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Solvable model of driven matter with pinning
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We present a simple model of driven matter in a 1D medium with pinning impurities, applicable to magnetic
domains walls, confined colloids, and other systems. We find rich dynamics, including hysteresis, reentrance,
quasiperiodicity, and two distinct routes to chaos. In contrast to other minimal models of driven matter, the
model is solvable: we derive the full phase diagram for small N , and for large N , we derive expressions for order
parameters and several bifurcation curves. The model is also realistic. Its collective states match those seen in
the experiments of magnetic domain walls.
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I. INTRODUCTION

Driving matter through disordered environments has di-
verse applications in science. Magnetic domain walls and
other quasiparticles may be driven off material defects and
used as memory units in spintronics [1–4]. Electromagnetic
colloids may be forced to self-assemble into cargo carriers for
high-precision medicine [5–8]. The colloids may also be used
to repair circuits [9], purify water [10], and shatter blood clots
[11,12].

All these applications rely on our ability to predict how a
given matter collective reacts to driving. To be concrete here,
imagine a particle swarm being pushed around by an external
field. We need to be able to predict the swarm’s movements,
and how those movements change as we change parameters—
to predict its collective dynamics and bifurcations. Predicting
these however is hard, because of swarms’ numerous degrees
of freedom and nonlinear particle interactions. It takes us
into the world of nonequilibrium statistical mechanics and
many-body dynamical systems where standard tools and tech-
niques fail. Take magnetic domain walls. Each one obeys
the integro-differential Landau-Lifshitz-Gilbert equation, so
N obey a set of coupled such equations whose solution is
virtually impossible. (For N = 1, 2 walls approximations such
as the (q, φ) model [13,14] have been derived, but bifur-
cations and scaling beyond N > 2 is difficult [14,15].) And
for magnetic colloids, because of the coupling to the host
fluid, there is an extra Navier-Stokes type equation added
to the mix. Vicsek-type models are sometimes used as ap-
proximations here [16–19], but are still largely intractable;
order parameters and bifurcation are often computed numeri-
cally [16,18,20,21], leaving solvable models of driven matter
scarce.
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This paper helps close this research gap by introducing
a model of driven matter which is solvable (in the sense
that expressions for its order parameters and several of its
bifurcation curves may be derived explicitly). Our approach
is to study a deliberately simplified model which hopefully
captures behavior with some universality, as opposed to a
detailed model specific to magnetic particles or colloids. The
model’s form is inspired from studies of coupled oscillators
[22–26] which allows us to leverage new tools from that field
to solve it.

II. MODEL

Consider N particles moving in a one dimensional (1D)
periodic domain obeying

ẋi = E − b sin(xi − αi ) + J

N

∑
j

sin(x j − xi ) cos(θ j − θi ),

(1)

θ̇i = E − b sin(θi − βi ) + K

N

∑
j

sin(θ j − θi ) cos(x j − xi ).

(2)

Here (xi, θi ) ∈ (S1,S1) where S1 is the unit circle are the
ith particle’s position and phase, respectively. This phase
could represent the orientation of a particle, the (in-plane)
orientation of an electric or magnetic dipole, or be associ-
ated with an internal rhythm, like the chemical oscillation
on the surface of an autocatalytic particle [27]. Domain dis-
order is modeled by the b sin(·) terms, which pin xi and θi

to sites αi, βi (we do not consider thermal disorder), and
external driving by the E terms. The Kuramoto sin(·) cos(·)
terms capture particle interactions. For the phases θi, this
creates synchronization which depends on the distance, for
the positions xi, aggregation which depends on the particles’
phases, natural choices of interaction because they occur in
diverse systems such as Janus particles [28] and Quincke
rollers [29]. We ignore excluded volume interactions for
simplicity.
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FIG. 1. States and bifurcations for J = −K . (a) Pinned (E = 0.4, K = 0.5), (b) half-pinned (E = 0.4, K = 1.1), (c) sync (E = 0.4, K =
2.1), (d) periodic in x, fixed in θ (E = 0.7, K = 1.0), (e) periodic in both x and θ (E = 0.7, K = 1.8), (f) chaotic (E = 1.1, K = 1.0). Lyapunov
exponents highlight the bifurcations for two different values of E . (g) E = 0.7, (h) E = 1.1. The system is integrated with (dt, T ) = (0.01, 100)
using an RK4 method.

III. SMALL N REGIME

We explore the little N limit with a case study of N = 2
particles. The physical system we have in mind here is two
magnetic domain walls moving on circular race track memory
[30], similar to recent experiments [31], (there, however, the
spatial domain was a straight line; here it is periodic, x ∈ S1).
For simplicity, we study symmetric pinning sites (α1, α2) =
(β1, β2) = (0, π ) (which may be appropriate for periodic sub-
strates [19,32]). Setting b = 1 without loss of generality and
moving to coordinates (x±, θ±) = ((x1 ± x2)/2, (θ1 ± θ2)/2)
yields

ẋ+ = E − cos x+ sin x−, (3)

ẋ− = − sin x+ cos x− − J

2
sin 2x− cos 2θ−, (4)

θ̇+ = E − cos θ+ sin θ−, (5)

θ̇− = − sin θ+ cos x− − K

2
sin 2θ− cos 2x−. (6)

The behavior of the model divides into two cases depending
on the relative sign of J and K . We present the opposite sign
case first because it contains the most relevant physics.

