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We investigate a two-dimensional system of interacting active Brownian particles. Using the Martin-Siggia-
Rose-Janssen-de Dominicis formalism, we built up the generating functional for correlation functions. We study
in detail the hydrodynamic regime with a constant density stationary state. Our findings reveal that, within a
small density fluctuations regime, an emergent U (1) gauge symmetry arises, originated from the conservation of
fluid vorticity. Consequently, the interaction between the orientational order parameter and density fluctuations
can be cast into a gauge theory, where the concept of “electric charge density” aligns with the local vorticity of
the original fluid. We study in detail the case of a microscopic local two-body interaction. We show that, upon
integrating out the gauge fields, the stationary states of the rotational degrees of freedom satisfy a nonlocal Frank
free energy for a nematic fluid. We give explicit expressions for the splay and bend elastic constants as a function
of the Péclet number (Pe) and the diffusion interaction constant (kd ).
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I. INTRODUCTION

Since the introduction of the “Boids model” by C. W.
Reynolds in 1987 [1] to simulate the swarming of animals, the
study of nonequilibrium self-propelled systems has rapidly
advanced, largely due to the development of the field of
“active matter.” Active matter refers to a collection of parti-
cles that can convert environmental energy into mechanical
work, growth, or replication. This field finds numerous ap-
plications in biological systems [2–7]. One specific category
within active matter is active Brownian particles (ABP),
which combines Brownian motion and self-propulsion. ABPs
are frequently utilized to describe the movement of microor-
ganisms such as bacteria [8,9] or artificial microswimmers
such as Janus particles [10].

Numerous studies have focused on both individual ABPs
[3,11–13] and collective properties [14–16]. Emergent behav-
iors, such as clustering [3,17–19], and motility-induced phase
separation (MIPS) [20,21], continue to garner significant sci-
entific interest [22–24]. The macroscopic regime in which
these emergent behaviors manifest is particularly valuable
from a physics perspective, as it allows one to look for univer-
sal properties that do not depend on microscopic details. As
a result, numerous researchers are drawing parallels between
active systems and more “traditional” areas of physics. For
instance, parallels with hydrodynamics are readily observed
[4,25], as well as the use of topology and the emergence
of nematic phases [26]. Dynamical renormalization group
techniques [27] play a fundamental role in determining uni-
versality classes in active matter systems [28–30] as well as
to study entropy production [31]. Additionally, equivalence of
active models with quantum dynamics has also been explored
in different scenarios [32].

Various approaches have been developed to construct
coarse-grained models for the study of active Brownian mat-
ter. One of the conventional methods in statistical mechanics
is the dynamic density functional theory [33]. Additionally,
methods such as the interaction-expansion method enable the
systematic microscopic derivation of field theories for sys-
tems of interacting active particles [34,35]. In this context,
the use of coarse-grained models based on the Mori–Zwanzig
theory[36] results in an equation of motion resembling a gen-
eralized Langevin equation, thereby preserving the underlying
fine-grained dynamics. Moreover, the conventional derivation
of the Kawasaki and Dean equation [37,38] has been applied
to describe active Brownian matter [8,39,40]. Furthermore,
intriguing approximations, such as those involving infinite-
dimensional systems, have yielded exact results regarding
these complex systems [41].

The main goal of this paper is to provide a macroscopic
formulation of the interaction between density fluctuations
and the orientational degrees of freedom of a two-dimensional
system of interacting ABP’s. We show that, in a small density
fluctuation regime, there is an emergent gauge symmetry that
can be traced back to the conservation of the fluid vorticity. In
this way, the system can be described by a dual U (1) gauge
theory, where the emergent “electric charge” corresponds with
the vorticity of the original fluid. The main result of the paper
is the gauge theory presented in Eq. (64), that describes the
interaction between density fluctuations and the orientational
degrees of freedom of the self-propelled particles for a model
with a general microscopic two-body potential.

From a technical point of view, we begin with the
usual model of a system of interacting ABPs and built up
a generating functional for correlation functions using the
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Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) formal-
ism [42–44]. Path integral techniques have been used to
represent stochastic models for decades. However, they have
more recently been applied to describe active Brownian mat-
ter [45,46]. After taking the continuum limit and making a
small density fluctuation approximation, we end up with an
equivalent U (1) gauge theory. We study some properties of
local microscopic interactions, explicitly deducing a nonequi-
librium thermodynamic potential [47] for the stationary states.
We show that the free energy of the orientational degrees
of freedom has the structure of a two-dimensional nonlocal
Frank free energy for a nematic liquid crystal [48–50], where
the bend and splay elastic constants can be cast in terms
of the Péclet number (Pe) [51] and the diffusion interaction
parameter (kd ) [52,53].

The paper is organized as follows: In Sec. II we present
the case of a single ABP, showing the functional formalism
for this simple case. In Sec. III we address the problem of
a system of N ABPs, explicitly constructing the generating
functional. We describe the hydrodynamics regime and the
emergent gauge symmetry in Sec. IV. Here, we display the
main result of the paper: the dual gauge theory describing
the interaction of density fluctuations and the orientational
degrees of freedom Eq. (64). In Sec. V we show a particular
case of local interactions, studying some properties of the
steady state. We discuss our results in Sec. VI and provide
some details of the calculations in Appendixes A and B.

II. WARMING UP: SINGLE ACTIVE
BROWNIAN PARTICLE

To establish the main concepts and to present the func-
tional formalism, in this section we consider a single active
Brownian particle in two dimensions. Its dynamics is given
by the following system of overdamped Langevin equations:

dr(t )

dt
= v0n(t ) + ξT (t ), (1)

dϕ(t )

dt
= ξR(t ), (2)

where r(t ) is the particle position and the unit vector

n(t ) = (cos ϕ(t ), sin ϕ(t )). (3)

The Gaussian white noises ξT (t ) and ξR(t ) are defined by〈
ξT
α

〉 = 〈ξR〉 = 0, (4)〈
ξT
α (t )ξT

β (t ′)
〉 = 2DT δαβδ(t − t ′), (5)

〈ξR(t )ξR(t ′)〉 = 2DRδ(t − t ′). (6)

Greek indexes indicate Cartesian coordinates in the plane
α, β = 1, 2. Moreover, we are using bold characters for vector
quantities. DT and DR are the translation and rotational diffu-
sion constants respectively. For v0 = 0, the system is a simple
Brownian motion, and the diffusion constant can be identified
with the environment’s temperature, DT = kBT , where kB is
the Boltzmann constant.

Some two point correlation functions can be explicitly
computed. For instance [54,55],

〈v(t ) · v(t ′)〉 = 4DT δ(t − t ′) + v2
0e−DR|t−t ′|, (7)

where v = dr/dt . Thus, velocities are correlated for times
smaller than τ = 1/DR. For a longer time scale the velocities
are uncorrelated.

