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Wrinkling instabilities of swelling hydrogels
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We investigate the formation of wrinkling instabilities at the interface between layers of hydrogel and water,
which arise to relieve horizontal compressive stresses caused by either differential swelling or confinement.
Modelling the gel using a linear-elastic-nonlinear-swelling approach, we determine both a criterion for marginal
stability and the growth rates of normal modes. Furthermore, our formalism allows us to understand the influence
of differential swelling on the stability of hydrogels brought into contact with water, and we find three distinct
phases of the instability. Initially, when only a thin skin layer of gel has swollen, buckles grow rapidly and the
gel deforms as an incompressible material. A balance between normal elastic stress and pore pressure selects a
wavelength for these buckles that increases with the square root of time. At late times, when the gel approaches
a uniformly swollen state, buckles can only grow by differential swelling on much slower timescales determined
by solvent transport. At intermediate times, growth is driven by the same fluid transport process as at late times
but gradients in fluid pressure in the gel as it swells destabilize the interface, driving faster growth of wrinkles.
We also explain why some instabilities can be transient, “healing” as time progresses, while others must remain
for all time.

DOI: 10.1103/PhysRevE.109.044602

I. INTRODUCTION

Wrinkling and buckling instabilities are some of the most
familiar phenomena observed in the study of soft materials,
occurring when there is confinement or other constraints that
inhibit the material from expanding. Often instabilities occur
due to gradients in the degree of expansion in a direction
perpendicular to the surface of the soft material, resulting in
the formation of a compressive stress parallel to the surface
that can be relieved by the formation of buckles or folds.
Familiar examples of this phenomenon include the wrinkling
of fruit as it dries and the formation of wrinkles on the surface
of human skin as the more compliant lower epidermis and less
compliant upper epidermis shrink to different degrees as a re-
sult of ageing or damage [1]. More recently, numerous studies
have investigated the role played by mechanical wrinkling,
folding and creasing during morphogenesis. Key examples
include gyrification, the formation of folds and ridges on the
surface of the brain during foetal development [2,3], and the
shape of fruit and vegetables [4].

The study of wrinkling phenomena began with rubberlike,
incompressible solids under mechanical constraints. Perhaps
the earliest such work is Euler’s classic investigation of a
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beam under compressive loading, which can snap through to
a sinusoidal buckled state on a very short timescale when a
critical stress is exceeded [5,6]. Biot [7] studied the purely
elastic instability of a half-space of elastic material, showing
that wrinkles will form on the surface if the compressive
strain parallel to the undeformed interface is greater than a
critical value, when deformations of the interface relieve the
buildup of elastic potential energy. These deformations are
all predicted to form without any volumetric change, and
there is no mechanism in Biot’s theory to select the size of
the wrinkles seen—neither the amplitude nor characteristic
lengthscale parallel to the interface.

To address the wavelength-selection problem, Alawiye
et al. [8] considered a number of two-layer systems with dif-
ferent elastic properties, matching a membranelike deflection
of the top layer with an elastic deformation of the anchored
base. This problem was also solved in a simpler form by
Groenewold [9], who compared their results to experiments
carried out with a stiff plate attached to a softer elastic base.
Dervaux et al. [10] added a surface tension to the interfacial
boundary conditions, which stabilizes short-wavelength wrin-
kles. These methods, taken alongside the stabilizing effect of a
fixed base on long-wavelength patterns, select an intermediate
wave number that reaches the criterion for marginal stability
first, but none discuss the transient state as the instability
grows.

As well as being found in incompressible elastic solids,
wrinkling instabilities abound in many synthetic or biological
examples of soft matter where swelling or drying plays a
major role [11]. Superabsorbent polymer hydrogels are a well-
studied example of soft materials whose volume can change
significantly as a result of swelling or drying. The extremely
hydrophilic nature of the polymer chains forming the scaffold
of the gel allows them to take on hundreds of times their initial
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FIG. 1. Three examples of wrinkling in swelling hydrogel ma-
terials shortly after contact with water. (a) A thin hydrogel layer (of
dry thickness ∼1 mm) anchored to an inextensible plastic base forms
a reticulation pattern minutes after immersion in water. (b) Initially
spherical hydrogel beads form lobelike wrinkles when swelling com-
mences. (c) A cube of hydrogel forms a crumpled shape. In the latter
two of these three cases, further swelling “heals” the wrinkles.

volume in water, and differential swelling and drying can lead
to large compressive strains on regions of the gel. It has long
been noticed that the surfaces of some swelling gels form a
characteristic wrinkling pattern [12], with examples pictured
in Fig. 1. Other examples include the reticulation pattern seen
on photographic prints [13], formed from wrinkles on the sur-
face of photographic emulsion deposited on the plates during
the printing process, and in the “wrinkled pea” texture on the
surface of swelling hydrogel beads (Fig. 1(b), and discussed
in Bertrand et al. [14]).

Though a nuisance in many cases, wrinkling instabilities
can be exploited by manufacturers for beneficial purposes.
For example, grooves in the surfaces of synthetic materials
can be induced to increase biocompatibility of devices for
implantation [15], and the presence of fine wrinkled patterns
allows for the creation of smart adhesives by increasing the
surface area of two materials in contact [16,17].

Many gels are manufactured by covalently anchoring par-
tially dried polymer to a fixed base and adding water [as
in Fig. 1(a)], allowing the thin gel layer to swell [18]. It is
the formation of wrinkles in this geometry that we consider
in the present study. Previous analyses of the wrinkling in-
stability in hydrogels has centered on energy-minimization
approaches, finding conditions under which the elastic energy
of a hydrogel is decreased by the formation of sinusoidal wrin-
kles. An important critical parameter is the osmotic pressure,
corresponding to the isotropic part of Terzaghi’s effective
stress, which must exceed a given value for instability [19,20].
Tanaka’s approach, which separates the energy of the gel into
components due to its bending moment, compression, and
stretching, does not predict growth rates but solely deduces
criteria for marginal stability. Later studies investigate the
wrinkling phenomenon experimentally [18,21] and show that
there is a critical strain for instability to arise when gels are
attached to a fixed substrate.

A number of distinct behaviors are noted theoretically and
experimentally from the earliest studies of the evolution of
a wrinkling instability. In all cases, wrinkles form and their
wavelengths increase as time progresses, with the wavelength
seen to increase initially like the square root of time [21] and
to mature like the cube root of time [20]. In some cases, the
wrinkles are found to smooth out entirely at late times, or it

is seen that the wrinkle pattern evolves to larger wavelengths
with sharper creases and folds as nonlinear effects take hold.

More recently, Kang and Huang [22] carried out a linear
stability analysis of a uniformly swollen hydrogel layer, using
a model based on nonlinear elasticity and nonequilibrium
thermodynamics developed by Hong et al. [23]. A critical os-
motic pressure for exchange of stability can be deduced from
this theory but once again there is no discussion of growth
rates. It is noted, however, that the first mode to become
unstable has infinite wave number, and therefore the theory
requires regularization to select a finite most unstable mode.
A solution to this selection problem is proposed by Kang and
Huang [24], who introduce a surface tension into their model,
imposing a normal stress boundary condition described by the
Young-Laplace equation. It is then found that both very long
and very short wavelengths are stable, selecting a finite “first
marginal wave number” as the osmotic pressure is increased
to the threshold for instability.

In this paper, we introduce a new approach for finding
both the criteria for marginal stability and the growth rates
of instability for a finite-thickness layer of uniformly swollen
hydrogel brought into contact with water. This allows us to
quantify the rate at which wrinkles of a given wave number
will grow or shrink and allows us to elucidate the physical
processes driving instability. Starting from the foundations of
the linear-elastic-nonlinear-swelling model of Webber et al.
[25,26], we describe the onset of this instability in terms of
stresses in the gel and show that, in most cases, wrinkle growth
occurs due to swelling and drying of the hydrogel rather than
incompressible elastic deformation. This sets a slow diffu-
sive timescale for the growth of wrinkles and describes a
mechanism physically distinct from that of pure elasticity.
This model is seen to break down at early times, where the
mechanism for wrinkle formation is elastic in nature, with the
patterned surface forming as the result of an elastic buckling
instability. In this case, the system is similar to an elastic
bilayer, with the swollen interface anchored to an unswollen
base that deforms incompressibly.

Our approach provides an explicit description of the tran-
sient base state after hydrogel is brought into contact with
water, with the polymer fraction and stress fields determined
explicitly, which allows us to carry out a linear stability anal-
ysis not only on the uniform state, as in Kang and Huang [22]
for example, but also on the transient swelling state, provid-
ing a physical explanation for the evolution of the instability
observed in the aforementioned experiments and the potential
“healing” of wrinkles seen as time progresses.