A. Opposite sign coupling

We start with setting J = −K for ease since the magnitude
of J does not change the overall phenomena which will be
discussed later in this section. First, we develop some intuition
for our system by visualizing its dynamics. Imagine the parti-
cles as moving dots in the (x, θ ) plane with periodic boundary
conditions (equivalently, the torus). Limit case dynamics are
easy to picture. When the driving dominates E � b, K , the
particles will be swept around the plane in uniform rotations.
When the pinning is large b � E , K , they will freeze into their
pinning sites xi = θi = αi. And when the coupling wins out
K � b, E , they will unstick from αi and lock into synchrony
(since J = −K , it will not be straightforward synchrony x1 =
x2, θ1 = θ2, which we expect for J = K , but some type of

antisync). But what happens when the three effects have com-
parable strengths b ≈ K ≈ E? And how do the various states
arise and disappear as the parameters change?

To answer these questions, we ran numerical experiments.
Figure 1 shows our results, but before we talk through them,
one should look at the bifurcation diagram in Fig. 2 which
shows where each collective state occurs in parameter space.
Having this birds eye view of the system’s dynamics in mind
as you read will help you follow the story. Supplemental
Movie 1 [33] also presents a live demo of our experiments
which is also useful to watch at this point.

To begin, we realized the pinned state—a natural “ground
state” to perturb around—by turning off the driving E = 0
and setting the phase coupling K small. Fig. 1(a) shows
time series of the coordinates x±, θ± relaxing from random

FIG. 2. Bifurcation diagram for N = 2 particles for J = −K .
Black lines denote theoretical predictions, and colors signify the
largest Lyapunov exponent. In the periodic and chaotic parameter
regions, bistability was sometimes observed.
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initial conditions to the pinning sites, depicted as dotted lines
(in the ± coordinates, the sites are α± = ±π/2). Then we
gradually increased K , expecting the particles to synchronize
in the sense of minimizing their space differences x− and
phase differences θ−. (Note, however, that since driving is
turned off, we do not expect the particles to oscillate here,
we expect them to just shift to a new fixed point.) We find two
transitions. First, a half-pinned state emerges, where θ± stay
pinned, but the phases x± are locked into a new sync fixed
point [Fig. 1(b)]. Notice the θ± line settles onto the pinning
sites (dotted line), but x± does not. In the second transition, the
remaining coordinates depin and a full sync state is realized
where all four coordinates lie off the pinning sites [Fig. 1(c)].

We have thus found three static states with the driving
turned off E : pinned, half-pinned, and sync. As we turn on
the driving E > 0, how much can each state withstand before
x±, θ± unlock and start moving? Look at the bifurcation dia-
gram in Fig. 2. For E � 0.25, the pinned → half-pinned →
sync transition persists, but for larger driving E ≈ 0.5, some
periodic states (green region near the solid black boundary)
arise between the half-pinned and sync states. Here, either
two of the four coordinates (x±, θ±) oscillate, the others re-
maining fixed [Fig. 1(d)], or all four coordinates oscillate
[Fig. 1(e)]. For larger driving till E ≈ 0.8, the pinned state
morphs directly into periodicity, which in turn undergoes an
intermittency transition to chaos (orangish region highlighted
in the figure) depicted in Fig. 1(f). Finally, for E > 1, the
static states vanish and the dynamic ones become reentrant:
the system flip flops between chaotic and periodic motion,
then settles into chaos (bistability between the two states was
sometimes observed).

To confirm the motion was chaotic, we computed a heat
map of Lyapunov exponents λmax in the (K, E ) plane and saw
λmax > 0 where expected. We also compute power spectra
which indicate the chaos transition is of the intermittent type.
In Fig. 3, we analyze in detail the chaotic behavior by plotting
the bifurcation diagram, power spectra, and time series for
J = −K with N = 2 swarmalators. Chaotic behavior emerges
when the driving strength E increases. The route is intermit-
tent which can be seen from the power spectral density (PSD)
plot. For convenience, we also plot the Lyapunov exponents
λ(K ) to show the bifurcation sequence at E = 0.7 and E =
1.1 in Figs. 1(g) and 1(h).

Now we turn to analysis. We derive fixed-point expressions
for x±, θ± in the static states and derive their bifurcation
curves drawn as black lines in Fig. 2. We find the fixed points
by setting the RHS of Eqs. (3)–(6) to zero. Then we eliminate
(x−, θ−) using Eqs. (3) and (5) and substitute the result into
Eqs. (4) and (6):

√
1 − E2 sec2 x+

(
EK (2E2 sec2 θ+ − 1)

cos x+
− sin x+

)
= 0,

(7)√
1 − E2 sec2 θ+

(
EK (2E2 sec2 x+ − 1)

cos θ+
− sin θ+

)
= 0.

(8)

The system has form AB = CD = 0, implying four sets of
fixed points. When (A,C) = (0, 0) we get the pinned state.
When (A, D) = (0, 0) or (B,C) = (0, 0) we get the half-

FIG. 3. Bifurcation diagram, power spectral density and time
series. K = −J = −1.5. Simulation is performed with N = 2 swar-
malators. For plotting the bifurcation diagram we have simulated our
model for T = 2000 time units with step-size dt = 0.01 by RK4
method. Then last 5% data were considered and the local minimum
was plotted. The same numerics were used for the PSD. The time
series of x1 are shown for four different values of E over T = 250
time units starting from the initial time t = 0.

pinned state (in the one xi stays pinned, θi syncs, in the
other the reverse), and when (B, D) = (0, 0) we get the sync
state. We now analyze each state one-by-one. The overall
strategy is simple: the fixed points, and then determine their
stability by linearization, but the calculations themselves are
quite involved with long, many-term equations [for example,
see Eqs. (A42)–(A46)]. We defer some of the more winding
calculations to the Appendix.