A. Path integral formalism

To compute higher-order n-point correlation functions it
is convenient to use a path integral representation of the
stochastic process. The idea is to built a generating functional
Z[ηT , ηR] depending on vector sources ηT and ηR related with
translation and rotational degrees of freedom, in such a way
that〈

ri1 (t1) . . . rin (tn)n j1 (τ1) . . . n jn (τm)
〉

= δZ[ηT , ηR]

δηT
in

(tn) . . . δηT
i1

(t1)δηR
jn

(τm) . . . δηR
j1

(τ1)

∣∣∣∣∣
ηR,T =0

. (8)

The generating functional is defined as

Z[ηT , ηR] =
〈
exp

{∫
dt (r̄ · ηT + n̄ · ηR)

}〉
, (9)

where {r̄, n̄} is a solution of Eqs. (1) and (2) for a given noise
configuration. The brackets 〈. . .〉 indicate noise average. The
difficulty of this expression resides in the fact that an explicit
solution of the Langevin equation enters the definition. To
avoid this problem, we introduce a functional integration over
two vectors {r(t ), n(t )}, in such a way that

Z[ηT , ηR] =
∫

Dr(t )Dn(t )

×
〈
δ(OR)δ(OT ) det

[
δOT
δr

δOT
δn

δOR
δr

δOR
δn

]〉
ξT,ξR

× exp

{∫
dt (ηT · r + ηR · n)

}
. (10)

In this expression, the sources ηR and ηT couple with the
integration variables {r(t ), n(t )} and not with an explicit solu-
tion of the Langevin equations. The δ-functions constrain the
integration over this set of solutions. Explicit expressions of
OT and OR are given by

Oα
T = drα (t )

dt
− v0nα (t ) − ξT,α (t ), (11)

Oα
R = dnα

dt
+ εαβnβξR. (12)

The determinant in Eq. (10) is a Jacobian of the functional
variable transformation {r, n} → {ξT , ξR}. The operators in-
side the determinant are explicitly given by

δOα
T

δrβ
= δαβ dδ(t − t ′)

dt
, (13)

δOα
R

δnβ
=

{
δαβ d

dt
+ εαβξR

}
δ(t − t ′), (14)

δOα
T

δnβ
= −v0δ

αβδ(t − t ′), (15)

δOα
R

δrβ
= 0. (16)

The presence of a noise term in the determinant is an indica-
tion of the multiplicative character of the stochastic processes
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[56]. However, in this case this term is “transversal” leading
to important simplifications [57].

The final step is to compute the noise averages. This com-
putation can be done exactly (please see Appendix A). The
result is

Z[ηT , ηR] =
∫

Dr(t )Dn(t )δ(n · n − 1)

× exp

{
−S[r, n] +

∫
dt (ηT · r + ηR · n)

}
,

(17)

where the action S[r, n] is given by

S =
∫

dt

{
1

4DT
|ṙ|2 − v0

2DT
ṙ · n + 1

4DR
|ṅ|2 + v2

0

4DT

}
. (18)

Equations (17) and (18) are the main result of this section.
The integration measure in Eq. (17) constrains the integration
over n, to a set of unit vectors. The action of Eq. (18) has a
very simple form. The intrinsic velocity of the self-propelled
particle v0 couples the direction n(t ) with the velocity ṙ(t ), in
such away that the action is minimized when both quantities
are parallel to each other. The last term of Eq. (18) is a con-
stant and, of course, it does not modify fluctuations. However,
we decided to keep it since it has a clear physical meaning. It
is the entropy production rate, as we illustrate it below. It is
important to emphasize that Eqs. (17) and (18) are an exact
representation of the system of Langevin equations (1) and
(2). In fact, it can be checked that the two point correlation
function Eq. (7) is exactly reproduced using this formalism.

The functional formalism is very useful, not only to com-
pute higher-order correlation functions, but also to study
symmetries, conservation laws and fluctuation theorems. A
simple example is to look for the entropy production rate. The
heat dissipated into the environment Q, and thus, the increase
of entropy in the medium 
Sm associated with a specific
trajectory, is given by [56]


Sm = T S[r(t ), n(t )] − S[r(t ), n(t )], (19)

where T is the time-reversal operator. Using Eq. (18) we
obtain,


Sm = v0

DT

∫
dt ṙ · n. (20)

We find the total increase of entropy in the medium by aver-
aging over all trajectories

〈
Sm〉 = v0

DT

∫
dt 〈ṙ · n〉. (21)

By using Eqs. (1) and (2), it is simple to deduce
that 〈ṙ · n〉 = v0. In this way, we find for the entropy
production rate

d〈
Sm〉
dt

= v2
0

DT
, (22)

which is exactly the last constant term in Eq. (18). Thus,
this simple model of an active Brownian particle is producing
entropy at a constant rate proportional to the square of the
intrinsic velocity of the self-propelled particle.

III. MULTIPARTICLE SYSTEM

To study collective behavior of active particles, we extend
the previous model to a system on N interacting ABPs. The
system of Langevin equations now reads

dri(t )

dt
= v0ni(t ) + ξT

i (t ) −
∑
j �=i

∇U (|ri − r j |)), (23)

dnα
i

dt
= −εαβnβ

i ξR
i (t ), (24)

with ni · ni = 1. U (|ri − r j |)) is an arbitrary pair potential
between particles. The noise satisfies〈

ξT
α,i

〉 = 〈
ξR

i

〉 = 0, (25)〈
ξT

i,α (t )ξT
j,β (t ′)

〉 = 2DT δi jδαβδ(t − t ′), (26)〈
ξR

i (t )ξR
j (t ′)

〉 = 2DRδi jδ(t − t ′). (27)

In these equations, Latin indexes i, j = 1, . . . , N label the
particles, while the Greek indexes α, β = 1, 2 are Cartesian
components in the plane. It is important to stress that Eqs. (23)
and (24) should be interpreted in the Stratonovich stochastic
prescription. This is so because, only in this prescription the
transverse equation (24) implies a constant modulus of the
vectors ni(t ) (please see Refs. [57,58] and Appendix A).

This system of Langevin equations is quite difficult to treat
analytically. In this paper we present a functional formalism
to improve our understanding of the mathematical structure of
the system.

A. Functional formalism

The functional formalism for the multiple particle system
[59] follows the same line of reasoning of the previous sin-
gle particle case. In Appendix A, we built up the generating
functional of correlation functions of Eqs. (23) and (24). The
generating functional can be cast in the form

Z =
∫ (∏

i

Dri(t )

)⎛
⎝∏

j

Dn j (t )δ(n j · n j − 1)

⎞
⎠

× exp

{
−S[ri, ni] +

∑
i

∫
dt

(
ηT

i · ri + ηR
i · ni

)}
,

(28)

where, as before, i, j = 1, . . . , N labels each particle. The
first line of this equation is the integration measure where
the local constrain |n j (t )| = 1 is imposed by the δ function.
In the second line, the action can be split into

S = ST + SR + SI . (29)

The translation degrees of freedom are described by

ST =
∫

dt
∑

i

{
1

4DT

∣∣∣∣dri(t )

dt

∣∣∣∣
2

+ 1

4DT
|∇riŨ |2 − 1

2
∇2

ri
Ũ

}
,

(30)

where

Ũ (ri ) =
∑
j �=i

U (|ri − r j |). (31)
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ST , given by Eq. (30), describes the dynamic of the passive
overdamped Brownian system (v0 = 0).

