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Within a kinetic theory, the linear magnetic response of uniaxial single-domain particles suspended in a fluid is
analyzed. The main qualitatively different types of frequency dependence of the longitudinal dynamic magnetic
susceptibility of such particles are described. It is shown that superparamagnetic (related to orientation thermal
fluctuations of the magnetic moment inside a particle) peculiarities of the response of a particle to a probing
magnetic field are not fully determined by the ratio of anisotropy energy to thermal energy when a stationary
bias field is applied. For a case where the indicated ratio is much greater than one, a simple approximate
expression for the dynamic magnetic susceptibility of a particle is proposed. The developed approach is extended
to polydisperse suspensions of noninteracting uniaxial nanoparticles. It is shown that polydispersity does not
vanish away specific superparamagnetic features in the dynamic magnetic response of such systems. Quantitative
estimates of the corresponding effects are performed in different frequency ranges of the applied field. It is
demonstrated that under certain restrictions on the disperse composition of a suspension, the internal diffusion
of the magnetic moment can lead to a splitting of the absorption spectrum of the system. The significant role of
the bias field is revealed. In particular, it can cause an additional absorption maximum provided the particle-size
distribution meets the outlined condition. Also, it enables one to assess how important it is to take into account
superparamagnetism of particles: the effect of the biasing is stronger for particles with smaller anisotropy and
thereby more pronounced superparamagnetic properties. A qualitative agreement of some of the inferences with
the experimental data is briefly discussed.
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I. INTRODUCTION

Superparamagnetic nanoparticles have been studied for
many years, beginning from the classic papers of Néel [1]
and Bean [2]. However, they are still of a great interest, par-
ticularly, due to broad perspectives for use in medicine and
biotechnology [3–6].

It is well known that magnetic response of nanoparticles
strongly depends on a medium within they are dispersed, and
for each type of a carrier specific theoretical base is required
to interpret experimental results. To date, kinetic theory of re-
magnetization (both in stationary and/or alternating magnetic
fields) of mechanically fixed superparamagnetic particles is
elaborated rather well, especially for those cases where in-
terparticle interactions can be neglected; see, for example,
Refs. [7,8].

Meanwhile, a consistent theory of magnetic response of
nanoparticles suspended in a fluid is still being formed. In
general, kinetics of magnetization of such particles involves
not only random walks of the magnetic moment inside a
particle but also rotational Brownian motion of the particle
body [9–13]. Because of that, the relaxation spectrum of a sus-
pended particle is predicted to be more versatile than that of
an immobilized one [14,15]. This results in additional features
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of magnetic response; for example, in the presence of a bias
field, the absorption spectrum of a uniaxial particle suspended
in a fluid could include up to three peaks in different frequency
bands (for mechanically fixed particles, two at most) [15].

One-particle theories (such as presented in Refs. [9–15])
help to reveal and understand physical mechanisms of re-
magnetization of the particle in an external magnetic field.
However, at present, their predictions can hardly be verified
by direct measurements—a single particle generates too weak
of a signal. Nowadays, the vast majority of experiments are
performed with macroscopic samples (ferrofluids) containing
a huge number of suspended particles. The important thing is
that particles in such systems are not identical but dispersed in
size—this is a common feature of existing synthesis methods.
Meanwhile, dynamic magnetic properties of an individual
particle could strongly depend on the ratio between magnetic
energy proportional to the volume of that particle and thermal
energy. Thus, it is doubtful whether the specific peculiarities
of the magnetic response of a particle are inherent (at least
to some extent) for an ensemble of particles or they are just
vanished away by the polydispersity—even when interparticle
interactions are left aside.

The purpose of this paper is to clarify the specified issue.
It is organized as follows. Section II defines an ensemble
to be considered and introduces relevant physical quantities.
After that, in Sec. III possible types of the longitudinal lin-
ear magnetic response of a single particle are described and
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systemized. Further, in Secs. IV and V, the obtained results are
extended to polydisperse ensembles of noninteracting parti-
cles; special attention is paid to superparamagnetic effects that
appear due to internal (with respect to particle body) diffusion
of the magnetic moment of particles. Lastly, a relationship
between theoretical predictions and experimental results is
briefly discussed in the final part of Sec. V and then some
conclusions are summed up in Sec. VI.

II. DYNAMIC MAGNETIC SUSCEPTIBILITY:
THE BASIC EQUATIONS

A. An ensemble of noninteracting particles

Let us consider a model ensemble of N noninter-
acting single-domain uniaxial ferromagnetic nanoparticles
suspended in a fluid. It is assumed that all particles are char-
acterized by the same anisotropy constant K and saturation
magnetization Ms but their diameters may be different. The
magnetic moment of the whole system is a sum of magnetic
moments of individual particles:

μ =
N∑

i=1

μi. (1)

The direction of the magnetic moment μi—it is set by
the unit vector ei = μi/μi—changes even if the macroscopic
conditions are fixed. First, vector ei thermally deviates from
the easy magnetization axis characterized by the unit vector
ni. Second, vectors ei and ni turn randomly, in common with
the particle body that undergoes rotational Brownian motion
due to collisions with molecules of a surrounding fluid.

At these conditions, the magnetic state of the en-
semble is described by the joint distribution function
P(t, e1, n1, . . . , eN , nN ) that depends on orientations of mag-
netic moments and anisotropy axes of all particles and obeys
the normalization condition∫

P(t, e1, n1, . . . , eN , nN ) de1dn1 . . . deN deN = 1. (2)

Observable magnetic and orientation characteristics of the
system can be found by averaging the corresponding quantity
with the function P. In particular, the phase average of the
magnetic moment at instant t is equal to

〈μ〉 =
〈 N∑

i=1

μi

〉

=
N∑

i=1

μi

∫
ei P(t, e1, n1, . . . , eN , nN )

× de1dn1 . . . deN deN . (3)

For noninteracting particles, the function P is reduced to a
product of normalized distribution functions Wi(t, e, n) of
orientations of magnetic moment and anisotropy axis of in-
dividual particles:

P(t, e1, n1, . . . , eN , nN ) =
N∏

i=1

Wi(t, e, n),

∫
Wi(t, e, n) de dn = 1, (4)

so

〈μ〉 =
N∑

i=1

μi

∫
eWi(t, e, n) de dn. (5)

Due to a huge number of particles in real systems, Eq. (5) is
not suitable for a practical usage. If, to assume for simplicity
that all particles are made of the same material, have the same
thickness of surfactant layer, and the initial state of the system
is not important, then there is the only distinguishing property
of a particle—the diameter of its magnetic phase (magnetic
core). Then, denoting the latter by d , let us introduce the
microscopic density of number of particles as

ρs(d ) = 1

N

N∑
i=1

δ(d − di ),
∫ ∞

0
ρs(d ) dd = 1. (6)

This quantity allows us to write an integral expression for the
total magnetic moment of the system:

〈μ〉 = N
∫ ∞

0
〈μ(d )〉 ρs(d ) dd; (7)

here

〈μ(d )〉 = μ(d )
∫

eW (t, e, n; d ) de dn (8)

is the average magnetic moment of the particle with magnetic
diameter d (it is emphasized by the respective parameter of
the function W ).

Based on function ρs(d ), one can introduce a smoothed
density function:

ρ(d ) =
∫ d+�d

d ρs(y) dy

�d
,

∫ ∞

0
ρ(d ) dd = 1. (9)

By means of the specified function, the magnetic moment of
the system can be found as

〈μ〉 = N
∞∑

n=0

〈μ(n �d )〉ρ(n �d )�d. (10)

Usually, however, it is assumed that �d → 0 and the sum is
replaced by an integral:

〈μ〉 = N
∫ ∞

0
〈μ(d )〉 ρ(d ) dd. (11)

In reality, the scale of coarsening �d is determined by the
capabilities of equipment used to analyze polydispersity.