II. MODELLING SETUP

As a model to investigate wrinkling phenomena, we work
in two dimensions and consider a block of hydrogel that is
uniformly swollen to a polymer volume fraction φ∗ and free of
deviatoric (shearing) strains, as illustrated in Fig. 2. Initially,
the block has thickness a∗ and we neglect end effects at the
walls, in effect treating them as being an infinite distance
apart, while still providing a confining effect. If this block
were to be placed in water and left to swell freely, then it
would eventually reach the equilibrium polymer volume frac-
tion φ0, and we henceforth scale all polymer fractions with
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(a) (b)

FIG. 2. (a) The isotropic, partially swollen, initial state consid-
ered in this model, with uniform polymer fraction �∗ and a Cauchy
strain tensor e = (1 − �∗1/2)I with respect to the fully swollen state
� ≡ 1. (b) The state of the gel after being brought into contact with
water. Notice that horizontal strains do not change but the interface
swells to polymer fraction �1.

φ0, writing � = φ/φ0. In order for wrinkles to form, however,
there needs to be a source of horizontal stress. Therefore, we
place this gel block in between horizontal confines and then
bring the gel layer into contact with water. As it swells from
its initial state � ≡ �∗, the side walls provide a horizontal
stress that will be relieved by buckling.

A. Constitutive relations

Consider a two-dimensional model with horizontal coordi-
nate x and vertical coordinate z, where the effects of the side
walls are encoded by requiring a constant horizontal strain
exx. The gel initially occupies the region 0 � z � a∗, with the
water-gel interface being described by z = a(t ) at time t . In
Webber and Worster [25], the Cauchy strain tensor is found
to have an isotropic part due to swelling and drying and a
deviatoric part ε due to shear, such that we can write

e = (1 − �1/2)I + ε. (1)

Therefore, since the gel is initially isotropically swollen,
exx = 1 − �∗1/2. With this condition determined, we now
introduce the linear-elastic-nonlinear-swelling theory of Web-
ber and Worster [25] and Webber et al. [26]. First, the Cauchy
strain tensor e can be related to displacements ξ = (ξ, η)T

from the equilibrium (uniformly swollen with � ≡ 1) state
via

e = 1
2 [∇ξ + (∇ξ)T ] with ∇ · ξ = 2(1 − �1/2). (2)

The constitutive relation linking the stress tensor σ to the
configuration of the system is also derived in Webber and
Worster [25],

σ = −[p + �(�)]I + 2μs(�)ε, (3)

where p is the pervadic, pore, or pressure [27]; �(�) is the
generalized osmotic pressure; and μs(�) is the shear mod-
ulus, with these latter two material properties dependent on
the polymer fraction. The combination of osmotic and shear
contributions to this stress tensor can be together identified
with the Terzaghi effective stress in poroelastic models [28].

B. Governing equations and boundary conditions

The equations governing the evolution of the gel in contact
with water are

∇ · σ = 0 and (4a)

∂�

∂t
+ q · ∇� = ∇·

{
k(�)

μl

[
�

∂�

∂�
+μs(�)�

1
2

]
∇�

}
, (4b)

where q is the phase-averaged flux, the sum of the interstitial
fluid flux and the polymer velocity, and ∇ · q = 0. k(�) is the
permeability of the gel, while μl is the viscosity of the solvent
(in this case water). This is defined in terms of pervadic
pressure gradients and deformation of the gel by

q = �−1/2 ∂ξ

∂t
− k(�)

μl
∇p. (5)

These equations are to be solved subject to the boundary
conditions at the gel-water interface,

p = 0, σxz = 0, and σzz = 0, (6)

representing continuity of pervadic pressure, tangential stress,
and normal stress, while on the base,

∂ p

∂z
= 0, σxz = 0, q · ẑ = 0, and η = 0, (7)

representing no normal flow of water, no shear stress, no net
flux of material, and no normal displacement, respectively.
For simplicity, we will consider a linear model where k(�)
and ∂�/∂� are both constants, k and K , respectively, and
where the shear modulus is polymer fraction independent,
μs(�) = μs. All the analysis in this paper could be extended
straightforwardly to cases where this is not the case, since we
expect all three parameters to be polymer fraction dependent
in real examples of hydrogels.

C. Computing the base state

In the swelling gel we initially impose horizontal unifor-
mity, so all x derivatives are zero. Hence, ∇ · q = 0 implies
that ∂qz/∂z = 0, where qz is the vertical component of the
total flux. This result can be combined with the observation
that the net flux is zero on the bottom boundary (since neither
water nor polymer can pass the impermeable base), removing
the advective term from Eq. (4b). Then the evolution of poly-
mer fraction field in the layer of gel after contact with water is
governed by

∂�

∂t
= ∂

∂z

[
D(�)

∂�

∂z

]
; D(�)= kK

μl
(� + M�1/2), (8)

where M = μs/K represents the relative importance of shear
stresses compared with osmotic effects. Now the deviatoric
strain can be rewritten in terms of the initial polymer fraction
�∗ and the current polymer fraction � by noting

exx = 1 − �∗1/2 = 1 − �1/2 + εxx, (9)

and so εxx = −εzz = �1/2 − �∗1/2. The boundary conditions
of Eq. (6) combine with this expression for εzz and the con-
stitutive relation of Eq. (3) to set the value of � on z = a(t ).
This interfacial polymer fraction, �1, is determined implicitly
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FIG. 3. (a) A plot of the evolution of � in time, from Eq. (8), with
M = 10 and initial polymer fraction �∗ = 4.6225 (chosen so that
�1 = 4). The arrow points in the direction of increasing time. (b) A
plot of the thickness of the gel scaled with the steady-state thick-
ness a1, showing the diffusive growth of the layer on the swelling
timescale, governed by Eq. (13).

by

�1 − 1 = 2M
(
�∗1/2 − �

1/2
1

)
. (10)

Now, using the vertical component of Cauchy’s momentum
Eq. (4a) alongside our expression for εzz, and again invoking
horizontal uniformity,

∂σzz

∂z
= 0 so

∂ p

∂z
= −D(�)

�

∂�

∂z
, (11)

and hence the boundary conditions in Eq. (7) imply that
∂�/∂z = 0 on the base. Finally, conservation of polymer
shows that ∫ a(t )

0
� dz = �∗a∗. (12)

This can be differentiated with respect to time and combined
with boundary conditions to give a differential equation for
a(t ),

da

dt
= − D(�1)

�1

∂�

∂z

∣∣∣∣
z=a(t )

. (13)

Figure 3 shows an example set of solutions to these gov-
erning equations, showing a polymer fraction that decreases
diffusively as water permeates deeper into the gel, approach-
ing the uniform base state where � ≡ �1 through the entire
depth, and a(t ) → a1. Throughout this study, we solve this
system of equations numerically using the NDSolve routine
in MATHEMATICA. We can nondimensionalize Eq. (8) through

the introduction of the scaled vertical coordinate ẑ = z/a∗ and
the nondimensional time,

τ = kKt

μl a∗2 . (14)

We can also compute the horizontal stress in the swelling
gel from the solution to Eq. (8), having seen that the vertical
component of Cauchy’s momentum equation gives σzz = 0
everywhere, so

σxx = σzz + 2μs(εxx − εzz ) = 4μsεxx

= −4μs(�
∗1/2 − �1/2). (15)

We see that the compressive stress, which can be read from
Fig. 3(b) and this expression increases as the gel swells and �

decreases. At early times, stress is localized near the surface
of the gel, while at late times the gel is uniformly stressed
horizontally.