Moreover, the action for the rotational degrees of freedom
is given by

SR = 1

4DR

∫
dt

∑
i

∣∣∣∣dni(t )

dt

∣∣∣∣
2

. (32)

The active character of the system is codified in the interaction
terms

SI = − v0

2DT

∫
dt

∑
i

{
ni · dri

dt
+ ni · ∇riŨ

}
. (33)

The first term is completely equivalent to the single particle
case, favoring configurations in which the actual velocity of
each particle is aligned with ni. The second term is proper of
a multiparticle system and favors the alignment of ni with the
total force felt by the particle i, due to the interactions of all
other particles. The interaction action SI is a subtle balance
between both quite different effects.

Similarly to the single particle case, this formalism is an
exact representation of the system of Langevin equations. In
the next sections, we explore some properties of this action in
specific approximations.

IV. HYDRODYNAMIC REGIME: EMERGENT U(1)
GAUGE SYMMETRY

We are interest in a huge number of active particles at
finite density, i.e., the number of particles N per unit area
A is finite, even in the limit N → ∞, A → ∞. Under this
assumption, we consider a continuum limit that we implement
it by simply promoting the particle label i = 1, . . . , N to a
continuum two-dimensional vector y ≡ (y1, y2). Moreover,
sums over particles turn out to transform into integrals,

i → y, (34)

∑
i

→ ρ0

∫
d2y, (35)

where ρ0 is a constant density. In this way

ri(t ) → r(y, t ), (36)

ni(t ) → n(r(y), t ). (37)

The last equation explores the fact that each variable ni, rep-
resenting the orientation of the velocity v0 of the ith particle,
is glued to the position ri of the particle i.

The passive particle contribution to the action is given by
Eq. (30). We can rewrite it, in the continuum limit, as

ST = SK + SU , (38)

where the kinetic part is given by

SK = ρ0

4DT

∫
dtd2y|∂t r(y, t )|2, (39)

and the interaction potential contribution is

SU = ρ3
0

4DT

∫
dtd2yd2y′d2y′′

× ∇U (r(y) − r(y′)) · ∇U (r(y) − r(y′′))

− ρ2
0

2

∫
dtd2yd2y′∇2U (r(y) − r(y′)). (40)

In Eqs. (39) and (40), r(y, t ) is a vector field of {y, t} and ∂t

stands for the partial derivative with respect to time.
A key observation is that ST [r(y, t )] is invariant under area

preserving diffeomorphisms [60]. To be concrete, consider the
variable transformation

y′
i = yi + εi j∂ j(y), (41)

with unit Jacobian

J = det(∂ jy
′
i ) = 1. (42)

From now on, Latin indexes i, j = 1, 2, labels coordinates in
the plane {y1, y2}. (y) is an arbitrary function and the symbol
∂ j ≡ ∂ /∂y j . The transformation of Eq. (41) preserves areas in
the y plane.

ST , given by Eqs. (39) and (40), is invariant under the
transformation given by Eq. (41). This fact follows from the
observation that each component of the field r(y) behaves as
a scalar, i.e.,

r′
α (y′) = rα (y), (43)

and the Jacobian is one, according to Eq. (42) (we use Greek
index α = 1, 2 to label components of the position vector).
Equation (43) implies that the position vector transforms as

δrα (y) = r′
α (y) − rα (y)

= −εi j∂irα (y)∂ j(y) + O(2). (44)

Since the transformation of Eq. (41) is a symmetry of the
system, there is an associated conserved quantity given by
Noëther theorem, ∫

d2y
δL
δṙα

δrα, (45)

where L is the Lagrangian density associated with the action
ST . Using Eqs. (39), (44), and integrating by parts we find

d

dt

[
∂ j

(
εi j

drα

dt
∂irα

)]
= 0. (46)

Therefore, due to the invariance under infinitesimal area pre-
serving diffeomorphisms, the quantity

ω(y) ≡ ∂ j

(
εi j

drα

dt
∂irα

)
(47)

is a constant.
To shed light on the physical interpretation of ω, let us

integrate this quantity in a bounded region � and apply Gauss
law, ∫

�

d2y ω(y) =
∮

∂�

drα

dt
drα. (48)

The right-hand side of this equation is the circulation of the
fluid velocity on the closed curve ∂�. The conservation of the
circulation of the velocity is known in fluid mechanics as
the Kelvin circulation theorem [61] and is applied to
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barotropic fluids subject solely to forces deriving from a po-
tential. Here, we are showing that the same result can be
applied to passive overdamped Brownian particles submitted
to interactions given by a two-body potential. The reason
behind this conservation is the invariance of the system under
infinitesimal area preserving diffeomorphisms. In principle,
we do not expect to have this conservation in the case of active
particles since self-propulsion is generated by nonconserva-
tive forces. However, in the next section we will show that, in
the special case of weak density fluctuations around a uniform
background, the vorticity is a conserved quantity even in the
case of ABPs.

A. Emergent U(1) gauge symmetry

The local density of particles, ρ(r), can be defined by

N =
∫

d2rρ(r), (49)

where N is the number of particles. By considering the field
r(y) as a mapping from {y} → {r}, we can change the inte-
gration variables to obtain

N ≡
∫

d2y ρ̄(y) =
∫

d2y det[∂irα] ρ(r(y)), (50)

where det[∂irα] is the Jacobian of the transformation r ≡ r(y).
However, we have the freedom to choose the coordinates y in
such a way that the density in y-space is a constant, ρ̄(y) = ρ0.
Then, the real density as a function of y can be written as

ρ(y) = ρ0 det

(
∂yi

∂rα

)
, (51)

where the determinant is the Jacobian of the inverse trans-
formation y ≡ y(r). In particular, a configuration of constant
density ρ(y) = ρ0 is characterized by a unit Jacobian, i.e.,
∂yi/∂rα = δiα . Then, a state of constant density is described
by the configuration

r(y) = y. (52)

To study the dynamics of small density fluctuations around a
constant density ρ0, we can parametrize fluctuations using a
vector field A(y, t ) as [60]

rα (y, t ) = yα + 1

ρ0
εαβAβ (y, t ). (53)

With this parametrization, an area preserving diffeomorphism,
such as Eq. (41) or Eq. (44), is now represented as

Ai(y) → Ai(y) + ρ0∂i(y), (54)

which is a usual U (1) gauge transformation. The particle
density Eq. (51) can be rewritten in this approximation as

ρ(y, t ) = ρ0 + ∇ × A(y, t ) (55)

(notice that in two-dimensions ∇ × A(y, t ) is a pseudoscalar
quantity). It is clear that the density is gauge invariant as
it should be, since area preserving diffeomorphisms cannot
change the density. Defining an emergent “magnetic field”
B = ∇ × A, we have that B represents density fluctuations
around a uniform background ρ0, since

δρ(y, t ) ≡ ρ(y, t ) − ρ0 = B(y, t ). (56)

It is necessary to bare in mind that the U (1) emergent gauge
symmetry is appearing in the small fluctuation regime, where
δρ/ρ0 = B/ρ0 << 1.