B. Kinetic equation

In the absence of interparticle interactions, the orientation
distribution function W (t, e, n; d ) in Eq. (8) obeys a closed
evolution equation

∂W

∂t
= ŜW, (12)

where Ŝ is the operator that determines orientation kinetics of
the particle magnetization vector (kinetic operator).
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In Refs. [9,16], it is shown that in the gyration-free
approximation

ŜW = 1

2τB

(
Ĵe + Ĵn

) · W
(
Ĵe + Ĵn

)( U

kBT
+ ln W

)

+ 1

2τD
Ĵe · W Ĵe

(
U

kBT
+ ln W

)
, (13)

where U is the orientation-dependent part of magnetic energy
of the particle, T is the temperature of the system in absolute
units, kB is the Boltzmann constant, and vector operators Ĵe

and Ĵn are defined according to

Ĵe = e × ∂

∂e
, Ĵn = n × ∂

∂n
. (14)

As it should, a Boltzmann function

W0 = 1

Z
exp (−U/kBT ), Z =

∫
dn

∫
de exp (−U/kBT )

(15)

is a solution of the equilibrium problem ŜW0 = 0. The times
τB and τD in (13) are defined as follows:

τB = 3ηVp/kBT, τD = (1 + α2)μ/2αγ kBT, (16)

where η is dynamic viscosity of a fluid, Vp is hydrodynamic
volume of the particle (for given values of d and ds), α is
the precession damping parameter, and γ is the gyromagnetic
ratio. Time τB determines a rate of the rotational Brownian
diffusion of the particle body and τD sets a timescale of in-
ternal (with respect to n) superparamagnetic relaxation of the
magnetic moment in a situation when thermal energy is much
greater than the anisotropy one.

In the presence of the external magnetic field H , the energy
U is a sum of Zeeman and anisotropy terms:

U = −μ · H − KV (e · n)2, (17)

where V is volume of the magnetic core of the particle. In
units of thermal energy function, (17) takes the form

U

kBT
= −ξ (e · f ) − σ (e · n)2, (18)

where dimensionless characteristics for magnitude of the
magnetic field and the anisotropy energy are introduced:

ξ = μH

kBT
, σ = KV

kBT
. (19)

C. Response function

Let us consider the case when the coaligned dc bias field
H0 and linearly polarized ac field h(t ) are applied to the
system. In dimensionless units the overall field acting on
the particle is equal to ξ0 + ξ (t ), where ξ0 = μH0/kBT and
ξ (t ) = μh(t )/kBT . It is assumed that amplitude of the ac field
is relatively small, so that |ξ (t )| � 1. Then it is convenient to
represent the kinetic operator Ŝ in the form

Ŝ = Ŝ0 + ξ (t ) Ŝ1, Ŝ0 = Ŝ(ξ0) (20)

and write the orientation distribution function as a sum of the
equilibrium and nonequilibrium parts:

W = W0 + Wt , Ŝ0W0 = 0. (21)

In the linear approximation in ξ (t ), the function Wt obeys the
equation

∂Wt

∂t
= Ŝ0Wt + (Ŝ1W0)ξ (t ). (22)

Its Fourier transform gives

(iωÎ − Ŝ0)W ω = (Ŝ1W0)ξω; (23)

here Î is the unit operator and ξω and W ω are Fourier images
of the perturbation ξ (t ) and response Wt , respectively. Thus, in
the frequency representation, the nonequilibrium component
of the distribution function can be calculated as

W ω = [(iωÎ − Ŝ0)−1 Ŝ1 W0] ξω. (24)

Accordingly, the Fourier image of the average projection of
the unit magnetization vector e (its variable component) onto
the field direction is equal to

〈e · f 〉ω = R(ω) ξω, (25)

where

R(ω) =
∫

(e · f ) [(iωÎ − Ŝ0)−1 Ŝ1 W0] de dn. (26)

The function R(ω) completely determines the response of an
isolated particle to a probing magnetic field. Below it is found
numerically according to the method proposed in Ref. [16]
and successfully used in Refs. [14,15]. In this approach, the
kinetic operator and the function W0 are set in the represen-
tation where the basis is built up by the so-called bipolar
harmonics. With such a choice, the matrix of the kinetic
operator comes out to be quite sparse and close to diagonal
which simplifies calculations. The type of R(ω) significantly
depends on values of the parameters σ and ξ0 as well as on
reference diffusion times τD and τB [it seen from Eqs. (13)
and (18)].

D. Dynamic magnetic susceptibility of an ensemble

As a rule, in experiments with magnetic suspensions, the
average projection M of the magnetization onto the unit vector
f = H/H along the applied field is measured. If particles are
dispersed in the volume Vsys and their average concentration
is c = N/Vsys, then

M = 〈μ〉 · f
Vsys

= c
∫ ∞

0
μ(d ) ρ(d ) 〈e · f 〉 dd,

〈e · f 〉 =
∫

(e · f )W (t, e, n; d ) de dn. (27)

From Eqs. (25) and (27), it follows that the Fourier transform
of the variable part of the magnetization is

Mω = c
∫ ∞

0
μ(d ) ρ(d ) 〈e · f 〉ωdd

= c
∫ ∞

0
μ(d ) ρ(d ) R(ω; d ) ξω(d ) dd, (28)

with ξω(d ) = μ(d ) hω/kBT ; please note that the dependence
of the response function on a particle size is indicated here
explicitly via the parameter d (it seems expedient when dis-
cussing a polydisperse system).
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Assuming for simplicity that every particle has a spherical
shape, it is reasonable to introduce the dimensionless mag-
netic diameter x = d/dM with dM = (6kBT/πM2

s )1/3 as the
length scale (use of the Gaussian unit system is supposed).
Then,

Mω =
(

c

kBT

∫ ∞

0
μ2(d ) ρ(d ) R(ω; d ) dd

)
hω

=
(

c kBT

M2
s

∫ ∞

0
x6 ρ(x) R(ω; x) dx

)
hω = c kBT

M2
s

χ̃ (ω) hω.

(29)

The function

χ̃ (ω) =
∫ ∞

0
x6 ρ(x) R(ω; x) dx (30)

is a theoretical analog of the dynamic magnetic susceptibility
of the considered suspension; at given temperature, it com-
pletely determines linear response of the system to a probing
magnetic field.

As mentioned above, magnetodynamic properties of a sin-
gle particle depend on values of the parameters σ , ξ , τD, and
τB. For a polydisperse system, these parameters, however, are
not appropriate because they are all proportional to a particle
volume. Instead, it is convenient to specify an ensemble by the
following dimensionless quantities:

κ = K

M2
s

, q = H

Ms
, xs = ds

dM
,

ζ0 = (1 + α2)Ms

6αγ η
, ρ(x)

(∫ ∞

0
ρ(x) dx = 1

)
, (31)

which are correspondingly the anisotropy parameter, magni-
tude of the applied field, double thickness of the surfactant
shell, viscosity parameter and the particle-size distribution
function. As a timescale, it is suitable to use the reference time

τM = 1 + α2

2αγ Ms
(32)

that does not depend on particle size. With such a choice, the
following relations hold: σ = κx3, ξ = qx3, τD = τMx3 and
τB = τM (x + xs)3/ζ0.