D. Early-time similarity solution

At early times τ � 1, when the bulk of the gel is yet to
swell, the diffusivity D is approximately constant throughout
the entire layer, equal to its value at � = �∗. Therefore,
we let

D̂ = μl

kK
D(�∗) = �∗ + M�∗1/2

, (16)

rendering (8), after nondimensionalization, a linear diffusion
equation with diffusivity D̂. A further approximation that is
valid at early times is to assume that the gel has infinite
vertical extent, akin to the confined swelling problem solved
in Webber and Worster [25]. Because swelling occurs due
to the imbibition of water, it only occurs in a thin boundary
layer initially, with the base not felt. Figure 3(a) illustrates
that, at early times, the bulk remains unswollen with only
a small swollen boundary layer that increases in thickness.
Introducing the similarity variable,

χ = ẑ − 1

2
√

D̂τ
, (17)

the linearized form of Eq. (8) is found to have the solution

� = �∗
[

1 −
(

1 − �1

�∗

)
erfc(−χ )

erfc(−λ)

]
, (18)

after the application of boundary conditions. This form
matches the early-time profiles in Fig. 3(a), with a charac-
teristic diffusive error function shape. The gel thickness is
given by

a(τ ) = a∗
(

1 + 2λ
√

D̂τ
)
, (19)

showing that the swollen boundary layer initially grows with
the square root of time. The parameter λ is determined implic-
itly from

√
πλeλ2

erfc(−λ) = �∗

�1
− 1. (20)

III. MORPHOLOGICAL STABILITY

With the same modeling framework of the previous sec-
tion, we can determine the stability of the water-gel interface.
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We assume that wrinkle growth occurs faster than changes
to the base state and make a “frozen-in-time” approxima-
tion, taking a quasistatic base state described by the polymer
fraction and pervadic pressure field at t = t∗. We perturb the
displacement field of gel elements with a perturbation εξ̃,
where ε � 1 is a small parameter.

Denoting the base state quantities (as derived in Sec. II C)
with the subscript b, and the two-dimensional displacement
field ξ = (ξ, η)T , we write

ξ = ξb(x, z; t∗) + εes(t−t∗ )ξ̃ (z) sin (αx), (21a)

η = ηb(x, z; t∗) + εes(t−t∗ )η̃(z) cos (αx). (21b)

Therefore, the wrinkled interface is described by

z = a(t∗) + εes(t−t∗ )η̃(a(t∗)) cos (αx) + O(ε2), (22)

where α is the horizontal wave number and s is the growth rate
of the wrinkle, making the usual assumption of linear normal
mode analysis that each mode grows or shrinks exponentially
in time. These perturbations to the displacement field result in
a perturbation to the polymer fraction field,

� = �b(x, z; t∗) + εes(t−t∗ )ϕ̃(z) cos (αx). (23)

Finally, there may also be a perturbation pervadic pressure,

p = pb(x, z; t∗) + εes(t−t∗ ) p̃(z) cos (αx). (24)

We henceforth abbreviate the base-state quantities, assuming
that all are evaluated at time t∗ so that ξb(x, z) ≡ ξb(x, z; t∗).

The order-ε terms in Eq. (2) give a relation between ξ̃

and ϕ̃,

ϕ̃ = −�
1/2
b (αξ̃ + η̃′), (25)

where ′ denotes differentiation with respect to z.

A. Momentum balance

Using the definitions in Eqs. (2) and (3) of the Cauchy
strain tensor in terms of displacement and the stress tensor,
the Cauchy stress tensor can be decomposed into a base state
and perturbation part, σ = σb + εes(t−t∗ )σ̃. It was seen in the
previous section that all components of σb are zero except
for (σb)xx, which is given by Eq. (15). The perturbation stress
tensor is

σ̃ =
([− ( p̃ + K ϕ̃) + μs

(
αξ̃ − ∂η̃

∂z

)]
cos (αx) μs

(
∂ξ̃

∂z − αη̃
)

sin (αx)

μs
(

∂ξ̃

∂z − αη
)

sin (αx)
[− ( p̃ + K ϕ̃) + μs

(
∂η̃

∂z − αξ̃
)]

cos (αx)

)
. (26)

Cauchy’s momentum equation in the absence of body forces
and neglecting inertial effects implies that ∇ · σ̃ = 0. There-
fore,

μs

(
∂2ξ̃

∂z2
− α2ξ̃

)
+ αK ϕ̃ + α p̃ = 0, (27a)

μs

(
∂2η̃

∂z2
− α2η̃

)
− K

∂ϕ̃

∂z
− ∂ p̃

∂z
= 0. (27b)

It becomes easier to solve the governing equations if we
recast in terms of the three variables η̃, ϕ̃, and p̃ and can then
use Eq. (25) to find ξ̃ given η̃ and ϕ̃. Multiplying Eq. (27a) by
α and differentiating Eq. (27b) with respect to z, then adding
the results, we are left with an equation for ϕ̃,(

∂2

∂z2
− α2

)[
D(�b)

�b
ϕ̃ + p̃

]
= 0. (28)

We then encode momentum balance using this equa-
tion alongside Eq. (27b). These equations govern the elastic
response of the gel to changes in perturbation pervadic and
osmotic pressures, but they need to be coupled with another
equation linking pressures and displacements arising from the
motion of interstitial fluid.

B. Swelling equation

In addition to the mechanical balance above, we also need
to consider the swelling-driven dynamics of the perturbations.
Swelling is described by Eq. (4b), balancing the rate of change
of polymer fraction with advection from the total flux vec-
tor and diffusion of water into the gel. As seen above, the

equation governing swelling and drying is

∂�

∂t
+ q · ∇� = ∇ · [D(�)∇�]. (29)

Letting the perturbation phase-averaged flux be q̃ =
es(t−t∗ )(q̃x sin (αx), q̃z cos (αx))T and working to leading or-
der in the perturbation quantities, this equation becomes

∂ϕ̃

∂t
+ ∂�b

∂z
q̃z =

(
∂2

∂z2
− α2

)
[D(�b)ϕ̃], (30)

while Eq. (5) implies that

q̃z = s�−1/2
b η̃ − 1

2
�

−3/2
b

∂ηb

∂t
ϕ̃ − k

μl

∂ p̃

∂z
. (31)

Since the base state vertical flux qz = 0, the leading-order
terms in Eq. (5) give

∂ηb

∂t
= k�

1/2
b

μl

∂ pb

∂z
= −D(�b)�−1/2

b

∂�b

∂z
. (32)

We can then combine these two results (31) and (32) to show
that

q̃z = s�−1/2
b η̃ + D(�b)

2�2
b

∂�b

∂z
ϕ̃ − k

μl

∂ p̃

∂z
. (33)

Taking Eq. (30) and substituting for qz from Eq. (33) gives

s

(
ϕ̃ + �

−1/2
b

∂�b

∂z
η̃

)
− k

μl

∂�b

∂z

∂ p̃

∂z

=
[

∂2

∂z2
− α2 − 1

2�2
b

(
∂�b

∂z

)2
]
[D(�b)ϕ̃], (34)
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an equation describing the swelling of the gel, a process that
governs the growth rate s of instabilities.

C. Boundary conditions

Equations (27b), (28), and (34) together describe a sixth-
order system in the three perturbation quantities η̃, ϕ̃, and p̃,
and we therefore require six boundary conditions to specify
the solution uniquely. We start with the boundary conditions
on the base of the gel layer (7), where there can be no pertur-
bation vertical displacement (η̃ = 0) nor a normal interstitial
fluid flow across the base, which imposes ∂ p̃/∂z = 0 here.

We also assume no tangential stress σxz exerted by the gel
on the base. Because there is no such stress in the base state
(by horizontal uniformity), this condition reduces to requiring
σ̃xz = 0. Thus, using Eq. (26) and the fact that η̃ = 0, this
reduces to the requirement that ∂ξ̃/∂z = 0. Differentiating the
relation between displacement and ϕ̃ of Eq. (25) and using the
fact that ∂�b/∂z = 0 on z = 0 and the governing Eq. (27b) for
∂2η̃/∂z2, this can be transformed into a condition ∂ϕ̃/∂z = 0,
so the boundary conditions to be applied on z = 0 are

η̃ = ∂ϕ̃

∂z
= ∂ p̃

∂z
= 0. (35)

On the interface between gel and water, the boundary con-
ditions of Eq. (6) imply that we require continuity of stress
and pervadic pressure. Assuming, without loss of generality,
that the pervadic pressure and the stress tensor are both zero
in the fluid overlying the gel, the boundary condition on the
pervadic pressure is

p = pb + εes(t−t∗ ) p̃ cos (αx) = 0 (36)

at z = a(t∗) + εes(t−t∗ )η̃ cos (αx), which linearizes to

p̃ + ∂ pb

∂z
η̃ = 0 at z = a(t∗), (37)

since pb[a(t∗)] = 0 by continuity. An expression for ∂ pb/∂z
is shown in Eq. (11), and so

p̃ = D(�1)

�1

∂�b

∂z
η̃ at z = a(t∗). (38)

In order to impose normal and tangential stress boundary
conditions, we first calculate the normal vector to the de-
formed interface, described, at leading order, by

n = ∇(z − {a(t∗) + εes(t−t∗ )η̃[a(t∗)] cos (αx)
})