In this parametrization, the kinetic term of Eq. (39) takes
the form

SK = 1

4DT ρ0

∫
dtd2y|∂t A(y, t )|2. (57)

Moreover, using Eqs. (47) and (53), we can write the condition
of zero vorticity as

ω(y, t ) = 1

ρ0
∇ · ∂t A = 0. (58)

We can identify Eqs. (57) and (58), as the usual electric field
action, complemented with the Gauss law in the temporal
gauge A0 = 0. We can incorporate the field A0 as a Lagrange
multiplier, to get the Gauss law (zero vorticity) as an equa-
tion of motion. In this way, we can write SK in an explicit
gauge invariant form,

SK = 1

4DT ρ0

∫
dtd2y|E(y, t )|2, (59)

where we have defined the emergent “electric field” E =
−∇A0 − ∂t A. By functional deriving SK with respect to A0

we obtain the Gauss law ∇ · E = 0, which means that the fluid
has zero circulation. The constant 1/2DT ρ0 is playing the role
of the vacuum permittivity ε0.

Terms containing two-body potential interactions are given
by Eq. (40). By expanding r(y) using Eq. (53) by keeping only
the leading order terms in A(y), we can write SU in terms of
density fluctuations, that are already gauge invariant. We have
found for the complete action ST the expression

ST = 1

4DT ρ0

∫
dtd2y|E(y, t )|2

+
∫

dtd2yd2y′B(y, t )V (y − y′)B(y′, t ), (60)

in which

V (y − y′) = −1

2
∇2

y U (y − y′)

+ ρ0

4DT

∫
d2z∇zU (y − z) · ∇zU (z − y′). (61)

Therefore, the action for the translation degrees of freedom
in the small density fluctuation approximation is completely
equivalent to an “electromagnetic theory” in which the vac-
uum permittivity ε0 = 1/2DT ρ0 and V (y − y′) is playing the
role of a nonlocal inverse permeability μ−1

0 . Let us emphasize
that this emergent U (1) symmetry is not an exact symmetry
of the hole system. It is a manifestation of area preserving
diffeomorphisms in the limit of small fluctuations around a
constant density. This is the actual meaning of term emergent
symmetry.

The active character of the system is codified in the cou-
pling given by Eq. (33). In the continuum limit this action
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takes the form

SI = − v0ρ0

2DT

∫
dtd2y n(r(y), t ) · ∂t r(y, t )

− v0ρ
2
0

2DT

∫
dtd2yd2y′ n(r(y)) · ∇rU (r(y) − r(y′)).

(62)

Expanding r(y) using Eq. (53), we find to leading order in A,

SI = v0

2DT

∫
dtd2y n(y, t ) × E(y, t )

− v0ρ0

2DT

∫
dtd2yd2y′ (∇ · n(y))U (y − y′)B(y′), (63)

which is explicitly gauge invariant. The first line of Eq. (63)
is the transverse coupling between the emergent electric field
and the vector n. This term is minimized when the electric
field is perpendicular to n. The second line, couples the mag-
netic field with the divergence of n. It is worth to mention that
while the coupling of the electric field is a kinematic effect, the
coupling of the magnetic field is dynamical since it depends
on the microscopic two-body potential, as shown in the last
term of Eq. (63).

Collecting all terms together and writing the interactions in
terms of the gauge fields {A0, A}, we have the following gauge
invariant effective action

S = 1

4DT ρ0

∫
dtd2y|E(y, t )|2

+
∫

dtd2yd2y′B(y, t )V (y − y′)B(y′, t )

− v0

2DT

∫
dtd2y{A0(y, t )ω(y, t ) + A(y, t ) · J(y, t )}

+ ρ0

4DR

∫
dtd2y|∂t n(y, t )|2. (64)

The first line of this equation is the action of the “free”
emergent electromagnetic field with the usual terms propor-
tional to E2 and B2. The energy contribution of the magnetic
field is nonlocal, given by V (y − y′) that is related with the
microscopic two-body potential through Eq. (61). Notice that
this part of the action describes the dynamic of passive over-
damped Brownian particles in the weak density fluctuation
regime. The last term of Eq. (64) is the kinetic energy of
the orientational field n(y, t ), while the first two terms on the
second line describe the couplings between the gauge fields
and n(y, t ). These terms, proportional to v0, codify the actual
active character of the system.

The “electric charge density” (coupled with A0) is given by

ω(y, t ) = ∇ × n(y, t ), (65)

while the current density (coupled to A) has two different
contributions,

Ji(y, t ) = εi j∂t n j (y, t ) + J top
i (y, t ). (66)

The first term is of pure of kinematic origin while the second
term is a topological current given by

J top
i (y, t ) = ρ0εi j∂ j

∫
d2y′ U (y − y′)(∇ · n)(y′, t ). (67)

J topis topological in the sense that ∇ · Jtop = 0, independently
of the equations of motion. Equations (65) and (66) satisfy the
continuity equation

∂tω − ∇ · J = 0, (68)

as it should be due to gauge invariance.
Equation (64), together with the definitions of Eqs. (65)–

(67), is the main contribution of this paper. It describes the
dynamics of small density fluctuations coupled with orien-
tational degrees of freedom of active Brownian particles.
“Electric charge” in this dual gauge theory corresponds with
vorticity of the original fluid. Thus, ∇ × n acts a source of
vorticity. However, ∇ · n induces a topological vortex current
given by Eq. (67).

To go deeper into specific properties of the system, it is
convenient to detail the two-body potential between particles.
In the next section we study the simplest case of a local two-
body potential.

V. LOCAL POTENTIAL

Let us analyze in this section the simplest possible
two-body local interaction between active particles. Let us
consider

U (y − y′) = U0 δ2(y − y′), (69)

where the constant U0 measure the intensity of the local poten-
tial. U0 > 0 produces local repulsion between particles while
local attraction is modeled with U0 < 0.

For this model, the inverse permeability turns out to be lo-
cal V (y − y′) ∼ ∇2δ(y − y′) and the action of Eq. (64) takes
the form

S = 1

4DT ρ0

∫
dtd2y

{
|E|2 + ρ2

0U 2
0

(
1 + 2DT

ρ0U0

)
|∇B|2

− 2v0ρ0(A0ω + A · J) + ρ2
0 DT

DR
|∂t n|2

}
. (70)

The first interesting thing to remark is that in the limit of
local interactions, the magnetic term is proportional to ∇B
and not B itself. This is a clear consequence of the fact that
fluctuations with constant density (constant B) do not affect
the dynamics. Therefore, the energy of magnetic domains is
proportional to the domain boundaries rather than the domain
bulk.