1. Pinned state

(A,C) = (0, 0) corresponds to the “pinned” state defined
by √

1 − E2 sec2 x+ = 0, (9)√
1 − E2 sec2 θ+ = 0, (10)

which have solution
x+ = ± cos−1 ±E , (11)

x− = ±π

2
, (12)

θ+ = ± cos−1 ±E , (13)

θ− = ±π

2
. (14)

There are 16 total solutions, corresponding to the permutation
induced by the various ±′s. Notice these only exist for E � 1.
Only four are stable:

(x+, x−, θ+, θ−)

= (cos−1(−E ),−π/2, cos−1(−E ),−π/2), (15)

or (cos−1(−E ),−π/2,− cos−1(E ), π/2), (16)

or (− cos−1(E ), π/2, cos−1(−E ),−π/2), (17)

or (− cos−1(E ), π/2,− cos−1(E ),−π/2). (18)
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The eigenvalues are simply found using Mathematica,

λ = −
√

1 − E2,
√

1 − E2 − K, (19)

both with multiplicity two. Recall that fixed points exist only
when E � 1, which means one of the two λ is always nega-
tive. The second one become unstable via a zero-eigenvalue
bifurcation at

Ec1 =
√

1 − K2, (20)

which defines the stability boundary of the state (black curve
in Fig. 2)

2. Half-pinned state

This state is defined by a symmetric pair of fixed points:
when xi stays pinned and θi syncs, or the reverse. In the above
notation, these correspond to (A, D) = (0, 0) and (B,C) =
(0, 0). We study the (A, D) = (0, 0) without loss of generality,
given by √

1 − E2 sec2 x+ = 0, (21)√
1 − E2 sec2 θ+

× (EK sec θ+(2E2 sec2 x+ − 1) − sin θ+) = 0. (22)

Using Mathematica, we find 32 solutions to these, of which 4
are stable. These 4 fixed points have the form

x+ = − cos−1(−E ), (23)

x− = −π

2
, (24)

θ+ = cos−1

(
−

√
1 − √

1 − 4E2K2

√
2

)
, (25)

θ− = − sin−1

( √
2E√

1 − √
1 − 4E2K2

)
. (26)

Finding the stability of these is harder. The Jacobian matrix
yields eigenvalues λ1, λ2, λ3, λ4 whose expressions are daunt-
ing. See Appendix A for details. Solving λ3 = 0 and removing
the square roots by successive squaring however leads to see
something cleaner

4E4(2EK − 1)(2EK + 1)(E2 + K2 − 1)

× ((2E2K + K )2 + 3(E2 − 1)) = 0. (27)

From this we can peel off the relevant stability branch

Ec2 = − 1

2K
. (28)

Solving λ2 = 0 gives us the other part of the boundary

Ec3 =
√−K4 + 5K2 − 4

3K
. (29)

Together, Ec2, Ec3 gives the boundary of the half-pinned state.
They intersect at K∗ = √

5/2. Crossing the boundary again
triggers a zero-eigenvalue bifurcation.

3. Sync state

This corresponds to the fixed point (B, D) = (0, 0),

EK sec x+(2E2 sec2 θ+ − 1) − sin x+ = 0, (30)

EK sec θ+(2E2 sec2 x+ − 1) − sin θ+ = 0. (31)

The fixed-point expressions as the solution of the above
equations are so long as to not be enlightening to display
here. So we place the entire analysis of the sync state in the
Appendix A. Our ultimate results are the stability boundaries
of the state, which, as before, come in two pieces,

Ec4 = K

4
, (32)

Ec5 = 1

2

√
K (

√
K2 − 4 + K ) − 1

K2
. (33)

Ec4 and Ec5 meet at K∗ =
√

2(1 + √
2). These theoretical pre-

dictions are the thick black curves in the bifurcation diagram
Fig. 2.

This completes our analysis.

B. Same-sign coupling

Now we turn from opposite to same sign coupling J = K .
The analysis is similar to the above, but surprisingly, gets
much easier. The governing equations read

ẋ+ = E − cos x+ sin x−, (34)

ẋ− = − sin x+ cos x− − K

2
sin 2x− cos 2θ−, (35)

θ̇+ = E − cos θ+ sin θ−, (36)

θ̇− = − sin θ+ cos x− − K

2
sin 2θ− cos 2x−. (37)

There are four fixed points like last time, but only the pinned
and half-pinned are stable. So those are the only two states we
analyze.

1. Pinned

The fixed points are

x+ = ± cos−1(∓E ), (38)

x− = ±π

2
, (39)

θ+ = ± cos−1(∓E ), (40)

θ− = ±π

2
, (41)

which has a saddle node (SN) at E = √
1 − K2 (K < 0) and a

saddle node infinite period (SNIPER) at E = 1 (Fig. 4). It is to
be noted that, pinned state is the only stable steady solution for
K > 0. The other steady state exists for K < 0 and we derive
its stability next.
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FIG. 4. Bifurcation diagrams in (K, E ) space for J = K . Colors
indicate the largest Lyapunov exponent (λmax) of the system. Black
curves denote analytically calculated stability boundaries. SN stands
for saddle node bifurcation and SNIPER stands for saddle node
infinite period bifurcation.

2. Half-pinned

Here the fixed points are

x+ = cos−1(−E ), (42)

x− = −π

2
, (43)

θ+ = sec−1

(
−

√
2√

1 − √
1 − 4E2K2

)
, (44)

θ− = sin−1

( √
2E√

1 − √
1 − 4E2K2

)
. (45)

From the eigenvalues at this fixed point (see Appendix B) the
stability boundary is found as

Ec6 = − 1

2K
. (46)

At this boundary a SNIPER bifurcation takes place which
results into a periodic orbit. See Fig. 4 for details. The black
curves are the analytically calculated stability boundaries.