=
(

εαes(t−t∗ )η̃[a(t∗)] sin (αx)
1

)
. (39)

Hence, the total surface stress � = [σb + εes(t−t∗ )σ̃] · n is⎛
⎝ [

μs
(

∂ξ̃

∂z − αη̃
)−2Kαη̃(�1−1)

]
sin (αx)[(

K�
1
2
1 −μs

)
αξ̃ + (K�

1
2
1 +μs

)
∂η̃

∂z − p̃
]

cos (αx)

⎞
⎠, (40)

up to and including terms of order ε, with all functions
evaluated at z = a(t∗). Since continuity of normal and tan-
gential stress is equivalent to the requirement that � = 0, this
provides another two boundary conditions for the stability cal-
culation and thus closes the system. Differentiating Eq. (25) to
substitute for ∂ξ̃/∂z and using Eq. (27b), the tangential stress
condition on z = a(t ) becomes

∂

∂z

[
D(�b)

�b
ϕ̃ + p̃

]
+ 2[K (�1 − 1) + μs]α

2η̃ = 0. (41)

The normal stress condition can also be restated, using
Eq. (38) to substitute for p̃, as

2μs
∂η̃

∂z
= (K − μs�

−1/2
1

)
ϕ̃ − D(�1)

�1

∂�b

∂z
η̃. (42)

D. Nondimensionalization

Equations (27b), (28), and (34) can be solved alongside
boundary conditions provided in Eqs. (35), (38), (41), and
(42) in order to find the unknown growth rate s given a wave
number α, material properties, as well as the base swelling
state (i.e., the gel thickness and polymer fraction field). Since
our stability analysis makes a “frozen-in-time” approxima-
tion, we scale all lengths with the thickness of the gel a(t∗) and
introduce the variable y = z/a(t∗) so that our spatial domain
becomes 0 � y � 1. To summarize, let

ᾱ = αa(t∗); η̄ = η̃

a(t∗)
. (43)

Furthermore, we scale all pressures with the osmotic modulus
K and let s scale with a diffusive timescale [as also seen in
Eq. (14)],

p̄ = p̃

K
; p̄b = pb

K
; s̄ = μl a2s

kK
; D̄(�) = μlD(�)

kK
,

(44)

where a = a(t∗) for brevity. Then, dropping the bar markers
and letting �b = � for clarity, the nondimensional system of
equations and boundary conditions becomes

M
(

∂2

∂y2
− α2

)
η = ∂

∂y
(p + ϕ), (45a)

(
∂2

∂y2
− α2

)[
D(�)

�
ϕ + p

]
= 0, (45b)

s

(
ϕ + �− 1

2
∂�

∂y
η

)
− ∂�

∂y

∂ p

∂y
=
[

∂2

∂y2
− α2 − 1

2�2

(
∂�

∂y

)2
]

[D(�)ϕ], (45c)

η = ∂ϕ

∂y = 0,
∂ p
∂y = 0.

}
on y = 0. (45d)
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p = D(�1 )
�1

∂�
∂y η,

∂
∂y

[D(�)
�

ϕ + p
]+ 2(M + �1 − 1)α2η = 0,

2M ∂η

∂y = (1 − M�
−1/2
1

)
ϕ − D(�1 )

�1

∂�
∂y η.

⎫⎪⎪⎬
⎪⎪⎭ on y = 1. (45e)

In order to solve these equations numerically, we can convert
them into a matrix form (see Appendix B) and seek solutions
for the growth rate s as a function of wave number α by using
the boundary conditions to formulate a solvability criterion.

IV. GEL LAYERS WITH UNIFORM POLYMER FRACTION

Before considering the effect of the transient swelling state
on the instability, we start by solving the simpler problem in
which a gel has swollen to a uniform polymer fraction � ≡
�1, and there are therefore no base state pervadic pressure
gradients—no interstitial fluid is flowing through the polymer
scaffold. Therefore, D(�) is a constant, D, and ∂�/∂y ≡ 0.

A. Criteria for marginal stability

We start by considering the criteria for marginal stability,
where s = 0 and perturbations neither grow nor shrink, allow-
ing us to identify critical values of the material parameters
beyond which instability is seen. In this case Eqs. (45b) and
(45c) combine to show(

∂2

∂y2
− α2

)
p = 0 with

∂ p

∂y

∣∣∣∣
y=0

= p(1) = 0, (46)

from boundary conditions (45d) and (45e). The only solution
to this system is p ≡ 0, and there is thus no perturbation
pervadic pressure field, and hence no perturbation fluid flow.
This is to be expected, since fluid flows lead to swelling
and shrinkage, which would lead to growth or decay of the
wrinkles. Solving the remaining equations for this marginally
stable incompressible mode, as outlined in Appendix B, and
applying the boundary conditions gives the solvability crite-
rion for marginal stability,

M
(
1+�

1
2
1 −�1

)
sinh (2α)+2�

1
2
1 (M+�1−1)α=0. (47)

The plots in Fig. 4 illustrate that an instability is first trig-
gered at infinitely small wavelength, α → ∞. Taking the limit

0 1 2 3 4 5

crit

5

10

FIG. 4. Plots of the marginally stable value of �1, determined
implicitly in Eq. (47), at which wrinkles neither grow nor shrink,
against wave number α, showing that instability is triggered first at
infinite wave number α, with, in general, stabilization for small α and
a critical value �1 � �crit = (3 + √

5)/2 for instability.

α → ∞ of Eq. (47), it can be seen that the critical value of �1

to reach marginal stability is given by �crit = (3 + √
5)/2.

It is also clear that there is no nontrivial marginally stable
mode when M = 0, where the compressive strain will not
lead to a deviatoric stress, so buckling is not necessary to
relieve stresses. Notice also that the critical value of �1 for
an instability of zero wave number (α = 0) to be triggered is
only finite for M > 3 + 2

√
2 ≈ 5.83. In general, increasing

M results in a less stable situation, with a lower value of �1

needed to trigger an instability, as the same compressive strain
results in a much larger compressive stress (to relieve through
the formation of wrinkles) in this case.

Though our equations specify a critical steady-state poly-
mer fraction for an instability, this is a dependent variable and
it is more instructive to view the threshold for instability in
terms of the compressive stress or strain exerted by the side
walls. Since we know that instability is triggered once �1

exceeds �crit, our marginal stability criterion can be trans-
formed into a condition on horizontal compressive stress using
Eqs. (10) and (15),

σxx � −2K (�crit − 1) so σxx � −K (
√

5 − 1). (48)

We can also convert the criterion on �1 to a criterion on exx

using the definition of �1 in terms of �∗ and the fact that
exx = 1 − �∗1/2. Results are plotted in Fig. 5, showing that
very large compressive strains are needed to trigger an insta-
bility as M → 0, since large strains are needed to achieve the
critical stress when the material’s shear modulus is low.

Previous studies have expressed the criterion for marginal
stability in a number of different ways. Tanaka et al. [19]
deduce a critical osmotic modulus in terms of two elastic
constants for the hydrogel, assuming that all deformations
are in the vertical direction. On the other hand, Trujillo et al.
[18] reference the predictions of Biot’s theory [7] that insta-
bility would be expected above a critical compressive strain
of around 0.33 and find the same result experimentally under
equibiaxial compression (i.e., the same compression in both
orthogonal directions parallel to the gel interface). Kang and

0 2 4 6 8 10
10-1

100

101

102

e

FIG. 5. Plots of the critical compressive strain −exx to trigger an
instability of any wave number [i.e., to have �1 � (3 + √

5)/2] in
the uniformly swollen steady state for different values of M. The
dashed line shows the large-M limit for exx , equal to (

√
5 − 1)/2 ≈

0.618.
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0 1 2 3 4 5

0

50

100

FIG. 6. Plots of the dispersion relation (49) for the growth rate
s as a function of wave number α and polymer fraction �1 when
M = 1, showing faster growth for larger �1 or α.

Huang [22] deduce a critical swelling ratio λ (related to the
thickness of the gel relative to its “dry” state) that they find
depends on material properties and can convert to a critical
linear strain of around 0.33.

Though the predictions of our model cannot be compared
directly with any of these earlier approaches due to our mod-
eling being purely two dimensional, qualitatively our results
agree with those of Kang and Huang [22], with a higher
threshold for instability as α → 0 and a plateau with an ap-
proximately constant threshold as α → ∞.