In the case of repulsive potentials, the coefficient of |∇B|2
is positive. Thus, if v0 = 0, the system has a tendency to
be homogeneous, since density fluctuations are penalized.
However, for attractive potentials U0 < 0, there is a critical
diffusion constant DT c = ρ0|U0|/2 over which the system gets
unstable. In this regime, the greater the number of domain
boundaries the lower the energy. Then, there is a clear ten-
dency to pattern formation. It is important to stress that this
instability for attractive potentials already exist in passive
Brownian particles and it is not related with clustering or
MIPS, observed in active particles for repulsive potentials. In
our context, these effects should be a consequence of the inter-
action between the Gauge fields {A0, A} and the orientational
degrees of freedom n [given by the second line of Eq. (70)].
We address this issue in the next subsections. In Sec. V A we
study this interaction in the weak noise limit, while in Sec. V B
we focus on the orientational degrees of freedom.
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A. Weak noise limit

In the weak translation noise regime DT ρ0/DR << 1, the
generating functional is dominated by the classical equa-
tions of motion. The differential equations for the gauge fields
resembles the Maxwell equations in two dimensions. The
“Faraday law”

∇ × E + ∂t B = 0, (71)

as well as the absence of monopoles are satisfied automati-
cally due to gauge invariance. The equivalent equations to the
Gauss and Ampere laws read

∇ · E = v0ρ0ω, (72)

ρ2
0U 2

0

(
1 + 2DT

ρ0U0

)
ε ji∂ j∇2B + ∂t Ei = ρ0v0Ji, (73)

where the charge ω and the current J are given by

ω = ∇ × n, (74)

Ji = εi j∂t n j + ρ0U0εi j∂ j (∇ · n). (75)

Equations (72) and (73) describe the electromagnetic field
configurations, provided the charge and current distribution
are given. Charge and current are in turn determined by the
orientational field n(y, t ) according with Eqs. (74) and (75).
To complete the self consistent equations we need to derive
an equation for n(y, t ). The problem of minimizing S[n] with
respect to the orientational field is that the components are
not independent, since they are constrained by the condition
of constant modulus, |n(y, t )| = 1. To do this, we introduce a
Lagrange multiplier λ(y, t ) and minimize the extended action

S̃[n(y, t )] ≡ S +
∫

dtd2y λ(y, t )(|n(y, t )|2 − 1), (76)

with respect to the now independent variables {ni, λ}. The
equation of motion for n is obtained by computing

δS̃

δni(y, t )
= 0, (77)

δS̃

δλ(y, t )
= 0. (78)

We find

ρ2
0 DT

DR
∂2

t ni − λni = v0ρ0(εi jE j + ρ0U0∂iB), (79)

nini = 1. (80)

Equations (72), (73), (79), and (80) completely determine the
dynamics of the “electromagnetic field” or conversely, the

orientation field n of the self-propelled particles, in a regime
where DT ρ0/DR << 1.

In the static limit, the system of equations for the stationary
state takes the interesting form

∇ × E = 0, (81)

∇ · E = v0ρ0 (∇ × n), (82)

∇2B = − v0

U0
(
1 + 2DT

ρ0U0

) (∇ · n), (83)

ni = (εi jE j + ρ0U0∂iB)√
|E|2 + ρ2

0U 2
0 |∇B|2 + 2ρ0U0∇B × E

. (84)

The first equation is “Faraday law” while the second equa-
tion is the Gauss law, in which (∇ × n) acts as a source
of electric field and, as we have stated, is a source of local
vorticity. In Eq. (83), we see how (∇ · n) is a source of
curvature of density modulations. Finally, Eq. (84) shows that
the unit vector n(y) has essentially two components: one of
them perpendicular to the electric field and the other one in the
direction of magnetic field gradients. Due to the fact that n has
constant modulus, the system of equations is highly nonlinear.

It is striking to note that, even-though the interaction
potential is local, Eqs. (81)–(84) support solutions with
modulations of B (density modulations of the fluid). These
solutions could be related with clustering and/or MIPS, even
for repulsive potentials U0 > 0. The underling physics behind
this effect is the Gauge coupling between density fluctuations
and the orientation of the self-propelled particles. Another
important point is that this system support solutions with
local alignments of the vector n(y) and vortex configurations,
produced essentially by a combination of the self-propulsion
v0 and local microscopic repulsion, U0 > 0. The effect of
velocity ordering in the absence of any microscopic force that
explicitly aligns velocities was recently reported in Ref. [62],
where numerical simulations show the emergence of velocity
patterns, aligned or vortex-like domains. Fluctuations around
the saddle-point solutions, static as well as dynamical
ones, produce a much complex structure and deserve specific
detailed studies. In the following subsection we advance a fur-
ther step in understanding the structure of the velocity order.

B. Orientational degrees of freedom

It is interesting to investigate how density fluctuations in-
duce orientational order of the self-propelled particles. For
this, we can compute the effective action for the orientational
degrees of freedom by integrating out the gauge fields. To do
that, we can fix the Coulomb gauge ∇ · A = 0. In this gauge,
the contribution from A0 and A are decoupled, and can be

written in the following form

S =
∫

dtd2y

{ −1

4DT ρ0
A0∇2A0 + v0

2DT
A0ω

}
+

∫
dtd2y

{ −1

4DT ρ0
Ai

[
∂2

t − ρ2
0U 2

0

(
1 + 2DT

ρ0U0

)
∇4

]
Ai + v0

2DT
AiJi

}

+ ρ0

4DR

∫
dtd2y|∂t n|2. (85)
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The integrations over A0 and Ai are Gaussian and can be done without difficulty. We find

S =
∫

d2yd2y′dtdt ′ ni(y, t )

{
− ρ0

4DR
δ(t − t ′)δ2(y − y′) + v2

0

16D2
T

G(y − y′, t − t ′)
}
∂2

t ′ni(y′, t ′)

− v2
0ρ

3
0U 2

0

4DT

∫
d2yd2y′dtdt ′ [∇ · n(y, t )]∇2G(y − y′, t − t ′)[∇ · n(y′, t ′)]

+ v2
0ρ0

4DT

∫
d2yd2y′dt [∇ × n(y, t )]G0(y − y′)[∇ × n(y′, t ))]. (86)

The first line of Eq. (86) describes the dynamics of the
vector field n. We clearly see that the first term is local in time,
driven by the rotational noise with damping DR. However,
density fluctuations induce a nonlocal and retarded dynamics
driven by the Green function G(y − y′, t − t ′) that satisfies[

∂2
t − ρ2

0U 2
0

(
1 + 2DT

ρ0U0

)
∇4

]
G(y − y′, t − t ′)

= δ2(y − y′)δ(t − t ′). (87)

The second line of Eq. (86) is also dominated by the same
Green function that describes the interaction between sources
of the orientational field n. Finally, the last line of Eq. (86)
describes the interaction between two-dimensional vortices
(or antivortices). This term is local in time, and the potential
is the usual Logarithmic interaction between vortices in two
dimensions, since G0(y − y′) satisfies

∇2G0(y − y′) = δ2(y − y′). (88)

Finally, let us consider the effective action of a stationary
state configuration. For these configurations, the effective ac-
tion growths linearly in time. The effective action per unit
time defines a generalized potential that is equivalent to the
equilibrium Gibbs free energy[47]. We obtain

FNLF = ρ0DR

2

∫
d2yd2y′{Ks[∇ · n(y)]G0(y − y′)[∇ · n(y′)]

+ Kb[∇ × n(y)]G0(y − y′)[∇ × n(y′)]}, (89)

which has the form of a nonlocal two-dimensional Frank free
energy for a nematic fluid [48–50]. The first and second term
correspond to the energy of splay and bend deformations
respectively. It is worth to note that in two dimensions there
are no twist deformations [49]. In our model, we find for the
splay and bend elastic constants