C. Model robustness

Let us take stock of our findings. We find three static states,
a family of periodic states, chaos, and various interstate transi-
tions. Now we show our case study of even coupling J = −K
and symmetric pinning (α1, α2) = (0, π ) is representative of
the full coupling J = −cK, c 
= 1 and asymmetric coupling
(0, aπ ) for a 
= 1 regime. Figures 5(a) and 5(b) show the
same physics, in the sense of qualitatively identical bifurca-
tions diagrams, are found for J = −√

3K, J = −K/
√

3. The
same was true when we relaxed the symmetric pinning by
defining (α1, α2) = (0, aπ ) and tuning a � 1 (note we can
set α0 = 0 without loss of generality), although in this case
the bifurcations of the static states get richer; Fig. 5(c) shows
the half-pinned and sync states become reentrant. Most of the

FIG. 5. Model Robustness. (a), (b) Bifurcation diagrams for
noneven coupling J = −cK where c = √

3, 1/
√

3 are qualitatively
identical to the even coupling J = −K case study presented in the
text. (c) Bifurcation diagram for static states when the pinning is
relaxed from being perfected symmetric (α1, α2) = (0, π ) to asym-
metric (α1, α2) = (0, aπ ) for 0 � a � 1. Notice the half-pinned and
sync states become reentrant; for a ≈ 0.8 and increasing K , the sys-
tem transitions as pinned → half-pinned → sync → half-pinned →
sync. We have set E = 0.1 here.

collective states also appear for same-sign coupling J = K ,
albeit with a different bifurcation structure.

IV. MATCH TO MAGNETIC DOMAIN WALLS

Our hope was that these states capture real-world behavior.
They do. Figure 6 shows they mimic the behavior found in
a recent study [31] of a pair magnetic domain walls. Briefly,
their setup is this. Each wall is free to move in the x direction,
and one wall is slightly higher than the other in the y direction,
so that they do not collide. Then each wall i may be char-
acterized by a single spatial degree of freedom xi ∈ R1 and
also a phase θi ∈ S1 corresponding to the effective magnetic
dipole vector of the wall; thus the walls fall into our model
class (see Ref. [31] for more details on the phase θi). The
walls begin pinned at fixed points (x∗

i , θ
∗
i ). Then an external

magnetic field is turned on, which induces their positions xi

and θi to unlock and interact. The top row of Fig. 6, taken
from Ref. [31], shows the resulting dynamics for different
parameters with scatter plots of the dipole vectors for each
wall (m1, m2). These mi relate to the phase via mi ∝ sin θi, as
indicated by the axes labels. Notice the walls settle into simple
periodic behavior or more complex dynamics represented by
Lissajous curves and point clouds. The middle and bottom
rows show our model reproduces these states for the both the
J = −K and J = K cases.

V. LARGE N REGIME

We analyzed the N → ∞ states for J = K in a previous
work [34]. We summarize the results here for convenience
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FIG. 6. Match to micromagnetic simulations of two domain walls. Top row (a)–(f), high resolution micromagnetic simulations from
Ref. [31]. Middle row (g)–(l), J = −K and bottom row (m)–(r), J = K model Eqs. (1) and (2). Numerical parameters: (dt, T ) = (0.25, 200).
Initial (xi, θi ) were drawn uniformly at random from [0, 2π ]. Multistability was sometimes observed. Reprinted Supplementary Figs. 7 and 8
with permission from Hrabec et al. [Phys. Rev. Lett. 120, 227204 (2018)]. Copyright (2023) by the American Physical Society.

(we wanted a single paper to house both the large and little
N limit). We also add some new results about the N → ∞
regime, namely an analysis of a 2D model where x ∈ S2.

A. Summary of previous results

How does the behavior of the model change as N → ∞?
A surprise for N � 1 is that the opposite coupling J = −K
case gets simpler. The half-pinned and sync states disappear,
leaving just the pinned and unsteady states (Fig. 7). We used
linearly spaced pinning αi = 2π i/N here to facilitate analysis
(randomly chosen αi, βi produce similar results [34]).

FIG. 7. Large N limit for J = −K . K-E space for (a) N = 3,
(b) N = 4, and (c) N � 1. Notice the N = 3, 4 plots are much
different to the N = 2 plot shown in the main text. Instead, they
resemble the N → ∞ plot shown in (c) where we use N = 100.

Dynamics for same-sign coupling J = K , in contrast, get
richer. Figure 8(a) shows the pinned state (blue dots) per-
sists, but now a new antipinned state (red stars) arises where
neighboring particles are shifted by an amount xi+1 − xi =
θi+1 − θi = �(K ). Figure 8(b) shows the large N analog of
the sync state with particles bunching into two sync clusters.
New periodic behavior is observed, along with quasiperiod-
icity, and the route to chaos is now via period doubling.
Supplemental Movies 2 and 3 [33] depict the evolution of all
the states.

FIG. 8. Large N limit for J = K . (a) Pinned state (blue dots,
K = 1) and antipinned state (red stars, K = −2) plotted on same
graph to save space for E = 0 and N = 200 particles. (b) Sync state
for (K, E ) = (3, 0). (c) Order parameters for E = 0. (d) Bifurcation
diagram in (K, E ) space. Black curves show theoretical predictions.
Colors denote Lyapunov exponents, computed using N = 10 par-
ticles, which well approximated the N � 1 limit (simulations for
larger N were prohibitive).
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As for analysis, the critical coupling for the antipinned
state is Ec = √

1 − K2, found using a self-consistency anal-
ysis, and for the pinned state is Ec =

√
1 − K2/4, found using

a variational argument [35]. These are the sides of the lopsided
bell in the bifurcation diagram Fig. 8(d). We also derived
expressions for the order parameters

W± = S±ei	± = 1

N

∑
j

ei(x j±θ j ). (47)

