possible to determine the exact
formulas for pSB and θSB, because Eq. (10) is too complicated.
The analytical integration of fSB over one period of the NSB

structure seems unfeasible. However, one can derive approx-
imate formulas for pSB and θSB which give more accurate
results than those proposed by Dozov. For this purpose, fSB

must be expanded into series up to θ4
SB terms:

f IV
SB =

[
(C2 + C1)q4

SBsin2qSBz + K33q2
SBcos2qSBz

]
θ2

SB

2

+
{
2C3q4

SBsin4qSBz − [
4C3q4

SB + (K33 − K11)q2
SB

]
cos2qSBzsin2qSBz + (2C3 + 4C2 + 4C1)q4

SBcos4qSBz
}
θ4

SB

2
. (28)

Now the formula (28) can be averaged over one period of the NSB structure without any problems. The result of this operation
is as follows:

〈
f IV
SB

〉 =
[
4(2C3 + 3C2 + 3C1)q4

SB + (K11 − K33)q2
SB

]
θ4

SB + 4
[
(C2 + C1)q4

SB + K33q2
SB

]
θ2

SB

16
. (29)

The minimization of Eq. (29) yields the equilibrium values of q2
SB and θ2

SB:

q2
SB = 3(C2 + C1)(K33 − K11) + √

(C2 + C1)(K33 − K11)[(64C3 + 105C1 + 105C2)K33 − 9(C2 + C1)K11]

16(C2 + C1)(2C3 + 3C2 + 3C1)
, (30)

θ2
SB = 3(C2 + C1)(K33 − K11) + √

(C2 + C1)(K33 − K11)[(64C3 + 105C1 + 105C2)K33 − 9(C2 + C1)K11]

4(2C3 + 3C2 + 3C1)(K11 − K33)
. (31)

According to the results of computations, the average dif-
ference between the value calculated from Eqs. (30) or (31)
and that obtained numerically is equal to 2%. This fact proves
the usefulness of the derived formulas, although their mathe-
matical form is quite complex and therefore inconvenient for
calculations. When C3 = 0, Eq. (31) takes the form

θ2
SB = −3(K11 − K33) + √

3(K11 − K33)(3K11 − 35K33)

12(K11 − K33)
,

(32)

which confirms that in this particular situation the tilt angle
of the NSB phase does not depend on the values of the fourth-
order elastic constants C1 and C2. Similarly as in the case of

twist-bend nematics, it can be shown that Dozov’s formulas
(6) and (7) are the linear approximation of Eqs. (30) and (31)
in the vicinity of K33 = 0.

C. Critical value Kc
11

The results of numerical calculations indicate that the criti-
cal value Kc

11 is not simply expressed by the formula Kc
11 =

2K22 derived by Dozov. It turns out that various material
parameters influence Kc

11. Figure 11 illustrates that Kc
11 actu-

ally increases linearly with K22; however, the critical values
obtained numerically are smaller than those calculated from
Dozov’s formula. When the bend elastic constant K33 becomes
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FIG. 11. Critical value Kc
11 as a function of the twist elastic con-

stant K22. The solid line corresponds to the results obtained by means
of numerical calculations. The dashed line has been plotted on the
basis of values calculated from the formula Kc

11 = 2K22 given by Do-
zov. The other material parameters are as follows: K33 = −0.5 pN,
C1 = C2 = 2 × 10−31 J m, C3 = 0.

less negative, Kc
11 grows, as shown in Fig. 12. It is evident that

Kc
11 tends to 2K22 as K33 approaches zero. This means that

Dozov’s criterion (8) for the stability of twist-bend nematics
is applicable when K33 is slightly negative.

There is no doubt that the relationship between Kc
11 and

fourth-order elastic constants C1, C2, C3 is complicated.
Figure 13 presents how Kc

11 depends on C1 and C2 when C3 =
0. The critical value does not vary with C2 when C1 = 0 and
it is independent of C1 for C2 = 0. The critical value declines
when C1 is positive and C2 becomes larger. The increase of C1

leads to the growth of Kc
11.

When C3 is nonzero, Kc
11 can be either an increasing or

decreasing function of C2 and this depends on the value of
C1, as shown in Fig. 14. It is worth noticing that Kc

11 varies
with C2 when C1 = 0, so this behavior is different from that
observed in the analogous case with C3 = 0. The critical value
increases with C1, even when C2 = 0, and decreases linearly
with C3 (Fig. 15).

FIG. 12. Critical value Kc
11 as a function of the bend elastic

constant K33. The curves correspond to the results obtained for dif-
ferent values of the twist elastic constant K22 which are given in
the graph. The other material parameters are as follows: C1 = C2 =
2 × 10−31 J m, C3 = 0.