Kb = v2
0

2DRDT
, (90)

Ks = v2
0

2DRDT

(
1

1 + 2DT
ρ0U0

)
. (91)

From these equations we can identify two different dimen-
sionless parameters. The bend elastic constant, Eq. (90) is
related with the so called Péclet number that it is generally
defined by the radio between the advective and the diffusive
transport rate [51],

Pe = Lv

D
. (92)

Here, L is a typical length of the system, v is a typical velocity
and D is a typical diffusion constant. In terms of the parame-
ters of our model, the Péclet number can be defined as

Pe ≡ v0√
2DRDT

. (93)

Just to make contact with the colloid literature, the rotational
diffusion constant is usually chosen as DR ∼ DT /σ 2 [21,63],
where σ is the typical radius of the colloid. In our local
model, a characteristic length scale is given by the density, so
σ 2 ∼ 1/ρ0, then our definition of the Péclet number is Pe ∼
v0ρ

−1/2
0 /DT , which coincides with most of the literature. We

prefer to consider DR and DT as independent parameters and
keep the expression of Eq. (93), since it is more natural in our
model.

Additionally, from Eq. (91) we can identify the dimension-
less constant

kd ≡ ρ0U0

2DT
, (94)

that is the radio of two characteristic energies of the system:
the microscopic two-body interaction and the typical ther-
mal interaction with the bath. kd is zero for free particles
and its sign characterizes repulsive or attractive interactions,
provided kd is positive or negative, respectively. We will
show that we can identify kd with the diffusion interaction
parameter [52,53].

With these definitions, the elastic constants simply read,

Kb = Pe2, (95)

Ks = Pe2

(
kd

1 + kd

)
, (96)

Notice that the ratio Kb/Ks is completely determined by the
diffusion interaction parameter kd .

Two-dimensional nematic phases with long ranged interac-
tions has been studied before [64,65]. However, in the present
case, very special properties arise due to the particular Log-
arithmic interaction in two dimensions. Interestingly, in our
case, the energy of splay and bend deformations are not inde-
pendent. To see this, it is not difficult to deduce the following
expression (please see Appendix B)

[∇ · n(y)]G0(y − y′)[∇ · n(y′)]

+ [∇ × n(y)]G0(y − y′)[∇ × n(y′)] = −δ(y − y′).
(97)

This is a weak equality, in the sense that it is only satisfied
inside the y and y′ integrals. Thus, we can write the free
energy only in terms of splay or, equivalently, in terms of
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bend deformations. By replacing Eq. (97) into Eq. (89) we
immediately find

F bend
NLF = κ

2

∫
d2yd2y′[∇ × n(y)]G0(y − y′)[∇ × n(y′)],

(98)

or, equivalently,

F splay
NLF = −κ

2

∫
d2yd2y′[∇ · n(y)]G0(y − y′)[∇ · n(y′)],

(99)

where we have ignored additive constant terms. The stiffness
κ = ρ0DR(Kb − Ks) is given by

κ = ρ0DR
Pe2

(1 + kd )
. (100)

This expression can be cast in terms of an effective Péclet
number Pe2

eff , where

Pe2
eff = v2

0

2DRD
, (101)

in which the bare translational diffusion DT has been replaced
by the effective diffusion of the interacting system

D = DT (1 + kd ). (102)

This last equation is exactly the phenomenological definition
of the diffusion interaction constant kd that, in perturbation
theory, is related with the second virial coefficient B2 [52,53].

A curious property of the free energy of Eq. (89) is that, if
both elastic constant are equal Ks = Kb, by using Eq. (97) we
conclude that the free energy FNLF is a constant, independently
of the orientation of the director n. Thus, in this conditions the
system is in a completely orientational disordered phase. This
case corresponds to the extremely strongly coupled regime
ρ0U0 → ∞ or kd → ∞ in such way that the stiffness κ → 0.
This is in contrast with the local Frank free energy, in which
the equality of the elastic constants leads to the celebrated XY
model [50].

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied some aspects of active
Brownian matter. Specifically, we have considered a system
of overdamped Langevin equations [Eqs. (23) and (24)] de-
scribing a set of two-dimensional N active Brownian particles,
interacting thorough a two-body potential U (ri − r j ). The
active character of each particle is codified in a self-propelled
velocity v0n̂i(t ) with constant modulus v0 and random orien-
tations of the unit vector n̂i.

By means of a Martin-Siggia-Rose-Jensen-de Dominicis
procedure, we have built a functional representation of the
system. This path integral formalism is useful to compute
different kind of correlation functions and, perhaps more im-
portant, to study symmetry properties and the corresponding
phase transitions. We focused in the continuum limit, to de-
scribe the hydrodynamic regime of active Brownian matter.

Assuming a uniform density background, we have shown
the appearance of an emergent U (1) symmetry for weak
density fluctuations. This symmetry is reminiscent of the in-
variance under area preserving diffeomorphism of the particle
system, when analyzed in a regime of weak density fluctu-
ations. Thus, local density fluctuations can be parametrized

by an emergent “magnetic field,” δρ = B, while the emergent
“electric field” has a kinetic origin and implements the con-
servation of the local vorticity in the form of an “emergent
Gauss Law.” In this way, the effective action can be cast
in a similar way than an electromagnetic theory, albeit with
a nonlocal permeability that depends on the details of the
microscopic two-body potential U (ri − r j ). The gauge field
couples minimally with a conserved current (ω, J). While
the charge ω is related to fluid vorticity by ∇ × n, the vortex
current J contains, beyond a dynamical term ∂t n, a topological
component induced by ∇ · n. The conservation of vorticity in
the active system can be traced back to the Kelvin circulation
theorem of fluid mechanics that sets the conservation of the
circulation of the velocity. A priori, we do not expect this
kind of conservation for active fluids due to the fact that self-
propulsion comes form nonconservatives forces. However, we
have shown that, in a regime of weak fluctuations around a
constant homogeneous density, the vorticity is conserved due
to the appearance of an emergent Gauge symmetry.

The main goal of the paper was to provide a macro-
scopic description of the interaction between density fluctu-
ations δρ(y, t ) = ρ(y, t ) − ρ0 and the local orientational field
n(y, t ). The main result is the gauge theory of Eq. (64) that
describes this coupling for any reasonable two-body micro-
scopic potential in a regime in which δρ/ρ0 << 1.

As an example, we have studied in some detail the partic-
ular case of a local two-body potential. In this case, the gauge
theory is also local. Although this is an extremely simple inter-
action potential, we have shown that the model could describe
two striking properties of active matter, i.e., clustering and
local velocity alignment. Clustering could be inferred from
possible nonhomogeneous solutions of the steady-state equa-
tions of motion in the weak-noise limit. We have also studied
the velocity alignment structure by integrating out density
fluctuations. Interestingly, the effective free energy for station-
ary states has the structure of a nonlocal Frank free energy for
a nematic liquid. The bend and splay elastic Frank constants
can be cast in terms of two dimensionless parameters: the
Péclet number (Pe) and the diffusion interaction constant (kd ).
In fact, kd , that codifies the microscopic interactions, controls
the relative weight of bend and splay contributions to the free
energy. Interestingly, the specific Logarithmic interactions
makes the global properties of the nonlocal Frank free energy
very different from its local counterpart. Remarkably, it seems
that the simplest two-body local potential could be a good
model to describe some of the main striking phenomenology
observed in active matter, in experiments as well as numerical
simulations.