In the split phase wave,

S− = −1

3
+ K4 + (
1 + 3

√
3
√


2)2/3

3K2(
1 + 3
√

3
√


2)1/3
, (48)

where


1 := −27(E2 − 1)K4 − K6, (49)


2 := (E2 − 1)K8(27E2 + 2K2 − 27). (50)

In the sync state, we derived a pair of self-consistency equa-
tions for S+,

−2 sin

(
ξ

2
− α

)
+ KS+ sin(	+ − ξ ) = 0, (51)

S+eĩ	+ = 1

2π

∫ 2π

0
eĩξ (α)dα, (52)

where ξi := xi − θi which we solved numerically. We must

solve Eq. (51) for the fixed points ξ ∗(α) then plug them
into Eq. (52) to find S+. First we set 	+ = 0 without loss
of generality. Then by applying various trig identities to
Eq. (51) we arrive fourth-order polynomial in cos ξ ∗ and
plug the roots into Eq. (52), which when 	+ = 0 reads
S+ = ∫

cos(ξ ∗(α))dα. Then we computed the integral over
α numerically. Figure 8(c) shows these S±(K ) match simula-
tions and distinguish between the static states; in the pinned
state (S+, S−) = (1, 0) trivially by subbing xi = θi into the
definition for S± Eq. (47). There is also a small region of hys-
teresis (not visible in the graph) between the pinned and sync
states [34].

B. New results: Two-dimensional model

Recall that all our results so far were for one spatial (and
circular) dimension, x ∈ S1. We were curious if the states
persisted when the motion was two dimensional. Thus, we
present a preliminary study of the following model:

ẋi = E−b sin(xi − αxi ) + Jx

N

∑
j

sin(x j − xi ) cos(θ j − θi ),

(53)

ẏi = E−b sin(yi − αyi ) + Jy

N

∑
j

sin(y j − yi ) cos(θ j − θi ),

(54)

θ̇i = E − b sin(θi − βi ) + K

N

∑
j

sin(θ j − θi )

× (cos(x j − xi ) + cos(y j − yi )), (55)

where (xi, yi, θi ) ∈ (S1,S1,S1). Here xi, yi are the positions,
and θi is the phase.

FIG. 9. Emerging states of the 2D model. We have fixed E = 0.
b = 1, Jx = Jy = K and αxi = αyi = βi = 2π i/N . (a) Order parame-
ters Sx+ (blue diamonds) and Sx− (red dots). (b) Order parameters Sy+
(blue diamonds) and Sy− (red dots). (dt, T, N ) = (0.5, 500, 1000).
Last 50% data were taken to calculate the order parameters. Initially,
xi, yi, and θi are chosen randomly from [0, 2π ].

Numerics show the model indeed supports 2D analogues
of three static states (sync, phase wave, and split phase wave)
as well as the nonsteady states. Figure 9 shows the generalized
order parameters

Wx± = Sx±eĩ	x± = 1

N

∑
j

eĩ(x j±θ j ), (56)

Wy± = Sy±eĩ	y± = 1

N

∑
j

eĩ(y j±θ j ) (57)

can discern the static states [just like Fig. 8(c) in the 1D case].
Below, we derive the stability thresholds for the phase wave
and split phase waves. We leave an explorations of the sync
state and unsteady states for future work.

1. Phase-wave state

For Jx = Jy = K , the potential function can be written as

V (xα, θα ) = − E
∫ 2π

0
xα dα − E

∫ 2π

0
yα dα

− E
∫ 2π

0
θα dα −

∫ 2π

0
cos(α − xα ) dα

−
∫ 2π

0
cos(α − yα ) dα −

∫ 2π

0
cos(α − θα ) dα

− K

4π

∫ 2π

0

∫ 2π

0
[cos(xβ − xα ) + cos(yβ − yα )]

× cos(θβ − θα ) dαdβ, (58)


(η) = d2

dε2
V (xα (ε))|ε=0, (59)

becomes


(η) = 3
√

1 − E2

∫ 2π

0
η2

α dα

+ K

π

∫ 2π

0

∫ 2π

0
(ηβ − ηα )2 cos(2β − 2α) dαdβ.

(60)

Analyzing this quadratic form, we get the stability criterion
for the phase-wave state as 3

2

√
1 − E2 − K > 0. For E = 0,

we get Kc1 = 1.5 which is found to be satisfied from Fig. 9.
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2. Split phase-wave state

In the split phase-wave state, the fixed points can be written
down as

xi = yi = αi + sin−1(E ) + (−1)i�, (61)

θi = βi + sin−1(E ) + (−1)i−12�. (62)

We simplify our model by converting the trigonometric func-
tions to complex exponentials,

ẋi = E − sin(xi − αi ) + K

2
Sx+ sin(	x+ − (xi + θi ))

+ K

2
Sx− sin(	x− − (xi − θi )), (63)

ẏi = E − sin(yi − αi ) + K

2
Sy+ sin(	y+ − (yi + θi ))

+ K

2
Sy− sin(	y− − (yi − θi )), (64)

θ̇i = E − sin(θi − βi ) + K

2
Sx+ sin(	x+ − (xi + θi ))

− K

2
Sx− sin(	x− − (xi − θi ))

+ K

2
Sy+ sin(	y+ − (yi + θi ))

− K

2
Sy− sin(	y− − (yi − θi )). (65)

We solve the E = 0 case for simplicity. From the definitions
of Sx− and Sx− , we get from Eqs. (61) and (62) that Sx− =
Sy− = cos 3�. Further, by substituting Eqs. (61) and (62) into
Eq. (63), and equating with zero, we get

sin � = K
Sx−

√
1 − Sx−

2

2
. (66)

By using the identity cos 3� = 4 cos3 � − 3 cos � and after
simplification we derive the following polynomial equa-
tion for Sx− ,

− K6S12 + 3K6S10 − 3K6S8 + K6S6 − 6K4S8 + 12K4S6

− 6K4S4 − 9K2S4 + 9K2S2 + 4S2 − 4 = 0. (S = Sx− )
(67)

Mathematica could solve the equation and we find that
the split phase-wave state becomes unstable at Kc2 = −2/3
through a transcritical bifurcation.