B. Calculating growth rates

As discussed above, a number of studies compare the wrin-
kling instability to the elastic instability of a half-space studied
by Biot [7,18,22], where buckles form via an incompressible
elastic deformation with no volumetric change. In these stud-
ies, a marginally stable solution is found but no mechanism for
growth or shrinkage of the wrinkles is proposed. However, it
is clear that the mechanism underlying the growth of wrinkles
in our model is entirely different. Equation (45c) shows that,
when ∂�/∂y = 0, the growth rate s only appears multiplied
by ϕ and so a volumetric change is required, which, for a
hydrogel, must correspond to swelling and drying and there-
fore some flow. It is this process that sets the growth rate for
wrinkles in the uniformly swollen case.

The perturbation Eqs. (45) with � ≡ �1 can be solved
analytically for the perturbation eigenfunctions (as detailed in
Appendices A and B) to yield the implicit dispersion relation,

Ms

2α
sinh (2α) + (M+�1−1)

[
s+M�

1
2
1 α sinh (2α)

]
= 2M�

1
2
1 (M + �1 − 1)

√
α2 + s

D

× cosh2 (α) tanh

(√
α2 + s

D

)
. (49)

The dependence of growth rate s on α and �1 is illustrated
in Fig. 6. The large values away from marginal conditions
show that the growth rate is significantly faster than the
slower swelling timescale at which the gel reaches its uni-
formly swollen state. Later, when considering the transient
swelling problem, this justifies our use of the frozen-in-time
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FIG. 7. Plots of the perturbation eigenfunctions, normalized by
the value of η at y = 1, for a variety of wave numbers when M = 1
and �1 = 4, as derived in Eq. (A3). In these examples, all but α = 1
are unstable. Notice that py < 0 at y = 1 in all the unstable cases and
py > 0 in the stable case. Also note the decreasing decay lengthscale
as α increases.

approximation. In the limit α � 1, Eq. (49) implies that

s ≈ 4�
1/2
1 (1 − M − �1)

(
1 + �

1/2
1 − �1

)
M + �

1/2
1

α2, (50)

so the growth rate is approximately quadratic in the wave
number when the wrinkles have a much shorter wavelength
than the depth of the layer (recall that α is scaled with a1

in the uniformly swollen case). On the other hand, we find
stabilization as α → 0, with s approaching a finite negative
value.

C. Perturbation eigenfunctions

As well as deducing the dispersion relation for
s(M, �1, α), solving Eqs. (45) gives the form of the
perturbation eigenfunctions η, ϕ, and p at any given wave
number. Example eigenfunctions, normalized by the value
of η on the interface, are shown in Fig. 7, illustrating the
decay of perturbation quantities away from the interface.
Perhaps the most instructive of these is the pervadic pressure
eigenfunctions, since the interstitial flow is driven from
regions of high pervadic pressure to lower pressures via
Darcy’s law [27].

Figure 8 illustrates the interstitial flow field in both unsta-
ble and stable cases, showing the mechanisms that drive the
growth and shrinkage of wrinkles. If ∂ p/∂y < 0 for all values
of y, then a flow is driven from the gel into the bulk fluid
above; i.e., wrinkles shrink by expelling water from swollen
regions and drawing it into shrunken troughs and the gel is
stable. When unstable, however, ∂ p/∂y > 0 at the interface,
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FIG. 8. Contour plots of the perturbation polymer fraction field ϕ̃

(A3a) alongside arrows indicating the direction of the interstitial fluid
flow in each case, underlining the growth or shrinkage mechanism.
When the polymer fraction is low, fluid is driven out of peaks and
into troughs, stabilizing the interface, while the opposite happens in
unstable cases. In both cases, M = 1 and α = 5.

driving a flow from the overlying fluid into peaks (and out
of troughs), but ∂ p/∂y < 0 deeper in the gel, driving flow
from the bulk into peaks and out of troughs, exaggerating their
growth with water from below as well.

V. BUCKLING INSTABILITY AT EARLY TIMES

Since instabilities have been seen to grow much faster than
the planar interface of hydrogel swells, we make a quasistatic
approximation and can solve the full set of governing equa-
tions (45) with numerical solutions for the base state from
Eqs. (8) in order to find the dispersion relation s(α, τ ) at any
given nondimensional time τ . Some representative results of
this are shown in Figs. 9 and 10. In contrast with Fig. 6, we
see further destabilization at early times, with growth rates
tending to infinity at specific wave numbers α∗(τ ), and growth
rates being larger than in the uniformly swollen case for all
wave numbers.

Given that we have not included inertia in the force-balance
equation, these infinite growth rates indicate a purely elastic
buckling instability akin to the buckling of an Euler beam
[6], which grow on the fast elastic timescale governed by
inertia alone. Instead of the gel swelling and drying to form
a new state, it deforms incompressibly, just like a pure elastic
material, to reach the new patterned state.

The steady base state studied in Sec. IV has a uniform
compression throughout the depth of the gel. During transient
swelling, however, as illustrated in Fig. 3(a) and Eq. (15),
compressive stresses are confined to a boundary layer near the
surface of the gel, leading to qualitatively different behavior.
In addition to the different mechanical constraints on the hy-
drogel due to differential swelling, the presence of gradients
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FIG. 9. Plots of the dispersion relation for a swelling gel at var-
ious times τ when M = 10 and �∗ = 4.6225 (and thus �1 = 4),
with a logarithmic scale for s. (a) The dispersion relation for early
times, showing a distinct peak at a finite wave number α∗. (b) The
peaks seen at early times disappear beyond τ ≈ 5.5 × 10−5 and the
growth rates decrease, approaching the steady-state value derived in
Sec. IV with �1 ≡ 4.

in the polymer fraction field modifies the pervadic pressure
boundary condition. As a gel swells, its interface is presumed
to swell instantaneously to the interfacial polymer fraction �1,
with the bulk of the gel having a higher polymer fraction.
Therefore, ∂�/∂y < 0 at y = 1, and the interfacial boundary
condition (45e) on the pervadic pressure becomes

p(1) = D(�1)

�1

∂�

∂y

∣∣∣∣
y=1

η(1). (51)

Therefore, since ∂�/∂y < 0, peaks on the wrinkled interface
correspond to minima in the perturbation pressure and troughs
to maxima, driving interstitial flow into peaks and accelerating
the growth of any instabilities.

In this section, we investigate the rapid growth seen at
specific wave numbers α∗ which is expected to dominate the
dynamics of the interface at early times. Figure 11 shows the
wave number at which this peak occurs and how it depends on
time, illustrating how α∗ ∼ τ−1/2 at early times, with the wave
number of the instability decreasing down to around α ≈ 1
before this mechanism no longer plays a part. Figure 9(b)
shows that, above a certain critical time τ = τbuckle (for this
choice of parameters ≈5.5 × 10−5), the buckling mechanism
no longer plays a role, and the dispersion relation approaches
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FIG. 10. Plots of the dispersion relation at early times (a) and
later times (b) when �∗ = 2.75 and M = 10. In this case, �1 < �crit

and thus the final steady state is stable to perturbations of all wave
numbers. However, as τ → 0, some wave numbers are unstable.
Note the logarithmic scale in (a) and the linear scale in (b).

the steady-state value from Sec. IV as the gel swells to a state
where � ≡ �1.

A. Healing of instabilities

Since growth rates for a given wave number decrease in
time as the gel approaches a steady state and that it is clear
that there is a different elastic mechanism at play when only a
boundary layer of gel is swollen, it is reasonable to assume

1  10-5 2.5  10-5 5  10-5 1  10-4

2

4

6
8

10

FIG. 11. Plots of the most unstable mode α∗ where the growth
rate approaches infinity at early times, with M = 10, for different
values of �∗, showing that α∗ ∝ τ−1/2 at early times.

that gels where �1 < �crit may be unstable at early times
before becoming stable as these different mechanisms become
less influential.

This is seen to be the case in the plots of Fig. 10, where,
at early times, we see qualitatively similar behavior to the
early-time peaks seen in cases where �1 > �crit, but at later
times it is apparent that s < 0 for all wave numbers. There is
an intermediate regime where a band of wave numbers remain
unstable but both short- and long-wavelength wrinkles are
suppressed, as seen in Fig. 10(b).

We propose that this can explain the transient nature of
wrinkled interfacial patterns in some cases, where wrinkles
form but are no longer apparent at later times. Though ex-
plaining the smoothing and healing of the wrinkles themselves
would require a nonlinear analysis, these results show that
there are some situations in which linear instability is only
present at the earliest stages of swelling.