Let us make estimates. With saturation magnetization
Ms ≈ 400 emu/cm3 (typical value for ferrites), the diameter
dM ≈ 7 − 8 nm in a wide temperature range. Double size of
the surfactant shell is typically ds ≈ 4 nm, so xs ≈ 0.5. Pa-
rameter ζ0 is expected to be in the range from ∼10−2 − 10−3

(for water) to ∼10−6 (for glycerin). Time τM is of order
10−10 − 10−7 s for typical ferrites with the precession damp-
ing constant α ∼ 0.01 − 0.1. Formally, the upper limit of
integration in Eq. (30) is infinite but, in real samples, certainly,
particles have finite diameters; for single-domain particles,
x � 5.

Note, when the International System of Units is used, the
definitions should be changed: dM = (24kBT/μ0M2

s )1/3, q =
4πH/Ms, and κ = 4πK/μ0M2

s , where μ0 = 4π × 10−7 H/m.

III. RESPONSE FUNCTION OF A PARTICLE

A. Possible types

To characterize the linear magnetic response of an indi-
vidual particle (or a monodisperse ensemble of particles), it
is enough to get frequency dependencies of the real R′ and
imaginary R′′ parts of the function R. Often, the so-called
Cole-Cole diagrams, where the real part R′ is read on the
horizontal axis and the imaginary one R′′on the vertical one,
are also used.

All qualitatively different types of R can be found if one
fixes the anisotropy parameter and varies both the particle
size and magnitude of the bias field. Results are summa-
rized in Figs. 1 and 2 where, for different magnetizing fields
q0 = H0/Ms, the frequency dependencies R′′(ω) and the cor-
responding Cole-Cole diagrams are shown for particles with
diameters x = 1, 1.5, and 2.5; the curves are obtained for
the anisotropy parameter κ = 2 and the viscosity parameter
ζ0 = 10−3. Thus, the following cases are possible:

(1) In the zero bias field, the function R′′(ω) has a single
peak in the frequency range ωτM ∼ 1 and the correspond-
ing Cole-Cole diagram is a semicircle passing through the
origin [solid lines in Figs. 1(a) and 2(a)]. In the magnetiz-
ing field, an additional maximum can appear at frequency
ωτM ∼ 1/ζ0 [dashes and dots in Fig. 1(a)]. The respective
Cole-Cole diagrams in Fig. 2(a) have a peculiarity on the
right (low-frequency) edge. A response function of this type
is typical for particles with the ratio of anisotropy energy to
thermal energy σ � 2.5.

(2) In the zero bias field, the line R′′(ω) has two peaks:
one at frequency ωτM ∼ 1, and the other – at a value smaller
by about one or several orders [solid line in Fig. 1(b)]; when
the bias field is applied, the additional—third—low-frequency
maximum appears [see dashes and dots in Fig. 1(b)]. The
corresponding Cole-Cole diagrams are like several connected
arcs; see Fig. 2(b). A response function of this type is
inherent to particles with 2.5 � σ � σ∗; the upper limit
σ∗ decreases predominantly logarithmically when the ratio
τD/τB = ζ0 (x/(x + xs))3 raises (see Fig. 7 in Ref. [15]) and
is expected to be in the range from σ∗ ≈ 5 to σ∗ ≈ 17. For
example, σ∗ ≈ 10 at ζ0 = 10−3 for particles of size x = 1 and
the surfactant shell thickness xs = 0.5.

(3) In the zero bias field, the spectrum R′′(ω) has two max-
ima (low- and high-frequency), the magnetizing field changes
their position and height, but does not lead to additional
peaks [Fig. 1(c)]; the respective Cole-Cole diagram is shown
in Fig. 2(c). A response function of this type is inherent to
particles with σ � σ∗.

The mechanisms of magnetic relaxation of a superparam-
agnetic nanoparticle suspended in a fluid and corresponding
peculiarities of R′(ω) and R′′(ω) are discussed in more detail
in Ref. [15]. The high-frequency peak at ωτM ∼ 1 (visible on
all curves in Fig. 1) is associated with the so-called intrawell
relaxation of particle magnetic moment near minima of the
potential Eq. (18). With an increase in the ratio of anisotropy
energy to thermal energy, the height of this peak diminishes
and becomes zero at σ → ∞. It should be noted that gy-
roscopic effects are not considered here (the gyration-free
approximation is adopted), and the specified maximum is not
related to ferromagnetic resonance. The low-frequency (in the
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FIG. 1. Frequency dependencies of the imaginary part of the
response function for a particle with size x = 1 (a), 1.5 (b), and
2.5 (c); solid lines: bias field q0 = 0, dashes: q0 = 0.5, dots q0 = 1.
Anisotropy parameter κ = 2, inverse viscosity ζ0 = 10−3, surfactant
thickness xs = 0.5.

region ωτM � 10−1) peak of R′′(ω) which is present even at
zero bias field matches the combined Brownian rotation of the
particle body and the Néel relaxation of the magnetic moment
inside it. When the bias field goes up, this maximum shifts to
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0.150
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0.150
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R′

R′′

FIG. 2. Cole-Cole diagrams for the response function of a par-
ticle with size x = 1 (a), 1.5 (b), and 2.5 (c); solid lines: bias field
q0 = 0; dashes: q0 = 0.5; dots: q0 = 1. Anisotropy parameter κ = 2,
inverse viscosity ζ0 = 10−3, surfactant thickness xs = 0.5.

the right to higher frequencies (at a sufficiently strong field
this peak merges with the high-frequency one). Lastly, the
third additional maximum on the R′′(ω) curve which appears
only in the presence of the dc field is associated with the
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FIG. 3. Frequency dependencies of imaginary parts of the re-
sponse function (a) and Cole-Cole diagrams (b) for a rigid dipole
(κ → ∞) of size x = 1 for several magnitudes of the bias field: q0 =
0 (curves 1), q0 = 1 (curves 2), and q0 = 5 (curves 3); solid lines:
numerical calculation; dots: Eq. (33); inverse viscosity ζ0 = 10−3,
surfactant thickness xs = 0.5.

Brownian rotation of a particle whose intrinsic magnetic state
is equilibrium. This peak is, obviously, impossible for me-
chanically fixed particles because they do not have rotational
degrees of freedom.

The case σ → ∞ requires a special consideration. In this
limit, the magnetic response of a nanoparticle suspended in
a fluid can be considered by means of the so-called rigid
dipole approximation. This approach does not take into ac-
count superparamagnetism of particles at all: it is believed that
thermal fluctuations of the angle between magnetic moment
of a particle and its anisotropy axis are completely negligible.
Thus, comparing results of the full theory and the rigid-dipole
approach, one can reveal superparamagnetic effects in the
magnetic response of the system. As shown in Fig. 3, for
a rigid dipole, the function R(ω) has two specific features.

10−7 10−5 10−3 10−1 101
0.00
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0.12

ωτM

R′′
(a)

κ = 2

σ = 5

q0 = 0.0
q0 = 0.5
q0 = 1.0
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0.08

0.10

0.12

ωτM

R′′
(b)

κ = 20

σ = 5

FIG. 4. Frequency dependencies of the imaginary part of the
response function for particles with the same ratio of anisotropy
energy to thermal one (σ = 5), but different values of the anisotropy
parameter: κ = 2 (a) and κ = 20 (b); solid lines: bias field q0 = 0,
dashes: q0 = 0.5, dots q0 = 1; inverse viscosity ζ0 = 10−3; surfac-
tant thickness xs = 0.5.