VI. DISCUSSION

The reaction of particulate matter to external driving is cru-
cial for applications yet difficult to understand theoretically.
This paper sheds light on this class of dynamics with a toy
model tractable in both the low and large N limit—moreover,
the intermediary N regime is surprisingly well approximated
by the N → ∞ model; Figs. 7 and 10 show as few as N ≈ 4
particles give the same physics. The model also captures the
behavior of real-world systems such as magnetic domain walls

(Fig. 6), Japanese tree frogs [36] and Janus matchsticks [37]
[both realize the antipinned state Fig. 8(a)]. We also suspect
its chaos may be connected to the active turbulence of bio-
logical microswimmers [38], since the swimmers contain the
same basic physics as the model: driving and emergence in
environments with pinning.

Given this balance between solvability and realism, we
wonder if the model ‘could be the Kuramoto model’ for
this class of driven matter, by which we mean the simplest,
representative model in a universality class. Future work
could explore this conjecture by deriving our model from
a physically rigorous model. Start with, say, the Landau-
Lifshitz-Gilbert equations for magnetic particles, exploit a
small quantity like a weak coupling limit or a separation
of time scales using a perturbative method [39], and see if
our model or something close to it pops out. This was the
way the Kuramoto model itself was derived—starting with
a general reaction diffusion equation and simplifying using
phase reduction methods—and is the source, so to speak, of
its universality [39].

Our model could guide experimental work on systems of
magnetic domains walls and other particles [31,40]. Chaos
has a niche application in such systems, it can be exploited
for hardware security [41], but to our knowledge, it has not
yet been reported in multi-particle experiments. (Chaos has
been observed in single particle systems [42,43].) Our model
predicts chaos, along with quasiperiodicity and reentrance,
occurs for all N > 1 and gives parameter regimes where it
is likely to arise, namely when the driving and interelement
coupling have comparable magnitude and are large relative
to the pinning E/b ≈ K/b, J/b � 1. The model or a close
variant may also be useful in studies of charge density waves
which couple to lattice vibrations [44]. Equation (2) for θ̇i

has already been used to model the phase of the charge wave
[22,25,26]; the novelty would be Eq. (1) for ẋi which could
represent the displacements of the lattice atoms from their
equilibrium positions. Such displacements form sinusoidal
patterns [44], encapsulated by the b sin(xi − βi ) term, which
competes with the tendency to “synchronize” at equilibrium
xi = x j = 0, as per the K sin(x j − xi ) term.

Code used for simulations and analytic calculations is
available at github [45].

APPENDIX A: J = −K COUPLING

Our model is

ẋ1 = E − b sin(x1 − α1) + J

2
sin(x2 − x1) cos(θ2 − θ1),

(A1)

ẋ2 = E − b sin(x2 − α2) − J

2
sin(x2 − x1) cos(θ2 − θ1),

(A2)

θ̇1 = E − b sin(θ1 − β1) + K

2
sin(θ2 − θ1) cos(x2 − x1),

(A3)

θ̇2 = E − b sin(θ2 − β2) − K

2
sin(θ2 − θ1) cos(x2 − x1).

(A4)
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FIG. 10. Comparison of N = 2, 3, 4, 5 for J = K . As N increases, the shape starts to change. At N = 5 the shape is almost identical to
that of the N = ∞ results, plotted in Fig. 11 below for convenience.

Defining the difference and sum coordinates

x± = x1 ± x2

2
, (A5)

θ± = θ1 ± θ2

2
, (A6)

and setting (α1, α2) = (β1, β2) = (0, π ), b = 1, and J = −K ,
we get

ẋ+ = E − cos x+ sin x−, (A7)

ẋ− = − sin x+ cos x− + K

2
sin 2x− cos 2θ−, (A8)

θ̇+ = E − cos θ+ sin θ−, (A9)

θ̇− = − sin θ+ cos x− − K

2
sin 2θ− cos 2x−, (A10)

presented in the main text. To solve for the fixed points, we
first eliminate (x−, θ−) using Eqs. (A7) and (A9),

sin x− = E sec x+, (A11)

sin θ− = E sec θ+. (A12)

Subbing these into Eqs. (A8) and (A10), we get

√
1 − E2 sec2 x+(EK sec x+(2E2 sec2 θ+ − 1) − sin x+) = 0,

(A13)√
1 − E2 sec2 θ+(EK sec θ+(2E2 sec2 x+ − 1) − sin θ+) = 0.

(A14)

These have the form AB = CD = 0 which implies four dif-
ferent fixed points defined by (A,C), (A, D), (B,C), (B, D)
being (0,0) individually.

a. Half-pinned state

This state is defined by a symmetric pair of fixed points:
when xi stay pinned and θi sync, or the reverse. In the above
notation, these correspond to (A, D) = (0, 0) and (B, D) =
(0, 0). We study the (A, D) = (0, 0) without loss of generality,
given by √

1 − E2 sec2 x+ = 0, (A15)√
1 − E2 sec2 θ+(EK sec θ+(2E2 sec2 x+ − 1) − sin θ+) = 0.