B. Elastic buckling

The full numerical results of Fig. 9(a) suggest the presence
of an elastic buckling instability at very early times when only
a thin layer of gel at the gel-water interface has swollen to
� = �1. This instability occurs only for one wave number
α∗, and we plot the time evolution of this wave number in
Fig. 11. The rapid growth of this instability suggests that the
underlying mechanism cannot involve swelling or drying—
there must be a different, faster, growth mechanism. The lack
of swelling and drying implies that there can be no gradients
in perturbation pervadic pressure p (as these would drive flow)
and we relax the requirement of continuity of tangential stress
at y = 1, owing to the presence of a swollen “skin” which is
free to be sheared. Furthermore, at these early times, the bulk
of the gel is assumed to remain at its initial polymer fraction
�∗, so Eqs. (45) become

M
(

∂2

∂y2
− α2

)
η = 0, (52a)

η = 0 on y = 0, (52b)

2M∂η

∂y
= −D(�∗)

�∗ �yη on y = 1. (52c)

where �y denotes the value of ∂�/∂y at y = 1. Since the
value of η at y = 1 is a free parameter equal to the amplitude
of the wrinkles, the equation for η is overdetermined with
two boundary conditions. Therefore, a single value of α is
selected by the normal stress boundary condition, and this
corresponds to the wave number α∗ where s was seen to
approach infinity in the numerical solutions. Equation (52a)
can be solved straightforwardly alongside boundary condition
(52b) to find that

η

η(1)
= sinh (α∗y)

sinh α∗ . (53)

Then, using this result, the normal stress matching condition
implies that

α∗ = −D(�∗)�y

2M�∗ tanh α∗. (54)

This result can be reinterpreted in terms of the thickness
of the swollen boundary layer � at the gel-water interface.
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Noting that

�y ≈ �1 − �∗

�/a(τ )
whence � ≈ −�∗ − �1

�y
a(τ ), (55)

we define δ = �/a(τ ) as the fraction of the gel thickness
occupied by the swollen boundary layer. Hence Eq. (54) can
be restated as

α∗ = D(�∗)

2Mδ

(
1 − �1

�∗

)
tanh α∗. (56)

At the very earliest times, when the boundary layer fraction
δ � 1, it is found that

α∗δ ≈ D(�∗)

2M

(
1 − �1

�∗

)
, (57)

and therefore the wavelength of the wrinkles is set by the
thickness of the boundary layer. There is one solution to
Eq. (56) provided that δ is sufficiently small for a solution
to exist, but once δ exceeds a critical value δc, given by

δc = D(�∗)

2M

(
1 − �1

�∗

)
, (58)

there is no longer a solution α∗ and no elastic buckling is
possible. It can be verified that δc < 1 except in cases where
both M is small and there is a large contrast between �∗ and
�1, when the founding assumption that εzz is small no longer
holds, and so our modeling is not expected to be valid.

C. Physical mechanism for the buckling instability

In order to understand the physical processes that lead to
the onset of the buckling instability, we model the hydrogel as
an incompressible elastic bulk topped by a flexible plate rep-
resenting the swollen layer, with δ � 1 at early times. In this
model, we are effectively seeking the criterion for buckling of
an Euler beam tethered along its length to an incompressible
elastic foundation. The load on this plate comes from the
normal stress exerted on its upper and lower surfaces, with the
assumption that p balances osmotic pressures in the initially
unstressed bulk, so the net load (in the vertical direction) on
the membrane, Q, is

Q = [σzz]
y=1
y=1−δ = −p(1) cos (αx) − σ bulk

zz

∣∣
y=1−δ

= −D(�∗)�y

�∗ η(1) cos (αx) − σ bulk
zz

∣∣
y=1−δ

, (59)

using the interfacial boundary condition for p. The shape of
the plate is described by η = A cos (αx), and this must match
the vertical displacement η(1) since the two layers remain
attached. Within the bulk, we assume an incompressible de-
formation, so there exists a stream function ψ such that

ξ = ∂ψ

∂y
and η = −∂ψ

∂x
with ∇(∇2ψ ) = 0, (60)

the latter equation arising from Cauchy’s momentum equa-
tion in the absence of bulk pressures. Matching with the
interfacial shape, we know that ψ = ψ̂ (y) sin (αx), with
boundary conditions

ψ̂ = 0 on y = 0 and αψ̂ = −A on y = 1 − δ.

(61)

The most general solution for ψ̂ , from Eq. (60) and the form
we have chosen for x dependence, is

ψ̂ = a1 cosh (αy) + a2 sinh (αy). (62)

Thus,

ψ̂ = − A sinh (αy)

α sinh [α(1−δ)]
and η = −αψ̂ (y) cos (αx).

(63)
Furthermore, since σ bulk

zz = 2M∂η/∂y in the incompressible
case, Eq. (59) finally becomes

Q = −A

{
D(�∗)�y

�∗ + 2Mα

tanh [α(1−δ)]

}
cos (αx). (64)

The deflection arising from applied stresses is described by
the Föppl-von Kármán equation, since the plate is thin at early
times,

Eδ3

12(1 − ν2)
α4 − 4M

(
�∗1/2 − �

1/2
1

)
δα2

= −
{

D(�∗)�y

�∗ + 2Mα

tanh [α(1 − δ)]

}
cos (αx). (65)

The first term, with its dependence on the elastic modulus E ,
Poisson’s ratio ν, and layer thickness δ, represents the effect
of the bending moment on the membrane. The second term
incorporates the effect of prestressing, with the horizontal
compressive stress due to swelling derived in Eq. (15). Fi-
nally, the right-hand side represents the balance between the
interfacial pervadic pressure and the restraining force from the
elastic bulk. Since δ is assumed small, we consider only the
leading-order contributions, setting the right-hand side Q of
Eq. (65) to zero, which gives exactly the same equation for α∗
as Eq. (54).

In the transient swelling state, there is more compressive
stress at the interface than in the bulk, owing to greater degrees
of swelling near the gel-water interface. These stresses are
balanced by a pervadic pressure field, with higher pressures
at the interface acting against these deviatoric elastic stresses,
and it is this nonuniform pervadic pressure distribution in the
base state that leads to the boundary condition on the pertur-
bation pervadic pressure. Thus, the interfacial pressure term
in Eq. (59) arises directly from compression at the interface
and is balanced by the anchoring force. Thus, the instability
is driven entirely by a balance between these compressive
stresses arising from swelling and anchoring from the base.

As was seen above, there is a critical value of δ, δc, be-
yond which the stabilizing influence of the fixed base is too
strong for elastic buckling to occur, and this value is defined
by Eq. (58). Viewing the early-time buckling instability as
an elastic beam anchored to a surface shows more clearly,
however, that the stabilization of this mechanism arises from
the anchored base. There is always a nonzero solution α to
Q = 0 when �y �= 0, so buckling instabilities can occur at all
finite times. It is only the growing influence of the anchored
base that stabilizes this mechanism.
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D. Transition between early and late regimes

The above reasoning explains the location of the peak in
Figs. 9(a) and 10(a), as well as the mechanism by which in-
stabilities arise in these very specific cases. However, we still
have yet to explain the growth rates for values of α not equal
to α∗ or the transition to the late-time swelling-dominated
mechanisms. To do this, we relax our assumption that ϕ = 0
and assume that swelling and drying must play a role in all
cases aside from α = α∗. Treating the gel layer as uniform

with polymer fraction

�̄ =
∫ 1

0
�(u, t ) du (≈�∗ as τ → 0), (66)

but with a nonzero gradient �y at y = 1, we solve the same
problem as in Sec. IV with the inhomogeneous pervadic pres-
sure boundary condition of Eq. (51) to find the dispersion
relation,

2�̄[D�̄− 1
2 �y − 2(M + �̄ − 1)s]α2 − 2M�̄[s + 2�̄

1
2 (M + �̄ − 1)]α sinh (2α) − D�y(s + 2M�̄

1
2 α2) cosh (2α)

+ 4M�̄
1
2 α cosh α tanh

(√
α2 + s

D

)
[2�̄(M + �̄ − 1)α cosh α + D�y sinh α]

√
α2 + s

D
+ sD�y = 0, (67)

where D = D(�̄) (as described in Appendix B 2). First, we
can set s to zero to find the marginally stable curve,

M(1 + �̄1/2 − �̄) sinh (2α) + 2�̄1/2(M + �̄ − 1)α

= (1 + M�̄−1/2)

(
tanh α − �̄1/2 sinh2 α

α

)
�y. (68)

This relation, shown in Fig. 12(a), illustrates yet again how
the interfacial polymer fraction gradient destabilizes other-
wise stable situations. These marginal curves also explain
why instability is seen for a finite band of wave numbers at
intermediate times in Fig. 10(b), provided �y < 0, there is a
band of wave numbers which are unstable with polymer frac-
tions �̄ < �crit. At any given stage in the swelling, denote the
minimum value of �̄ for which there exists an instability (i.e.,
the minimum point on the marginal stability curve) �̄crit, and
so the criterion for an instability to exist becomes �̄ � �̄crit.
Notice that �̄crit � �crit, with equality if and only if �y = 0.