First, it includes the only maximum in the frequency range
ωτM � 1 at any values of the bias field q0. Second, in the
range ωτM � 10−1, the signal is exactly zero. It is interesting
to note that at q0 = 0 the Cole-Cole diagrams for particles
with σ � 1 and σ → ∞ are identical; compare the solid lines
in Figs. 2(a) and 3(b).

It is important to emphasize that the disappearance of the
internal diffusion of the magnetic moment at σ → ∞ does
not mean at all that σ is the only parameter whose value
determines superparamagnetic peculiarities in response of a
suspended particle. This is clearly demonstrated by Fig. 4,
where the lines R′′(ω) are shown for particles with the same
value of σ but different values of the anisotropy constant:
κ = 2 (a) and κ = 20 (b). As can be seen, at κ = 2 application
of even a rather weak bias field q0 significantly changes the

044601-6



SUPERPARAMAGNETIC EFFECTS IN THE LINEAR … PHYSICAL REVIEW E 109, 044601 (2024)

10−7 10−5 10−3 10−1 101
0.000

0.025

0.050

0.075

0.100

0.125

0.150

ωτM

R′′
(a)

κ = 2
x = 1.2

q0 = 0.0
q0 = 0.5
q0 = 1.0

10−7 10−5 10−3 10−1 101
0.000

0.025

0.050

0.075

0.100

0.125

0.150

ωτM

R′′
(b)

κ = 20

FIG. 5. Frequency dependencies of the imaginary part of the
response function for particles of the same size (x = 1.2), but with
different values of the anisotropy parameter: κ = 2 (a) and κ =20
(b); solid lines: bias field q0 = 0, dashes: q0 = 0.5, dots q0 = 1;
inverse viscosity ζ0 = 10−3, surfactant thickness xs = 0.5.

response function, leading, in particular, to such superpara-
magnetic effect as appearance of the additional third peak.
However, at κ = 20 the same magnetizing field has almost
no effect. The evident reason for this difference is the fact that
type of the function R depends not only on the parameter σ

but also on the ratio ξ0 = μH0/kBT . Since ξ0 = σ H0Ms/K ,
this means that not only value of σ but also the relationship
between the applied field H0 and effective anisotropy field
HA = K/Ms determines specific features of magnetic response
of a particle.

Lastly, note that the magnetic response of weakly and
strongly anisotropic particles of the same size can be quali-
tatively different; see Fig. 5.

B. Approximate formula for the response function at σ � 1

The graph of the response function of a rigid dipole (κ →
∞, Fig. 3) suggests that R(ω) can be approximated by a

Debye-type expression:

R ≈ R0

1 + iωτB(ξ0)
, κ → ∞, (33)

where static value R0 = R(ω = 0) is determined by the
derivative of the Langevin function with respect to the bias
field,

R0 = dL(ξ0)

dξ0
= 1

ξ 2
0

− 1

sinh2 ξ0
, L(ξ ) = coth(ξ0) − 1

ξ0
,

(34)

and relaxation time τB(ξ0) is inversely proportional to the
smallest (in absolute terms) eigenvalue of the kinetic operator
Ŝ0 in the limit σ → ∞. In accordance with Ref. [17], this time
can be approximately considered equal to

τB(ξ0) = ξ0

L(ξ0)

dL(ξ0)

dξ0
. (35)

The results of calculations by Eqs. (33)–(35) are demonstrated
by dots in Fig. 3; as can be seen, they are in good agreement
with numerical data shown by solid lines.

In the case when σ � 1 but is finite, the spectrum R′′(ω)
has exactly two peaks at any magnitude of the bias field.
This means the response function R(ω) comprises at least two
Debye-type terms that correspond to qualitatively different
relaxation modes. The first one matches Brownian rotation of
the particle body accompanied by thermofluctuational tran-
sitions of the magnetic moment over the energy barrier. At
σ � 1 and ξ0 � σ , the corresponding relaxation time is ap-
proximately equal to τB(ξ0) since the rate of magnetization
reversal inside the particle is exponentially small. The second
contribution to R(ω) is delivered by the intrawell modes. At
σ � 1, they can roughly be characterized by the precession
decay time equal to (1 + α2)/αγ (2K/Ms + H0) = τM/(κ +
q0/2). Then taking into account that the static value R0 of the
response function does not depend on the particle anisotropy
(see, e.g., Ref. [18]), one can write

R(ω) ≈ R0 − �κ

1 + iωτB(ξ0)
+ �κ

1 + iωτM/(κ + q0/2)
, σ � 1,

(36)

where the weight �κ is a function of the parameters σ and ξ .
For the case without the biasing, the accurate asymptotics for
�κ can be written following Refs. [19,20]:

�κ = 1

3

(
1

σ
+ 3

4σ 2

)
, σ � 1, q0 = 0. (37)

In the presence of the magnetizing field, the weight �κ falls
down due to orientation ordering of the anisotropy axis of
a suspended particle. As a characteristic of the effect, one
can use the unperturbed average value 〈P2(n · f )〉0 of the sec-
ond Legendre polynomial that depends on the angle between
easy magnetization axis and direction of the bias field. Ac-
cording to Ref. [21], the indicated average is proportional to
the second Langevin function L2(ξ0) = 1 − 3L1(ξ0)/ξ0. When
the biasing is absent, ξ0 = 0, the orientation distribution of
anisotropy axis is uniform, so 〈P2(n · f )〉0 = 0 and L2 = 0.
It is therefore reasonable to assume that the weight of the
intrawell modes in the presence of the dc field can be repre-
sented as �κ = �κ (ξ0 = 0) [1 + g(σ )L2(ξ0)]. The unknown
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function g(σ ) is found by comparison of this approximation
with numerical data and minimization of the corresponding
variance; the result looks like

�κ = 1

3

(
1

σ
+ 3

4σ 2

)[
1 −

(
1 + 11

5σ
− 71

5σ 2

)
L2(ξ0)

]
. (38)

Expressions Eqs. (36)–(38) agree well with numerical data
at σ � 15, compare, for example, points (approximate cal-
culation) and solid lines (numerical data) in Fig. 6. The
derivation performed does not, certainly, pretend to be rigor-
ous. Nevertheless, the found relations, on the one hand, are
useful for a systematization of numerical data, and on the
other, are very helpful in studying limiting cases.

IV. DYNAMIC MAGNETIC SUSCEPTIBILITY OF A
POLYDISPERSE ENSEMBLE OF PARTICLES

Let us now consider ensembles of suspended particles
whose diameters are not necessarily the same. Generally,
the distribution of particle sizes depends on a method used
to prepare a sample. However, in most cases, the entire
set of particle diameters can be satisfactorily specified by a
two-parameter function. Usually, either lognormal (see, e.g.,
Ref. [22]) or gamma distribution (see, e.g., Ref. [23]) are
involved but the choice between them is not fundamental. For
the given function ρ, the dynamic susceptibility of a polydis-
perse ensemble of particles is delivered by Eqs. (26) and (30).
Hereinafter, in those cases where results can be obtained only
numerically, the gamma distribution

ρ(x) = xα−1e−x/x0

xα
0 �(α)

(39)

is adopted; parameters x0 and α determine the average value
〈x〉 and the relative standard deviation δ =

√
〈(x − 〈x〉)2〉/〈x〉:

x0 = 〈x〉δ2, α = 1

δ2
. (40)

The static magnetic susceptibility χ̃0 = χ̃ (ω = 0) is found
as

χ̃0 =
∫ ∞

0
x6 ρ(x) R(ω = 0; x)dx

=
∫ ∞

0
x6 ρ(x)

dL(ξ0)

dξ0

∣∣∣∣
ξ0=qx3

dx. (41)