(A16)

Mathematica finds 32 solutions to these, of which 4 are stable.
These 4 fixed points have the form

x+ = − cos−1(−E ), (A17)

x− = −π

2
, (A18)

θ+ = cos−1

(
−

√
1 − √

1 − 4E2K2

√
2

)
, (A19)

θ− = − sin−1

( √
2E√

1 − √
1 − 4E2K2

)
. (A20)

Finding the stability of these is harder. The Jacobian matrix
yields eigenvalues

λ1 = −
√

1 − E2, (A21)

λ2 =
√

1 − 4E2K2 − K (
√

1 − E2 + K ) + 1

K
, (A22)

λ3 = 1

2

⎛
⎜⎜⎝−2E

√√
1 − 4E2K2 + 1√

1 − √
1 − 4E2K2

−
√

1 − 4E2K2 +
√

K2(8E2
√

1−4E2K2−K2(
√

1−4E2K2+16E2−1)−4
√

1−4E2K2+4)√
1−√

1−4E2K2
+ 1

K
+ K

⎞
⎟⎟⎠,

(A23)
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λ4 = 1

2

⎛
⎜⎜⎝−2E

√√
1 − 4E2K2 + 1√

1 − √
1 − 4E2K2

−
√

1 − 4E2K2 −
√

K2(8E2
√

1−4E2K2−K2(
√

1−4E2K2+16E2−1)−4
√

1−4E2K2+4)√
1−√

1−4E2K2
+ 1

K
+ K

⎞
⎟⎟⎠.

(A24)

Solving λ3 = 0 and removing the square roots by successive
squaring leads to

4E4(2EK − 1)(2EK + 1)(E2 + K2 − 1)

× ((2E2K + K )2 + 3(E2 − 1)) = 0. (A25)

The relevant branch is

Ec2 = − 1

2K
. (A26)

Solving λ2 = 0 gives us the other part of the boundary

Ec3 =
√−K4 + 5K2 − 4

3K
. (A27)

We again observe zero eigenvalue bifurcation on the bound-
ary.

b. Sync state

The final fixed point is (B, D) = (0, 0),

EK sec x+(2E2 sec2 θ+ − 1) − sin x+ = 0, (A28)

EK sec θ+(2E2 sec2 x+ − 1) − sin θ+ = 0. (A29)

Mathematica struggles to solve these, so we have to do them
by hand. First, isolate sec θ+ from the top equation,

sec θ+ =
√

EK − sin x+ cos x+√
2E3/2

√
K

. (A30)

Then substitute this into the second equation after swapping
sin θ+ = (1 − 1/ sec2 θ+)−1/2 to find

−
√

K
√

2EK − sin (2x+) − 2
√

E

√
4E3K

sin (2x+) − 2EK
+ 1

+ 2E2
√

K sec2 (x+)
√

2EK − sin (2x+) = 0. (A31)

We remove the square roots by isolating each one on the LHS,
squaring, then repeating the process. A gigantic equation in
cos x+, sin x+, tan x+ results. Setting c := √

cos x+ and sim-
plifying however results in a product of a third and fourth
order polynomials

P3(c)P4(c) = 0, (A32)

where

P3(c) = −c3 + c4 + c2E2K2 − 4cE4K2 + 4E6K2, (A33)

P4(c) = c4K2 + c3(−8E2K2 − K2) + c2(E2K4 + 16E4K2

+ 4E2K2 + 4E2)+c(−4E4K4−8E4K2) + 4E6K4.

(A34)

Recalling cos x+ = c2, we see x+ will be a simple transfor-
mation of the roots of cubics and quartics—known, but ugly.
These constitute a large family of fixed points. To find the
relevant ones, we plotted them and found

x+ = sec−1

⎛
⎜⎝− 2√

8E2 + S2
K − S1 + 1

⎞
⎟⎠, (A35)

x− = − sin−1

⎛
⎜⎝ 2E√

8E2 + S2
K − S1 + 1

⎞
⎟⎠, (A36)

θ+ = − cos−1

⎛
⎜⎜⎜⎝ 2

√
2E3/2

√
K√√

− (8E2K−KS1+K+S2 )(S2−K (−8E2+S1+3))
K2 + 4EK

⎞
⎟⎟⎟⎠, (A37)

θ− = csc−1

⎛
⎜⎜⎜⎝ 2

√
2
√

E
√

K√√
− (8E2K−KS1+K+S2 )(S2−K (−8E2+S1+3))

K2 + 4EK

⎞
⎟⎟⎟⎠, (A38)

where

S1 =
√

64E4 − 8E2
(
K (K2 − 2)

(√
K2 − 16E2 + K

) + 2
)

K2
+ 2

√
K2 − 16E2

K
+ 2, (A39)

S2 =
√

K2 − 16E2. (A40)
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Calculating the stability of these was another monster. We derived the characteristic equation which has form

a4 + a3λ + a2λ
2 + a1λ

3 + a0λ
4 = 0, (A41)

where ai = fi(E , K ) where f were complicated functions:

a0 = 1, (A42)

a1 =
2
√

1 − E2S2
4

S4
+ 2E

√
1 − 1

S2
3

S3, (A43)

a2 = K2
(
S4

4

( − (
1 − 2E2S2

3

)2) + 4S2
4 − 4

)
S4

4

+
K

(
S2

4 − 2
)(

2E2S2
3 − 1

)(√
1 − E2S2

4 − E
√

1 − 1
S2

3
S3S4

)
S3

4

+
4E

√
1 − 1

S2
3
S3

√
1 − E2S2

4

S4
+ E2S2

3 − E2S2
4 − 1

S2
3

+ 1

S2
4

, (A44)

a3 = −
[

K2S2
3

(
S4

4

(
1 − 2E2S2

3

)2 − 4S2
4 + 4

)(√
1 − E2S2

4 + E

√
1 − 1

S2
3

S3S4

)