FIG. 13. Critical value Kc
11 as a function of the fourth-order elas-

tic constant C2. The curves correspond to the results obtained for
different values of the fourth-order elastic constant C1 which are
given in the graph in 10−31 J m. The other material parameters are
as follows: K22 = 5 pN, K33 = −0.5 pN, C3 = 0.

According to the results presented in Fig. 16, the material
parameters can be chosen so that the NTB phase is stable
for any positive value of the splay elastic constant K11. For
instance, this situation takes place when K22 = 5 pN, C1 =
C3 = 0, C2 = 2 × 10−31 J m, and K33 < −4.2 pN. Of course,
it is possible to show that the NSB structure can appear for
some negative values of K11 in these cases. However, the
negative values of any elastic constant are hard to interpret.
Their introduction always provokes major controversy; hence
this operation should be preceded by in-depth theoretical and
experimental research.

IV. CONCLUSIONS

The results of numerical calculations demonstrate the com-
plex influence of material parameters on the quantities char-
acterizing the structure of twist-bend nematics and splay-bend
nematics, namely, the tilt angle θTB (or θSB), the pitch pTB, and

FIG. 14. Critical value Kc
11 as a function of the fourth-order elas-

tic constant C2. The curves correspond to the results obtained for
different values of the fourth-order elastic constant C1 which are
given in the graph in 10−31 J m. The other material parameters are
as follows: K22 = 5 pN, K33 = −0.5 pN, C3 = 2 × 10−31 J m. The
inset presents the enlargement of the region bounded by the dashed
rectangle.
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FIG. 15. Critical value Kc
11 as a function of the fourth-order

elastic constant C3. The other material parameters are as follows:
K22 = 5 pN, K33 = −0.5 pN, C1 = C2 = 2 × 10−31 J m.

the spatial period pSB. The critical value Kc
11, which separates

the ranges of stability of splay-bend nematics and twist-bend
nematics, is also strongly dependent on the values of elas-
tic constants. It must be emphasized that the values of Kc

11
obtained numerically are smaller than those calculated from
Dozov’s formula Kc

11 = 2K22. The experiments conducted by
Yun et al. actually confirm that the NTB phase can be formed
when K11 is much less than 2K22 [34]. The scientists try to
clarify the differences between the results of measurements
and the theory by means of the hierarchical structure of twist-
bend nematics. However, it should be remembered that Do-
zov’s criterion (8) is only an approximation with limited appli-
cability and this may be the additional source of discrepancies.

The formulas for parameters characterizing the structure of
twist-bend nematics or splay-bend nematics have complicated
mathematical form and they differ from those given by Dozov.
Unfortunately, the exact formulas can be derived without any
simplifications only for the NTB phase. For the NSB structure
the formula for the free energy density must be approximated
by a truncated power series. Only then can the values of the
spatial period pSB and the tilt angle θSB be determined analyt-
ically. The formulas (30) and (31) are helpful when there is
no possibility of performing numerical computations and one
wants to estimate the values of pSB and θSB.

The separate estimation of the fourth-order elastic con-
stants C1, C2, C3 is not possible on the basis of approximate
formulas given by Dozov. The simple calculations have re-
vealed that the sum C1 + C2 is of the order of 10−31 J m. There
is no doubt that further research should be directed towards the
experimental determination of material parameters of liquid
crystals exhibiting novel modulated nematic phases. The exact
values of elastic constants are essential for conducting reliable
simulations of twist-bend nematics or splay-bend nematics.
However, the measurement of these parameters is problematic

FIG. 16. Critical value Kc
11 as a function of the bend elastic con-

stant K33. The curves correspond to the results obtained for different
values of the fourth-order elastic constant C1 which are given in the
graph in 10−31 J m. The other material parameters are as follows:
K22 = 5 pN, C2 = 2 × 10−31 J m, C3 = 0.

and affected by significant uncertainties, mainly because of
the nature of elastic continuum theories. The experimental
setup must be designed specifically for a given theory and the
values of elastic constants also depend on the chosen model.
The current research on this subject is definitely not sufficient.

In the future it would be a good idea to perform similar
numerical computations on the basis of other elasticity mod-
els, for example, those proposed by Shamid et al. [19] or
Barbero et al. [23]. In this way the relationship between elastic
constants appearing in various theories could be recognized.
Moreover, new elasticity theories containing the smallest pos-
sible number of material parameters would be helpful.

It is not feasible to conduct numerical calculations for all
possible combinations of values of material parameters. It is
not excluded that the final conclusions (for example, those
concerning the behavior of the tilt angle or the pitch on the
variation of elastic constants) could be slightly different if
the computations were performed for other values of material
parameters. Nevertheless, the results presented in this paper
help researchers to gain a general understanding of the role
of elastic constants appearing in Dozov’s theory. Moreover,
it is hoped that the outcome of this research will facilitate
the search for thermotropic liquid crystals exhibiting the NSB

phase.
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