We hope that the present proposal could be a good starting
point to help us to improve our understanding of the dynamics
as well as the stationary phases of active matter. We leave
the study of different kinds of topological defects supported
by the action of Eq. (86), as well as, the study of its phase
diagram and complex dynamics for a future presentation.
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APPENDIX A: GENERATING FUNCTIONAL FOR A
SYSTEM OF N ACTIVE BROWNIAN PARTICLES

Consider the following system of stochastic equations

dri(t )

dt
= v0ni(t ) −

∑
j �=i

∇riU (|ri − r j |)) + ξT
i (t ), (A1)

dnα
i

dt
= −εαβnβ

i ξR
i (t ), (A2)

where i = 1, . . . , N . Greek index α, β = 1, 2 represent the
components of two dimensional vectors. We use bold letters
to indicate two-dimensional vector quantities.

Equation (A1) is a system of overdamped Langevin equa-
tions for N active particles with positions r1, . . . , rN , each one
with e persistent velocity v0ni. The particles interact with a
force between pairs given by

Fi({r}) ≡ ∇riŨi({r}) ≡ ∇ri

∑
j �=i

U (|ri − r j |)). (A3)

Fi({r}) is the force exerted by the j = 1, . . . , N − 1 particles
on the ith particle by means of the potential Ũi({r}). The nota-
tion {r} means the set of N particles with positions r1, . . . , rN .
The vector white noise ξT

i (t ) is defined by the correlation
functions, 〈

ξT
α,i

〉 = 0, (A4)〈
ξT

i,α (t )ξT
j,β (t ′)

〉 = 2DT δi jδαβδ(t − t ′), (A5)

where DT is the translation diffusion constant that can be
identified with the temperature of the environment DT = kBT .
The noise for the rotational degrees of freedom is given by〈

ξR
i

〉 = 0, (A6)〈
ξR

i (t )ξR
j (t ′)

〉 = 2DRδi jδ(t − t ′), (A7)

where DR is the rotational diffusion constant.
The direction of the persistent velocity ni(t ) is governed

by a stochastic differential equation given by Eq. (A2). εαβ

is the complete antisymmetric Levi-Civita tensor in two-
dimensions, that guarantee that the equation is automatically
transverse. Multiplying Eq. (A2) by nα

i we immediately obtain

ni · dni

dt
= 0. (A8)

In the Stratonovich stochastic prescription this transversality
implies that

ni · dni

dt
= 1

2

d (ni · ni )

dt
= 0 (A9)

and therefore |ni(t )| = constant. In any other prescription,
Eqs. (A8) and (A9) are not equivalent. Consequently, the
stochastic evolution, given by Eq. (A2), does not keep the
modulus constant in this case. If for some reason we insist
in modeling the stochastic evolution of a vector with constant
modulus, in any other prescription other than Stratonovich, we
should modify Eq. (A2) properly [57,58].

In the following we build up the generating functional for
correlation functions of Eqs. (A1) and (A2). The generating
functional is given by

Z[ηT , ηR] =
∫ (∏

i

Dri(t )

)⎛
⎝∏

j

Dn j (t )

⎞
⎠

×
〈
δ(OR)δ(OT ) det

[
δOT
δr

δOT
δn

δOR
δr

δOR
δn

]〉
ξT,ξR

× exp

{∫
dt (ηT · r + ηR · n)

}
, (A10)

where ηT and ηR are sources to compute correlation functions.
In Eq. (A10) we have introduced the vector functions

Oα
T,i = drα

i (t )

dt
− v0nα

i (t ) + ∇α
ri
Ũi − ξT,α

i (t ), (A11)

Oα
R,i = dnα

i

dt
+ εαβnβ

i ξR
i . (A12)

The operators in the determinant are given by

δOα
T,i

δrβ
j

=
{
δi jδ

αβ d

dt
+ ∇rβ

j
∇rα

i
Ũi

}
δ(t − t ′), (A13)

δOα
R,i

δnβ
j

=
{
δαβ d

dt
+ εαβξR

i

}
δi jδ(t − t ′), (A14)

δOα
T,i

δnβ
j

= −v0δi jδ
αβδ(t − t ′), (A15)

δOα
R,i

δrβ
j

= 0. (A16)

The main goal of this formalism is to try to exactly inte-
grate over the noise, to have a representation only in terms of
the trajectories ri and ni. To do this we first exponenciate the
δ functions by using a couple of auxiliary vectors AT and AR

in such a way that

δ(OT ) =
∫ (∏

i

DAT,i(t )

)
ei

∫
dt

∑
i Aα

T,iO
α
T,i , (A17)

δ(OR) =
∫ (∏

i

DAR,i(t )

)
ei

∫
dt

∑
i Aα

R,iO
α
R,i . (A18)
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We also exponenciate the determinant by using two sets of independent vector Grassmann variables {ψ̄T,i,ψT,i} and {ψ̄R,iψR,i}
in such a way that

det

[
δOT
δr

δOT
δn

δOR
δr

δOR
δn

]
=

∫ (∏
i

Dψ̄T,iDψT,iDψ̄R,iDψR,i

)
exp

⎧⎨
⎩
∫

dtdt ′ ∑
i j

ψ̄α
T,i(t )

δOα
T,i

δrβ
j

ψ
β
T, j (t

′) + ψ̄α
R,i(t )

δOα
R,i

δnβ
j

ψ
β
R, j (t

′)

⎫⎬
⎭.

(A19)

With these tricks, the noises enter the exponential linearly an can be exactly integrated. Collecting all the noise terms we have

〈Inoise〉 = 〈
e−i

∫
dt

∑
i Aα

T,iξ
α
T,i
〉
ξT

〈
e
∫

dt
∑

i (iAα
R,in

β
i +ψ̄α

R,iψ
β
R,i )εαβξR,i

〉
ξR

. (A20)

The mean values can be computed exactly since the integrals over the noises are Gaussian. The result is

〈Inoise〉 = e− ∫
dt

∑
i {DT |AT,i|2+DR (AR,i×ni )2}e2iDR

∫
dt

∑
i{(AR,i×ni )(ψ̄R,i×ψR,i )+(ψ̄R,i×ψR,i )

2}. (A21)

The next step is the integration over the Grassmann variables. Collecting all the terms in Grassmann variables we find∫ (∏
i

Dψ̄T,iDψT,iDψ̄R,iDψR,i

)
exp

{∫
dt

∑
i

(
ψ̄T,i · dψT,i

dt
+ ψ̄R,i · dψR,i

dt

+ 2iDR[(AR,i × ni )(ψ̄R,i × ψR,i ) + (ψ̄R,i × ψR,i )
2]

)
+

∑
i j

(
ψ̄α

T,iψ
β
T, j∇rβ

j
∇rα

i
Ũi

)⎫⎬⎭
= exp

{∫
dt

∑
i

1

2
∇2

ri
Ũi

}
. (A22)

The last result was obtained by using the relations

〈
ψ̄α

T,i(t )ψβ
T, j (t

′)
〉 = δi jδ

αβGR(t − t ′), (A23)〈
ψ̄α

R,i(t )ψβ
R, j (t

′)
〉 = δi jδ

αβGR(t − t ′), (A24)〈
ψ̄α

T,i(t )ψβ
R, j (t

′)
〉 = 0, (A25)

where GR(t − t ′) is the retarded Green’s function of the oper-
ator d/dt and GR(0) = 1/2 corresponding to the Stratonovich
stochastic prescription.