+ K
(
S2

4 − 2
)
S4

(
2E2S2

3 − 1
)(

S2
3 + S2

4

)(
E2S2

3S2
4 − 1

)
+ 2S3

4

(
E3

√
1 − 1

S2
3

S3
3S4

4 − E2S4
3S4

√
1 − E2S2

4 + S4

√
1 − E2S2

4 − E

√
1 − 1

S2
3

S3
3

)]/
S2

3S5
4, (A45)

a4 = −
[
−E2S2

4

(
S4

3

(
KS2

4

√
1 − E2S2

4 − 2K
√

1 − E2S2
4 + S4

) + 2KS2
3

(
S2

4 − 2
)√

1 − E2S2
4 + S5

4

)

+ EK

√
1 − 1

S2
3

S3
3

(
S2

4 − 2
)(

KS2
4

√
1 − E2S2

4 − 2K
√

1 − E2S2
4 + S4

)

+ S2
4

(
KS2

4

√
1 − E2S2

4 − 2K
√

1 − E2S2
4 + S4

) + 2E5K

√
1 − 1

S2
3

S5
3S4

4

(
2KS2

3

√
1 − E2S2

4 + S3
4 − 2S4

)

+ E4S4
3S2

4

(
2KS2

3S2
4

√
1 − E2S2

4 − 4KS2
3

√
1 − E2S2

4 + S5
4

) − E3K

√
1 − 1

S2
3

S3
3S4

(
2S2

3

(
2KS3

4

√
1 − E2S2

4 + S2
4 − 2

)

+ (
S2

4 − 2
)
S4

4

)]/
S2

3S5
4, (A46)

where S3 and S4 are given by

S3 = 2√
8E2 + S2

K − S1 + 1
, (A47)

S4 = 2
√

2
√

E
√

K√√
− (8E2K−KS1+K+S2 )(S2−K (−8E2+S1+3))

K2 + 4EK

.

(A48)

The λ’s were findable in theory, but too complex to derive any
meaningful stability information from. So instead checked the
stability with the help of the Routh Hurwitz conditions:

a0 > 0, (A49)

a1 > 0, (A50)

a1a2 − a0a3 > 0, (A51)

(a1a2 − a0a3)a3 − a2
1a4 > 0, (A52)

a4 > 0. (A53)

We found that the sync state solutions Eqs. (A35)–(A38) are
stable whenever they exist. They exist when the terms inside
the square root in the expressions of S1 and S2 in Eqs. (A39)
and (A40) are greater or equal to zero. This gives us the
stability and existence boundaries of the sync state quoted in
the main text,

Ec4 = K

4
, (A54)

Ec5 = 1

2

√
K (

√
K2 − 4 + K ) − 1

K2
. (A55)
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FIG. 11. Bifurcation diagram: N � 1 for J = K . We take N =
100 here. We refer the reader to Ref. [34] for details.

APPENDIX B: J = +K COUPLING

The analysis here is the same dance as above, but surpris-
ingly it gets easier. The governing equations read

ẋ+ = E − cos x+ sin x−, (B1)

ẋ− = − sin x+ cos x− − K

2
sin 2x− cos 2θ−, (B2)

θ̇+ = E − cos θ+ sin θ−, (B3)

θ̇− = − sin θ+ cos x− − K

2
sin 2θ− cos 2x−. (B4)

There are four fixed points like last time, but only the pinned
and half-pinned are stable. We have already discussed the
pinned state in the main text.

a. Half-pinned

Here the fixed points are

x+ = cos−1(−E ), (B5)

x− = −π

2
, (B6)

θ+ = sec−1

(
−

√
2√

1 − √
1 − 4E2K2

)
, (B7)

θ− = sin−1

( √
2E√

1 − √
1 − 4E2K2

)
. (B8)

We calculate the eigenvalues at this fixed point as

λ1 = −
√

1 − E2, (B9)

λ2 = −K (
√

1 − E2 − K ) + S3 + 1

K
, (B10)

λ3 = 1

2

⎛
⎜⎝−

√
K2(−K2(16E2+S3−1)+8E2S3−4S3+4)√

1−S3
+ S3 + 1

K
− 2E

√
S3 + 1√

1 − S3
+ K

⎞
⎟⎠, (B11)

λ4 = 1

2

⎛
⎜⎝−

−
√

K2(−K2(16E2+S3−1)+8E2S3−4S3+4)√
1−S3

+ S3 + 1

K
− 2E

√
S3 + 1√

1 − S3
+ K

⎞
⎟⎠, (B12)

where
S3 =

√
1 − 4E2K2, (B13)

S4 =
√

K2(8E2
√

1 − 4E2K2 − K2(
√

1 − 4E2K2 + 16E2 − 1) − 4
√

1 − 4E2K2 + 4). (B14)

Finally, the stability boundary is found as

Ec6 = − 1

2K
. (B15)

At this boundary saddle node infinite period (SNIPER) bi-
furcation takes place which results into a periodic orbit; see
Fig. 4. The black curves are the analytically calculated stabil-
ity boundaries.

APPENDIX C: N > 2 LIMIT FOR J = K COUPLING

We increase the number of swarmalators for the J = K
case and observe the bifurcation structure with the help
of λmax in Fig. 10. It shows that when N increases, the
chaotic region (dark red) also expands. Eventually, in the
N → ∞ limit, we get the bifurcation diagram delineated in
Fig. 11.

[1] D. A. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit,
and R. Cowburn, Science 309, 1688 (2005).

[2] Z. Luo, A. Hrabec, T. P. Dao, G. Sala, S. Finizio, J. Feng, S.
Mayr, J. Raabe, P. Gambardella, and L. J. Heyderman, Nature
(London) 579, 214 (2020).

[3] R. Wiesendanger, Nat. Rev. Mater. 1, 16044 (2016).
[4] C. Reichhardt, C. J. O. Reichhardt, and M. V. Milošević, Rev.
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