If the bias field is weak and for most particles in an ensem-
ble the parameter ξ0 = q0x3 � 2, then R(ω = 0; x) ≈ 1/3 −
q2x6/15, and

χ̃0 ≈ 1

3
〈x6〉 − q2

15
〈x12〉. (42)

On the contrary, if the magnetizing field is strong and for most
particles ξ0 = q0x3 � 2, then R(ω = 0; x) ≈ 1/q2x6, and

χ̃0 ≈ 1/q2 (43)

for any size distribution ρ(x).
In contrast to the static one, the dynamic magnetic response

of a particle suspended in a fluid depends on the anisotropy
parameter κ as well. Since for the given field q0 it can be qual-
itatively different for particles with strong (κ � 1) and weak
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(a)
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(b)

1
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R′

(c)

1

2

3

FIG. 6. Frequency dependencies of real (a) and imaginary
(b) parts of the response function and the corresponding Cole-Cole
diagrams (c) for the particle with size x = 1 and anisotropy pa-
rameter κ = 20 at different values of the bias field: q0 = 0 (lines
1), 2 (lines 2) and 5 (lines 3). Solid lines: numerical calculations;
dots: approximate formula Eq. (36); inverse viscosity ζ0 = 10−3,
surfactant thickness xs = 0.5.

or moderate (κ ∼ 1) anisotropy, it makes sense to consider
two types of ensembles separately.

044601-8



SUPERPARAMAGNETIC EFFECTS IN THE LINEAR … PHYSICAL REVIEW E 109, 044601 (2024)

10−7 10−5 10−3 10−1 101
0.0

0.2

0.4

0.6

0.8

1.0

ωτM

χ̃′′

δ = 0.25

κ = 20

q0 = 0

(a)

〈x〉 = 0.8
〈x〉 = 1.0
〈x〉 = 1.2

10−7 10−5 10−3 10−1 101
0.0

0.1

0.2

0.3

0.4

ωτM

χ̃′′

〈x〉 = 1.0

δ = 0.1
δ = 0.2
δ = 0.3

(b)

FIG. 7. Frequency dependencies of the imaginary part of the dy-
namic magnetic susceptibility of polydisperse ensembles of strongly
anisotropic (parameter κ = 20) particles in zero bias field (q0 = 0);
inverse viscosity ζ0 = 10−3, surfactant thickness xs = 0.5. (a) Dif-
ferent curves correspond to different values of the average particle
diameter: dots 〈x〉 = 0.8, dashes 〈x〉 = 1, solid lines 〈x〉 = 1.2; stan-
dard deviation δ = 0.2. (b) Different curves correspond to different
values of the standard deviation: dots δ = 0.1, dashes δ = 0.2, solid
lines δ = 0.3; average diameter 〈x〉 = 1.

1. Ensemble of particles with strong magnetic anisotropy

In Fig. 7, one can see frequency dependencies of the
imaginary component of the dynamic magnetic susceptibil-
ity (absorption lines) of polydisperse ensembles of particles
with anisotropy parameter κ = 20 in the case q0 = 0 (no bias
field). The presented absorption spectra include two max-
ima: low-frequency (ωτM � 1) and high-frequency (ωτM ∼
1), while in the midfrequency region (ωτM ∼ 0.1) values of
χ̃ ′′(ω) are close to zero. The reason for such a behavior is
quite clear: if κ � 1 (and the average size 〈x〉 ∼ 1 as in
Fig. 7), then for most particles, the parameter σ � 10 and
the response function corresponds to Fig. 1(c). As expected, a

10−7 10−5 10−3 10−1 101
0.00

0.05

0.10

0.15

0.20

0.25

ωτM

χ̃′′

κ = 20

〈x〉 = 1.0

δ = 0.2

(a)

q0 = 0.0
q0 = 0.5
q0 = 1.0

0.0 0.2 0.4 0.6
0.00

0.05

0.10

0.15

0.20

0.25 χ̃′′

χ̃′

(b)

FIG. 8. Frequency dependencies of imaginary part of the dy-
namic magnetic susceptibility (a) and Cole-Cole diagrams (b) of the
polydisperse ensemble of strongly anisotropic (parameter κ = 20)
particles at different values of the bias field: q0 = 0 (solid lines), q0 =
0.5 (dashes), q0 = 1 (dots); average diameter 〈x〉 = 1.0, standard
deviation δ = 0.2, inverse viscosity ζ0 = 10−3, surfactant thickness
xs = 0.5.

growth of average diameter [see Fig. 7(a)] or width of the size
distribution [Fig. 7(b)] leads to an increase in the signal and
to a shift of the left maximum to region of lower frequencies.
Both of these effects are obviously explained by following:
(i) the larger the particle, the greater its contribution to the
magnetic susceptibility, see Eq. (30); and (ii) the larger the
particle, the lower the frequency of the left absorption maxi-
mum; see Fig. 1. The bias field is expected to reduce the height
of the low-frequency absorption maximum and shift it to the
right; see Fig. 8(a). With that, its effect on the high frequency
(ωτM � 10−1) response of the system is rather slight. It is
especially clear from the Cole-Cole diagrams [Fig. 8(b)]: in
the area near origin, they are almost the same for all selected
values q0.

For the case under consideration, some interesting conclu-
sions about superparamagnetic effects can be directly drawn
using Eq. (36) for the response function of a particle. In
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the range ωτM � 10−1, the second term in (36) is virtually
frequency independent and the response function is approxi-
mately equal to

R(ω) = R0 − �κ

1 + iωτB(ξ0)
+ �κ

=
(

R0

1 + ω2τ 2
B (ξ0)

+ �κ

ω2τ 2
B (ξ0)

1 + ω2τ 2
B (ξ0)

)

− i

(
ωτB(ξ0) R0

1 + ω2τ 2
B (ξ0)

− �κ

ωτB(ξ0)

1 + ω2τ 2
B (ξ0)

)
. (44)

Therefore, the real χ̃ ′ and imaginary χ̃ ′′ parts of the dynamic
magnetic susceptibility χ̃ = χ̃ ′ − iχ̃ ′′ of the ensemble are

χ̃ ′ = χ̃ ′
rd +

∫ ∞

0
�κ

ω2τ 2
B (ξ0)

1 + ω2τ 2
B (ξ0)

x6ρ(x) dx,

χ̃ ′′ = χ̃ ′′
rd −

∫ ∞

0
�κ

ωτB(ξ0)

1 + ω2τ 2
B (ξ0)

x6ρ(x) dx,

(45)

where the terms

χ̃ ′
rd =

∫ ∞

0

R0

1 + ω2τ 2
B (ξ0)

x6ρ(x) dx and

χ̃ ′′
rd =

∫ ∞

0

ωτB(ξ0)R0

1 + ω2τ 2
B (ξ0)

x6ρ(x) dx (46)

determine result in the rigid-dipole approximation. The in-
tegrals in Eq. (45) are strictly positive; this means that in
the specified frequency region, diffusion of the magnetic
moment inside particles always leads to an increase in real
component of the dynamic susceptibility of the system and
to a decrease in its imaginary one. With that, the inte-
grals are proportional to the frequency ω of the exciting
field and, therefore, their contribution to χ̃ effectively down
when ω diminishes. As the latter tends to zero, the out-
come of calculations is completely independent of anisotropy
of particles and the rigid-dipole model gives the accurate
result.