After the noise and Grassmann variables integration we
find for the action,

S =
∫

dt
∑

i

DT |AT,i|2

+ iAα
T,i

{
drα

i (t )

dt
− v0nα

i (t ) + ∇rα
i
Ũi

}

+ DR(AR,i × ni )
2 + iAα

R,i

dnα
i

dt
− 1

2

∑
j �=i

∇2
ri
U . (A26)

Now, we need to integrate over AT and AR. The integral
over AT is Gaussian and can be done without any difficulty.
The integral over AR is more interesting since it hides the
constraint on ni. Let show this explicitly. For fix n, we can
choose a local frame to write the components of AR in the
following way:

Aα
R,i ≡ a‖,inα

i + a⊥,iε
αβnβ

i . (A27)

In terms of these coordinates, the second line of Eq. (A26)
reads

DRa2
⊥ + ia‖,ini · dni

dt
+ ia⊥,i

(
ni × dni

dt

)
. (A28)

The integral over a⊥,i is Gaussian and can be done easily. The
result is

1

4DR

∫
dt

∑
i

(
ni × dni

dt

)2

. (A29)

However, the integral over a‖,i is linear, its integration produce
the δ function

δ

(
ni · dni

dt

)
. (A30)

This constraint in the Stratonovich stochastic convention is
equivalent to a constant modulus, |ni| = constant.

Putting all terms together, the action can be cast in the
following way:

S = ST + SR, (A31)

where

ST = 1

4DT

∫
dt

∑
i

{
dri(t )

dt
− v0ni(t ) + ∇riŨi

}2

+ 1

2

∫
dt

∑
i

∇2
ri
Ũ ({r}), (A32)

SR = 1

4DR

∫
dt

∑
i

(
ni × dni

dt

)2

. (A33)

Equation (A32) is the Onsager–Machlup action correspond-
ing to the stochastic equation Eq. (A1). The last term
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is the Jacobian of the variable transformation from ξT to
r, in the Stratonovich prescription. For this reason is the
1/2 at the front of this term. Moreover, Eq. (A33) is the
Onsager–Machlup action corresponding to the stochastic
equation Eq. (A2). The last term is the Jacobian of the variable
transformation from ξR to n, in the Stratonovich prescription.
It is important to note, that this action has the implicit con-
straint |ni| = 1.

It is more convenient to rewrite Eqs. (A32) and (A33) is a
Lagrangian form. To do this we expand the squares of the the
first line of both equations. Eq. (A32) can be rewritten as

ST =
∫

dt
∑

i

1

4DT

∣∣∣∣dri(t )

dt

∣∣∣∣
2

+ 1

4DT
|∇riŨ |2 − 1

2
∇2

ri
Ũ

−
∫

dt
∑

i

v0

2DT
ni ·

(
dri

dt
+ ∇riŨ

)

+ v2
0

4DT
(t f − ti ) +

∑
i

Ũi(t f ) − Ũi(ti )

2DT
. (A34)

The first line of this equation is the usual MSRJD action for
a system of particles with two-body potential U and an over-
damped dynamics characterized by a diffusion constant DT .
The second line, is the coupling with the orientational degrees
of freedom coming from the active part of the dynamics, and
is proportional to v0/2DT . The last lines, are constant terms,
coming from the integration of total time derivatives. While
these terms are important to compute some equilibrium prop-
erties, they do not affect fluctuations given by the correlation
functions of ri and ni.

In the same way, we find for the rotational degrees of
freedom

SR = 1

4DR

∑
i

∫
dt

∣∣∣∣dni

dt

∣∣∣∣
2

, (A35)

where we have explicitly used the condition ni · ni = 1.
Putting both terms together [Eqs. (A34) and (A35)], we

find the action of Eqs. (29)–(33).

APPENDIX B: RELATION BETWEEN BEND AND SPLAY
CONTRIBUTIONS TO THE FREE ENERGY

In this Appendix we provide an explicit demonstration of
Eq. (97) that is at the stem of the relation between the energy
of bend and splay deformations.

Let us begin with the expression

Irot ≡
∫

d2yd2y′[∇ × n(y)]G0(y − y′)[∇ × n(y′)]

=
∫

d2yd2y′εi jε�m∂in j (y)G0(y − y′)∂ ′
�nm(y′). (B1)

In the second line, we rewrote the same expression of the first
line in component notation. εi j is the complete antisymmetric
Levi-Civita tensor, ∂i ≡ ∂/∂yi and ∂ ′

j ≡ ∂/∂y′
j and we are

assuming summation over repeated index. Now, we make use
of the tensor relation

εi jε�m = δi�δ jm − δimδ j�, (B2)

obtaining

Irot =
∫

d2yd2y′{∂in j (y)G0(y − y′)∂ ′
i n j (y

′)

− ∂in j (y)G0(y − y′)∂ ′
jni(y

′)}. (B3)

Integrating by parts in y and y′ we find

Irot =
∫

d2yd2y′{n j (y)∂i∂
′
i G

0(y − y′)n j (y
′)

− n j (y)∂i∂
′
jG

0(y − y′)ni(y
′)}, (B4)

where we have ignored total derivative terms.
In the next step we take advantage of the translational in-

variant property of G0 and replace, in the first term ∂ ′
i → −∂i

and in the second term, ∂i → −∂ ′
i and ∂ ′

j → −∂ j . We get

Irot =
∫

d2yd2y′{−n j (y)∇2G0(y − y′)n j (y
′)

− n j (y)∂ ′
i∂ jG

0(y − y′)ni(y
′)}. (B5)

One important point is that

∇2G0(y − y′) = δ2(y − y′), (B6)

and ni(y)ni(y) = 1. Using this expression in the first line of
Eq. (B5) and integrating by parts in y and y′ in the second
line,

Irot =
∫

d2yd2y′{−δ2(y − y′)

− ∂ jn j (y)G0(y − y′)∂ ′
i ni(y

′)}. (B7)

Rearranging terms in Eq. (B7) and coming back to vector
notation we finally find∫

d2yd2y′{[∇ × n(y)]G0(y − y′)[∇ × n(y′)] + [∇ · n(y)]

× G0(y − y′)[∇ · n(y′)] + δ2(y − y′)} = 0, (B8)

which it is exactly the relation of Eq. (97).
Summarizing, as we have said in the main text, the expres-

sion of Eq. (97) only has sense inside the integration over y
and y′ and essentially depends on the fact that the interaction is
Logarithmic and the modulus of the vector n(y) is a constant.
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