Solving Eq. (68) with �̄ = 1 implies that all gels, irrespec-
tive of polymer fraction, are unstable when

|�y| � 5.194M
1 + M or δ � 1 + M

5.194M(�∗ − �1)
. (69)

This explains that instability occurs at all polymer fractions,
provided that |�y| is sufficiently large. Figure 12(b) illustrates
how the criterion for instability becomes stricter as the mag-
nitude of �y drops.

In addition, we can recover the buckling instability in this
intermediate-time regime by taking the dominant balance of
the dispersion relation (67) when s → ∞,

D�y

�̄
sinh2(α)+2(M+�̄−1)α2+Mα sinh (2α)=0. (70)

Comparing the predictions of Eq. (70) and (54) for different
values of �y in Fig. 13, we see excellent agreement as �y →
−∞ (i.e., early times in the swelling process, when the first
and third terms are the dominant balance) but some divergence
as the magnitude of the interfacial polymer fraction gradient
decreases and the thickness of the boundary layer increases,
necessitating some compressible component to the instability,
as found in this intermediate-time solution, but not seen in the
early-time relation. Physically, this corresponds to a need to

match tangential stresses with the water above as the swollen
boundary layer thickens, a boundary condition we neglected
in the early-time approximation, but can no longer ignore if
the there is no thin, clearly defined, “skin.”
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FIG. 12. (a) A plot of the marginally stable modes for different
values of �y when M = 1 for different values of �y, showing
how the transient swelling state destabilizes some wave numbers α

where �̄ < �crit. (b) A plot of the critical value of �̄ above which
instabilities of some wave numbers are seen, corresponding to �crit in
the fully swollen case. Notice how, at early times when �y → −∞,
the criterion for an instability is weaker.
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FIG. 13. Comparisons of the early-time approximation for α∗

(dashed curves) from Eq. (54) with the intermediate-time solutions
(70) that allow for some compressibility (solid curves). In all cases,
�∗ = 5.

Since the early-time approximation found for a purely elas-
tic instability is likely to be invalid as the gel swells further and
the boundary layer thickens, the approximation for the critical
value of δ at which a buckling instability ceases to be possible
is likely better approximated by finding the maximum value
of �y for which a solution α = α∗ can be found to Eq. (70).
Figure 14 shows this value of δc, illustrating how decreasing
M and increasing �̄ lead to a greater thickness of the swollen
layer before the buckling instability ceases to exist.

Unlike in the early-time case, α∗ does not equal zero at
δ = δc, as seen in the position of the turning points of the
solid curves in Fig. 13. The value of α∗ when the system
transitions from buckling to swelling is denoted α∞ and can
be expected to be the wave number seen for all time once these
fast instabilities no longer occur. Tanaka et al. [21] saw in
their experiments that the most unstable wavelength increased
with the square root of time, before reaching a final value
that remained roughly constant for all time, and we propose
that this is equal to the α∞ predicted by our model, since any

1 2 3 4 5

10-2

100

1 2 3 4 5
0

1

2

3

(a)

(b)

FIG. 14. (a) Plots of δc for different values of �̄ and M, showing
the critical swollen layer thickness beyond which buckling instabil-
ities no longer occur. (b) Plots of α∞, the final value of α∗ when
δ = δc, again shown for different M and �∗.

wrinkling instabilities at late times grow by the much slower
process of swelling and therefore are likely to have little net
effect on the steady-state morphology. These values of α∞ are
plotted in Fig. 14(b), showing how the late-time wave number
depends on material properties and �∗.

E. Changing behavior of the instability in time

In the preceding sections, we have deduced properties of
the buckling and swelling instabilities in terms of the thick-
ness δ = �/a(τ ) of the swollen layer of the gel, where we
know that δ → 1 as τ → ∞ and δ → 0 as τ → 0. The simi-
larity solution for the base state derived in Sec. II C allows us
to deduce the dependence of δ on time as the gel approaches
its late-time steady state, and therefore we can take

δ = a(τ ) − a∗

a(τ )
≈ 2λ

√
D(�∗)τ as τ → 0. (71)

At the very earliest of times, there is always a buckling
instability, irrespective of the composition of the gel or its
material properties, as shown in Eq. (69). The wavelength of
this instability scales like the thickness of the swollen layer at
the earliest times, as shown in Eq. (57), and so

α∗ ≈ 1

4λM

(
1 − �1

�∗

)√
D(�∗)

τ
. (72)

Viewing this early-time wrinkling in terms of time and not δ

makes it clear how the wave-number evolution seen by Tanaka
et al. [21] arises and explains the α∗ ∝ τ−1/2 behavior seen in
Fig. 11.

We can now describe the transition in between the dif-
ferent forms of instability in terms of two critical times. In
all cases, the interface is linearly unstable immediately after
being brought into contact with water, until δ reaches δc at
a time τ = τbuckle. Beyond this time, there is no longer an
elastically driven instability, and any instability (if it exists) is
purely swelling driven. The surface remains linearly unstable
if �1 > �crit, but in other cases the interface is not unstable
when |�y| becomes too small to support an instability, and
we transition to a state where the interface is stable to small
perturbations at a time τstable. This explains the observations
that the interface can “heal” in time—though the process
of smoothing out the wrinkles is not modelled here, since
it would rely on nonlinear effects, the surface is no longer
unstable to small perturbations and so wrinkles will no longer
grow. There is therefore a possibility that the interface can
return to a smooth planar state as the gel continues to swell in
these cases, and this is seen in experiments as a smoothing or
healing when the system transitions to a linearly stable nature.
Figure 15 shows this time-varying behavior in a phase dia-
gram, with all gels starting out unstable, with later transitions
to swelling-moderated wrinkling and/or healing.

VI. CONCLUSIONS

The quantity of experimental and theoretical investiga-
tions into the wrinkling instability of surface-attached gels
is testament to the rich variety of behavior exhibited by this
seemingly simple phenomenon, providing insights into the
constitutive modeling of hydrogels, the diffusive mechanisms
driving flow into and out of the polymer matrix and the elastic
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FIG. 15. Plots of the different stability properties for a gel where
M = 10 and how these depend on time τ and initial polymer fraction
�∗. To produce this plot, a full numerical solution has been used to
deduce �̄, so that the solution remains valid for larger values of τ .

anchoring effects provided by the constraints. In this paper, we
have shown how the key behaviors observed in experiments
beginning with those of Tanaka et al. [19] can be explained
by taking a linear-elastic-nonlinear-swelling model for the gel
and describing the growth of wrinkles as a diffusive process,
with water being driven into the gel due to gradients in per-
vadic (pore) pressure.

In contrast to other existing models of the wrinkling pro-
cess (for example, Kang and Huang [22] or Tanaka et al.
[19]), this emphasis on the swelling mechanism behind the
growth of instabilities (at all but the earliest times) allows
us to deduce a growth rate for an instability of any given
wave number, through a dispersion relation describing growth
rate as a function of wave number and material properties.
In this sense, our analysis is akin to the vast array of sta-
bility analyses found in the fluid mechanics literature (e.g.,
Drazin and Reid [29]) and allows us to find more than a
criterion for exchange of stability as calculated by Kang and
Huang [22]. Specifically, we show that the fixed base stabi-
lizes long-wavelength wrinkles such that there is a minimum
wave number at which an instability is seen, but that there is
no stabilizing mechanism for shorter-wavelength wrinkles and
the fastest-growing modes have infinite wave number. This is
clearly unphysical and requires regularization. Other authors
have suggested processes such as surface tension to provide
this stabilization [24], but we have not investigated its effect
here.

Perhaps the most remarkable behavior seen in experiments
is the smoothing and healing of wrinkles as swelling con-
tinues. With an understanding of the evolution of the base
state, it is possible to investigate the key characteristics of
the wrinkling instability on different timescales; the early-
time elastically dominated instability, the swelling-moderated
wrinkling at intermediate times, destabilized by interfacial
gradients in �, and then the potential healing of instabilities
as the steady state � ≡ �1 is approached. Figure 15 illustrates
the three different ways in which a surface instability can
evolve. First, the initial polymer fraction may be sufficiently
low that compressive stresses are comparatively small, and
a buckling instability occurs which then heals, and the final
state is stable (in effect, τbuckle = τstable). Intermediate poly-
mer fractions, where �1 < �crit still, start out as buckling
instabilities, progress to swelling instabilities, and then heal.