In the zero bias field, the weight of the intrawell modes
is �κ = 1/(3κx3) + 1/(4κ2x6) and the expressions take the
form

χ̃ ′ = χ̃ ′
rd +

∫ ∞

0

ω2τ 2
B

1 + ω2τ 2
B

(
x3

3κ
+ 1

4κ2

)
ρ(x) dx, χ̃ ′′ = χ̃ ′′

rd −
∫ ∞

0

ωτB

1 + ω2τ 2
B

(
x3

3κ
+ 1

4κ2

)
ρ(x) dx, (47)

χ̃ ′
rd = 1

3

∫ ∞

0

1

1 + ω2τ 2
B

x6ρ(x) dx, χ̃ ′′
rd = 1

3

∫ ∞

0

ωτB

1 + ω2τ 2
B

x6ρ(x) dx. (48)

As τB = τM (x + xs)3/ζ0, in the region of low frequencies ωτM/ζ0 � 1, the following estimates are valid:

χ̃ ′ ≈ χ̃ ′
rd +

(
ωτM

ζ0

)2

·
( 〈x9〉

3κ
+ 〈x6〉

4κ2

)
, χ̃ ′′ ≈ χ̃ ′′

rd −
(

ωτM

ζ0

)
·
( 〈x6〉

3κ
+ 〈x3〉

4κ2

)
, (49)

χ̃ ′
rd ≈ 〈x6〉

3
, χ̃ ′′

rd ≈
(

ωτM

ζ0

) 〈(x + xs)3 · x6〉
3

, (50)

which confirm that at ωτM � ζ0 superparamagnetic effects are neglible.
In the frequency range ζ0 � ωτM � 10−1, Eqs. (47)–(48) are approximately reduced to

χ̃ ′ ≈ χ̃ ′
rd + 〈x3〉

3κ
+ 1

4κ2
, χ̃ ′′ ≈ χ̃ ′′

rd − ζ0

ωτM

(
1

3κ
+ 1

4κ2

∫ ∞

0

ρ(x)

(x + xs)3
dx

)
, (51)

χ̃ ′
rd ≈ 1

3
·
(

ζ0

ωτM

)2

·
〈(

x

x + xs

)6〉
, χ̃ ′′

rd ≈ 1

3
·
(

ζ0

ωτM

)
·
〈(

x2

x + xs

)3〉
. (52)

As seen, at any particle-size distribution the adjustment for
the internal diffusion of the magnetic moment goes to zero
only at κ → ∞. Note also that the specified correction is
not diminshed with an enhancement of particle sizes (which
entails growth of values of the anisotropy parameter σ ) but in
the opposite rises.

Let us consider the high-frequency response of the system.
In the range ωτM � 10−1, the first term in Eq. (36) vanishes,
so the dynamic magnetic susceptibility of the ensemble is
approximately equal to

χ̃ ≈ 1

1 + iωτM/(κ + q0/2)

∫ ∞

0
�κ x6ρ(x) dx, ωτM �10−1.

(53)

In the absence of the bias field, it reduces to

χ̃ = 1

1 + iωτM/κ

∫ ∞

0

(
x3

3κ
+ 1

4κ2

)
ρ(x)dx

=
[

1

4κ2
+ 〈x3〉

3κ

]
1

1 + iωτM/κ
, ωτM � 10−1. (54)

Thus, at finite values of κ , the high-frequency response is
nonzero at any particle-size distribution due to the intrawell
relaxation of the magnetic moment inside particles.

The drawn conclusions are entirely consistent with the
computational results. In Fig. 9, one can see Cole-Cole dia-
grams of two ensembles with different values of the average
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FIG. 9. Cole-Cole diagrams of polydisperse ensembles of par-
ticles with anisotropy parameter κ = 20 for different values of the
average diameter: x = 1 (dots) and x = 1.2 (thick solid line); thin
solid lines correspond to the rigid dipole approximation; relative
standard deviation δ = 0.2, viscosity parameter ζ0 = 10−3, surfac-
tant thickness xs = 0.5—the biasing is absent.

particle size (the relative width of the distribution is the
same). Thin solid lines demonstrate output of the rigid-dipole
approximation—they strictly cross the origin; thick solid line
and dashes are obtained by the full numerical procedure. It is
clear that at high frequencies (ωτM � 10−1, the corresponding
sections of the diagrams are enlarged in the inset), both in-
phase and out-of-phase components of the magnetic response
are higher for the system with the larger average size of
particles. In frequency region ωτM/ζ0 � 1 (parts to the left
of the maximum point of the diagrams), an increase in 〈x〉
also does not lead to the disappearance of the superparam-
agnetic contribution. On the contrary, two lines—found by
the full calculation and by the rigid-dipole method—move
somewhat away from each other, mainly due to an increase in
the in-phase component of the susceptibility. However, in the
low-frequency region (sections to the right of the maximum
point of the diagrams) the specified lines practically coincide.

2. Moderate and weak magnetic anisotropy

For polydisperse suspensions of particles with anisotropy
parameter κ ∼ 1, a set of possible types of the magnetic
response is expected to be more diverse. Typical options are
illustrated in Fig. 10, where the absorption lines of the system
with κ = 5 are presented for several values of the average
particle diameter and the bias field. As can be seen, for the
ensemble of relatively small particles with 〈x〉 = 0.6 [case
(a)], the frequency sweep of χ̃ ′′ includes the only peak in
the high-frequency range ωτM � 10−1 when q0 = 0 and the
biasing leads to an additional maximum at ωτM ∼ ζ0. For the
ensemble with 〈x〉 = 0.8 [case (b)], there are two absorption
peaks in the region ωτM � 10−2 (see solid line) and due to the
biasing the third maximum can appear at frequency ωτM ∼ ζ0

(see dashes). For 〈x〉 = 1 [case (c)], the spectrum, as shown
by the solid line, actually has three maxima even without dc

field; however, application of the latter can increase resolution
of the peaks, see dashes. Finally, if an ensemble consists of
sufficiently large particles [relatively big average size and/or
distribution width, case (d)], then the absorption line has ex-
actly two peaks: low- and high-frequency ones. A spectrum of
the same shape is typical for particles with strong anisotropy,
compare, for example, Figs. 8(a) and 10(d). However, there
is a significant difference between two situations: at κ � 1
the bias field q0 ∼ 1 has no noticeable effect on the magnetic
response of the system in the range ωτM � 10−1 [in Fig. 8(a),
all curves in the specified band are close to each other] but
at κ ∼ 1 the influence of the biasing is significant (lines at
different q0 are diverse). Nonetheless, in the study of magnetic
resonance, the bias field can play a crucial role even for a
suspension of strongly anisotropic particles [24].