Finally, if �1 > �crit, then the instability starts out as in-
compressible elastic buckling and then there is a persistent
swelling instability.

It has been postulated by other authors that the character-
istic lengthscale of the wrinkles in the experiment increases
with the thickness of the diffusively swollen layer, which
would suggest a wrinkle wavelength that initially increases
with the square root of time, and we have shown that this
is indeed the case. At very early times, it is seen that the
mechanism underlying the instability is distinct from that at
later times, with the pervadic pressure boundary condition
imposing a normal stress condition on the surface, but the re-
sultant instability is purely elastic in its growth. Some authors,
such as Tanaka et al. [20], notice a later phase of wavelength
growth, where the characteristic wavelength increases like the
cube root of time, and we speculate that this arises from a
coarsening or ripening effect that is nonlinear in nature and
thus not captured in our context.

Though this model provides a description of all the key
features seen in experiments, in order to better understand the
evolution of the wrinkled patterns, including the formation of
sharp creases and folds as seen by Trujillo et al. [18], it is
likely that a nonlinear stability analysis is necessary to under-
stand the evolution of these more complicated patterns. Our
current understanding of the late-time instability also lacks
a stabilizing process for short-wavelength wrinkles, with an
ultraviolet catastrophe giving maximum growth rates as α →
∞. However, it is likely that the wavelength selection made at
early times (when the instability is elastically dominated and
the growth rates are faster) sets the lengthscale at later times,
with α ≈ α∞ for all times once buckling instabilities are no
longer possible, and this is indeed attested to by experimental
evidence [21].
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APPENDIX A: FINDING EXPLICIT EIGENFUNCTIONS

In the uniformly swollen case, it is possible to find analytic
eigenfunctions for the displacement, polymer fraction, and
pervadic pressure fields, illustrating the form of the solution
more clearly than a purely numerical approach. Assuming
from hereon in that � ≡ �1, a constant, with D = D(�1), the
governing equations (45) reduce to

M
(

∂2

∂y2
− α2

)
η = ∂ p

∂y
+ ∂ϕ

∂y
, (A1a)

(
∂2

∂y2
− α2

)
(Dϕ + �1 p) = 0, (A1b)

(
∂2

∂y2
− α2 − s

D

)
ϕ = 0, (A1c)

η = ∂ϕ

∂y = 0,
∂ p
∂y = 0.

}
on y = 0. (A1d)
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p = 0,

(D/�1) ∂ϕ

∂y + ∂ p
∂y + 2(M + �1 − 1)α2η,

2M ∂η

∂y = (1 − M�
−1/2
1

)
ϕ.

⎫⎪⎬
⎪⎭ on y = 1.

(A1e)

Then, on the assumption that s �= 0,

ϕ = C1 cosh

(√
α2 + s

D
y

)
and (A2a)

p = C2 cosh (αy) − DC1

�1
cosh

(√
α2 + s

D
y

)
, (A2b)

with a vertical displacement given by

η =
(

C3 − C2

4Mα

)
sinh (αy) + C2y

2M cosh (αy)

− C1D�−1/2

s

√ · sinh
(√ · y

)
, (A2c)

where
√ · is shorthand for

√
α2 + s/D. Since we are seeking

eigenfunction solutions, we can impose an arbitrary normal-
ization on ϕ, η and p, so we choose η = 1 on y = 1. The first
two boundary conditions on y = 1 imply that

ϕ = −2�1α(M + �1 − 1)

D tanh α

cosh (
√· y)

cosh (
√· )

and (A3a)

p = 2α(M+�1−1)

tanh α

[
cosh (

√· y)

cosh (
√· )

− cosh (αy)

cosh α

]
, (A3b)

alongside the vertical displacement eigenfunction, having im-
posed η(1) = 1,

η =
{

1+ (M+�1−1)
[
s − 2M�

1/2
1

√ · tanh (
√ · )

]
α

Ms tanh α

}

× sinh (αy)

sinh α
+ 2�

1/2
1 (M+�1−1)

s

α
√ ·

tanh α

sinh (
√ · y)

cosh
√ ·

− M+�1−1

M
αy cosh (αy)

sinh α
. (A3c)

These solutions can then be substituted into the third inter-
facial boundary condition to retrieve the dispersion relation of
Eq. (49).

All three perturbation eigenfunctions are plotted in Fig. 7,
showing decay away from the top boundary on the nondi-
mensional lengthscale α−1, as would be expected given that
all are dependent on exp(±αy). If s = 0, then we can repeat
this process to find the eigenfunctions in the marginally stable
case.

APPENDIX B: MATRIX FORMULATION
OF THE PERTURBATION EQUATIONS

The governing equations (45) are linear in the perturbation
quantities and can therefore be reformulated as a sixth-order
matrix system for ease of numerical solution, with X =
(η, ϕ, p, η′, ϕ′, p′)T , where primes here denote derivatives

with respect to y. The solution vector X satisfies ∂X/∂y = MX
with

M14 = 1 M25 = 1 M36 = 1

M41 = α2 M45 = 1/M M46 = 1/M

M51 = s�′

�1/2D(�)
M52 = s + D(�)α2 − �′′

D(�)

+ (3M + 2�1/2)�′2 − 2M��′′

4�3/2D(�)

M55 = − (2 + M�−1/2)�′

D(�)
M56 = − �′

D(�)

M61 = − s�′

�3/2
M62 = D(�)�′′ − �′2/2 − s�

�2
− 3M�′2

2�5/2

M63 = α2 M65 = 2D(�)�′

�2
M66 = �′

�
, (B1)

all other matrix elements being zero, with �′ = ∂�/∂y. Fur-
thermore, the basal and interfacial boundary conditions can be
imposed by taking B0X0 = B1X1 = 0, where X0 and X1 are
the values of X at y = 0 and y = 1, respectively, and

B0 =

⎛
⎜⎝

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎠ and

B1 =

⎛
⎜⎜⎝

−D(�1 )
�1

�′ 0 1 0 0 0

B121 −M�′

2�
3/2
1

0 0 D(�1 )
�1

1
D(�1 )�′

�1
B132 0 2M 0 0

⎞
⎟⎟⎠,

(B2)

where B121 = 2(M + �1 − 1)α2 and B132 = M�
−1/2
1 − 1.

This system of equations is solved in MATLAB using the
bvp4c solver [30].

1. Uniform polymer fraction

When � ≡ �1, the matrix M is a constant, and therefore
the general solution to the governing equations can be ex-
pressed as a matrix exponential

X = exp [My]X0, (B3)

and, imposing η = ∂ϕ/∂y = ∂ p/∂y = 0 on y = 0, X0 must
take the form (0, 0, c1, c2, c3, 0)T , for ci constants. Then,

X1 = exp [M](0, 0, c1, c2, c3, 0)T , (B4)

and the condition for a nontrivial perturbation solution to exist
with wave number α and growth rate s is simply that there
exists a solution (c1, c2, c3)T to B1X1 = 0 that is nonzero. A
criterion for this can be determined by rewriting B1X1 = 0 in
the form C(c1, c2, c3)T = 0, where

C = B1 exp [M]

⎛
⎝0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎠

T

, (B5)
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and solving

det C = 0, (B6)

giving the dispersion relation of Eq. (49).

2. Early-time approximation

In this approximation, we solve the same governing equa-
tions as with the uniform polymer fraction but impose a
different pervadic pressure boundary condition. Thus, M is the
same as in Sec. B 1 with all instances of �1 replaced by �̄.
Therefore,

X1 = exp [M](0, 0, c1, c2, c3, 0)T , (B7)

with the boundary conditions to be imposed at y = 1
described by

B1 =

⎛
⎜⎜⎝

−D(�̄)
�̄

�y 0 1 0 0 0

B121 0 0 0 D(�̄)
�̄

1

0 B132 0 2M 0 0

⎞
⎟⎟⎠, (B8)

with �y the value of ∂�/∂y at y = 1 and B121 and B132 as in
Eq. (B2) but with �1 replaced by �̄. The dispersion relation in
Eq. (67) is obtained by rewriting the condition B1X1 = 0 as a
matrix equation for (c1, c2, c3)T and seeking the criterion for
a nonzero solution to exist.
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