As shown in Fig. 10, the magnetizing field in most cases re-
duces the response of the system and the effect is stronger the
larger particles in an ensemble. However, if for a substantial
part of particles condition σ � σ∗ is met and their response
function matches Figs. 1(a), 1(b) and 2(a), 2(b), then the dc
field can increase out-of-phase component of the susceptibil-
ity in the low-frequency region and cause appearance of the
additional absorption peak at ωτM ∼ ζ0, see Fig. 10(a). Let
us make somewhat rough estimates for values of 〈x〉 and δ at
which this effect is possible. According to Eq. (30), the con-
tribution of each particle to the total magnetic response of the
system is determined by the combination x6ρ(x). Therefore,
it is reasonable to introduce the normalized function

β(x) = A x6ρ(x), A−1 =
∫ ∞

0
x6ρ(x) dx, (55)

such that

χ̃ (ω) =
∫ ∞

0
β(x)R(ω; x) dx. (56)

If particle sizes in an ensemble obey Eq. (39), then

β(x) = xα+5e−x/x0

xα+6
0 �(α + 6)

,

∫ ∞

0
β(x) dx = 1. (57)

Distribution Eq. (57) has the single maximum at xm = (α +
5) x0 and the quantity

Dβ = 〈x2〉β − 〈x〉2
β = x2

0 (α + 6),

〈. . .〉β =
∫ ∞

0
(. . .)β(x) dx, (58)

provides an estimate for its width. In a bias field, the imagi-
nary part of the response function R of a particle can acquire
the additional low-frequency peak only if σ � σ∗. In a poly-
disperse ensemble the predominant part of the magnetic signal
comes from the particles whose magnetic diameter does not
exceed value xm + √

Dβ ; therefore, making an estimation, it is
reasonable to assume that appearance of the extra maximum
at ωτM ∼ ζ0 is possible if

xm + √
Dβ � x∗, x∗ = 3

√
σ∗
κ

. (59)

Substituting the expressions for xm and
√

Dβ and taking into
account that at 5.5 � σ∗ � 17 approximately 3

√
σ∗ ≈ 2, one

044601-11



I. S. POPERECHNY PHYSICAL REVIEW E 109, 044601 (2024)

10−7 10−5 10−3 10−1 101
0.000

0.002

0.004

0.006

0.008

ωτM

χ̃′′

〈x〉 = 0.6

(a)

q0 = 0.0
q0 = 1.0
q0 = 3.0

10−7 10−5 10−3 10−1 101
0.000

0.005

0.010

0.015

0.020

0.025

ωτM

χ̃′′

〈x〉 = 0.8

(b)

10−7 10−5 10−3 10−1 101
0.00

0.02

0.04

0.06

0.08

0.10

ωτM

χ̃′′

〈x〉 = 1.0

(c)

10−7 10−5 10−3 10−1 101
0.0

0.5

1.0

1.5

ωτM

χ̃′′

〈x〉 = 1.4

(d)

FIG. 10. Absorption lines of polydisperse ensembles of moderately anisotropic (parameter κ = 5) superparamagnetic nanoparticles
suspended in a fluid, the average magnetic diameter 〈x〉 = 0.6 (a), 〈x〉 = 0.8 (b), 〈x〉 = 1 (c), and 〈x〉 = 1.4 (d); solid lines: bias field q0 = 0,
dashes: q0 = 1, dots: q0 = 3; relative distribution width δ = 0.2, viscosity parameter ζ0 = 10−3, surfactant thickness xs = 0.5.

obtains the appropriate restriction

〈x〉 � 2
3
√

κ

1

1 + 5δ2 + δ + 3δ3
(60)

on parameters 〈x〉 and δ of the particle-size distribution. De-
spite simplicity and roughness of the assessment, it agrees
quite well with the numerical data. For example, with κ = 5
and δ = 0.2 the average diameter must meet inequality 〈x〉 �
0.82 that is in accordance with Fig. 10.

In a similar way, one can formulate an approximate con-
dition for 〈x〉 and δ under which absorption spectrum of the
system has only two peaks [low- and high-frequency as in
Fig. 10(d) and also in Figs. 7 and 8]. Such a situation is
realized when the overwhelming contribution to the magnetic
response comes from particles with σ � σ∗. The appropriate
inequality looks like xm − √

Dβ � x∗ or, in terms of 〈x〉 and δ,

〈x〉 � 2
3
√

κ

1

1 + 5δ2 − δ − 3δ3
. (61)

For example, for κ = 20 and δ = 0.2 it gives 〈x〉 � 0.7, and
for κ = 5 and δ = 0.2: 〈x〉 � 1.2. Results in Figs. 7, 8, and
10 are consistent with these estimates. If Eq. (61) is satisfied,

then formulas obtained in Sec. IV 1 are permissible for ap-
proximate calculations even at κ ∼ 1.

Note that in sufficiently strong dc fields (q0 is several units
or more), absorption spectrum of a suspension becomes two-
peak regardless of particle diameters; see dots in Fig. 10.

V. DISCUSSION

From the above estimates, it follows that, in principle, at
every finite value of the anisotropy parameter κ = K/M2

s the
absorption spectrum of a suspension may be of any type from
Fig. 10. If the particle-size distribution obeys Eq. (60), then
absorption lines look like those in Fig. 10(a) or Fig. 10(b);
if the inequality Eq. (61) is satisfied, then the lines match
Fig. 10(d) (or Figs. 7 and 8); in other cases, the absorption
spectrum is of type Fig. 10(c). However, for a suspension of
particles with strong magnetic anisotropy (κ � 1), one should
expect that with a standard synthesis technique used, the dy-
namic magnetic susceptibility follows Fig. 10(d) (or Figs. 7
and 8). A vivid example of strongly anisotropic nanoparticles
is the cobalt ferrite ones; typically, the effective anisotropy
constant for them is no less than K ≈ 3 × 106 erg/cm3, and so,
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FIG. 11. Frequency dependencies of the real part of the dynamic magnetic susceptibility of nanoparticles, suspended in a fluid, at different
values of the average diameter (they are the same as in Fig. 10): 〈x〉 = 0.6 (a), 〈x〉 = 0.8 (b), 〈x〉 = 1 (c), and 〈x〉 = 1.4 (d); solid lines
correspond to the the bias field q0 = 0, dashes: q0 = 1, dash-dots: q0 = 3; dots show the corresponding results found in the rigid dipole
approximation. Relative distribution width δ = 0.2, viscosity parameter ζ0 = 10−3, surfactant thickness xs = 0.5.

the parameter κ � 20. In such a case, the condition Eq. (60)
gives 〈x〉 � 0.7, or in dimension units, 〈d〉 � 5 nm, which is
not easy to fulfill.

Further, one may conclude that superparamagnetic effects
are always expected in the magnetic response of real suspen-
sions of nanoparticles. To summarize, let us compare results
for an ensemble of particles with a finite value of anisotropy
parameter κ and for rigid dipoles (κ → ∞). Frequency de-
pendencies of the real and imaginary components of the
dynamic magnetic susceptibility for both systems (with the
same disperse composition) are demonstrated by Figs. 11 and
12, correspondingly. It can be seen that a common super-
paramagnetic effect is the nonzero magnetic response in the
range 10−2 � ωτM � 103. It appears for two reasons. The first
one is the intrawell relaxation with reference time ∼τM ; it is
inherent for any nanoparticle with a finite value of anisotropy
constant. Another reason is contribution of the Néel relaxation
mode from those particles in an ensemble whose anisotropy
parameter σ � 5 (for them, the left absorption peak is located
rather close to the specified frequency band). An increase in
the proportion of large particles and corresponding growth

of the average ratio between anisotropy energy and thermal
energy does not suppress this effect. Conversely, according to
Eqs. (51) and (54), the dynamic magnetic susceptibility in the
specified frequency band even raises with the enlargement of
particles (see also solid lines in Figs. 11 and 12).

If particles are large enough and/or strongly anisotropic
and the ensemble satisfies the condition Eq. (61), then at
other frequencies (ωτM � 10−1) the internal diffusion of
the magnetic moment causes just quantitative changes, see
Figs. 11(d) and 12(d). The corresponding corrections diminish
with the frequency reduction, becoming negligible at ωτM �
ζ0; see Eq. (49). However, for an ensemble of relatively
small particles, superparamagnetic fluctuations, as shown
in Figs. 11(a)–11(c) and 12(a)–12(c), can lead as well to
qualitative modifications of the spectra χ̃ ′(ω) and χ̃ ′′(ω) in
any frequency range.

Note that regardless of the polydispersity characteristics,
the real component of the dynamic magnetic susceptibility
of superparamagnetic particles is always greater than that of
rigid dipoles: χ̃ ′ > χ̃ ′

rd. For the imaginary part of the sus-
ceptibility in the range ωτM � ζ0, the situation is inverse:
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FIG. 12. Frequency dependencies of imaginary part of the dynamic magnetic susceptibility of nanoparticles, suspended in a fluid, at
different values of the average diameter (they are the same as in Fig. 10): 〈x〉 = 0.6 (a), 〈x〉 = 0.8 (b), 〈x〉 = 1 (c), and 〈x〉 = 1.4 (d); solid
lines correspond to the bias field q0 = 0, dashes: q0 = 1, dash-dots: q0 = 3; dots show the corresponding results found in the rigid dipole
approximation.

χ̃ ′′ < χ̃ ′′
rd. The interval ζ0 � ωτM � 10−1 requires a special

consideration. Therein, as Fig. 12 demonstrates, any case is
possible: superparamagnetism of particles may lead both to
a decrease or an increase in χ̃ ′′. However, it follows from
the numerical data that χ̃ ′′ < χ̃ ′′

rd definitely when for most
particles the parameter σ � 20 [that is, by analogy with (61),
the inequality 〈x〉(1 + 5δ2 − δ − 3δ3) � 3

√
20/κ is fulfilled]

and the relations Eq. (45) are valid. Also, in such a case

χ̃ ′′
rd − χ̃ ′′

χ̃ ′′
rd

∼ 1

κ〈x3〉 , (62)

thus, the relative error of calculations by the rigid dipole
model does not exceed 10% if κ〈x3〉 � 10.

From the results obtained, it is evident that the dc field
can significantly affect the dynamic magnetic susceptibility of
nanoparticles suspended in a fluid. For an ensemble satisfying
condition Eq. (61), the biasing causes mainly quantitative
modifications: reduction of the height of both (low- and high-
frequencies) absorption maxima and noticeable shift of the
low-frequency one to the right—to higher frequencies. The

effect depends on the anisotropy of particles: the weaker it is,
the more significant changes in the frequency range ωτM � ζ0.
This fact is confirmed yet again by Figs. 13(a) and 13(b),
where the Cole-Cole diagrams are shown for suspensions
with the same disperse composition (〈x〉 = 1.4, δ = 0.2), but
different values of the anisotropy parameter: κ = 20, 5 and 2,
respectively.

If particle-size distribution obeys the opposite inequality,
then the dc field can lead to qualitative changes, namely, to the
appearance or disappearance of absorption peaks and, associ-
ated with them, sharp decreases in the real component of the
susceptibility. A vivid illustration is the bias-induced emer-
gence of the additional low-frequency maximum in the χ̃ ′′(ω)
spectrum, provided an ensemble meets the condition Eq. (60),
see dashed line in Fig. 13(c) as an example. Note this effect
does not imply a very narrow distribution of particle diameters
and/or their ultra small values. For example, for particles
with the anisotropy constant K ∼ 105 erg/cm3 and saturation
magnetization Ms ≈ 400 emu/ cm3 the specified condition is
fulfilled by an ensemble with the average magnetic diameter
〈d〉 ≈ 8 nm and the relative distribution width δ = 0.3.

044601-14



SUPERPARAMAGNETIC EFFECTS IN THE LINEAR … PHYSICAL REVIEW E 109, 044601 (2024)

0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5 χ̃′′

χ̃′

(a)

κ = 20

0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5 χ̃′′

χ̃′

(b)

κ = 5

0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5 χ̃′′

χ̃′

(c)

κ = 2
q0 = 0.0
q0 = 0.5
q0 = 1.0

0.00 0.05 0.10
0.00

0.05

0.10

0.00 0.05 0.10
0.00

0.05

0.10

FIG. 13. Cole-Cole diagrams of polydisperse ensembles of
nanoparticles, suspended in a fluid (average magnetic diameter 〈x〉 =
1.4, relative standard deviation δ = 0.25) at anisotropy parameter
κ = 20 (a), 5 (b), and 2 (c); solid lines: bias field q0 = 0, dashes:
q0 = 0.5, dots: q0 = 1; viscosity parameter ζ0 = 10−3, surfactant
thickness xs = 0.5.

Interparticle dipole-dipole interactions are not considered
in the present paper. A consistent description of the inter-
action effects is one of the key problem in the theory of

the dynamic magnetic response of ferrofluids. It is very hard
(in real systems, a number of particles is huge and their
volume concentration is typically not small) and its detailed
discussion goes beyond the scope of this paper. However, it is
worthy to mention that in magnetic suspensions the specified
interactions can mainly lead to (a) aggregation of particles,
that is, effective growth of their size, (b) modification of a par-
ticle anisotropy constant, and (c) change of the magnetic field
acting on each particle. These assertion follows from general
properties of the dipole potential and laborious numerical cal-
culations, performed by different approaches such as a mean-
field theory (see, e.g., Refs. [25,26]), Brownian simulations
(see, e.g., Refs. [27,28]), Langevin dynamics (see, for exam-
ple, Refs. [29,30]), and the so-called diffusion-jump model
[31,32]. Besides, to explain experimental results, it is some-
times believed that an external dc field stimulates the growth
of chains of particles in a ferrofluid (see, e.g., Ref. [33]).

Evidently, none of the specified interaction effects can lead
to a magnetic response of an ensemble in the frequency range
ωτM � 10−1 if there is no signal from any individual particle.
Also, if particles are superparamagnetic, then neither their
enlargement nor a finite change of the anisotropy constant
(its possible correction due to dipole-dipole interaction hardly
exceeds ∼M2

s ) nor a change in the acting field by a value of
∼Ms (expected order of an effective field modeling the inter-
particle interactions) causes zeroing out of the real part of the
dynamic susceptibility at frequencies ωτM � ζ0 or imaginary
part at ωτM � 10−1. Note also that even in the case when the
local magnetic field in a suspension differs from the applied
one due to the dipole-dipole interactions the effect of the bias
field will be the stronger, the weaker anisotropy of particles.

Taking this into account, one can make a qualitative in-
terpretation of experimental data from Ref. [34], where the
Cole-Cole diagrams for two magnetic fluids (not diluted)—
based on cobalt ferrite particles (with volume concentration

FIG. 14. Experimentally found Cole-Cole diagrams for the mag-
netic fluid based on cobalt ferrite particles at different values of the
bias field: 0, 3, 6, 12 kA/m (the field increases from up to down
and from right to left); temperature t = 25 ◦C. Figure is taken from
Ref. [34] with the consent of A.V. Lebedev.
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FIG. 15. Experimentally found Cole-Cole diagrams for the mag-
netic fluid based on magnetite particles at different values of the bias
field: 0, 2, 5, 10, 24 kA/m (the field increases from up to down
and from right to left); temperature t = 25 ◦C. Figure is taken from
Ref. [34] with the consent of A.V. Lebedev.

1.3 × 1017 cm −3) and based on magnetite particles (with con-
centration 3.7 × 1016 cm−3)—are measured in dc field. With
kind consent of A.V. Lebedev, the author of these experiments,
the obtained results are reproduced in Figs. 14 and 15, re-
spectively. In the experiments, frequency of the probing field
has not exceeded 200 kHz, so details of the high-frequency
response are not completely revealed. However, one can see
that for the both suspensions the Cole-Cole diagrams tend
not to cross the origin of coordinates—in accordance with the
theoretical predictions for superparamagnetic systems. Also,
for the sample with strongly anisotropic cobalt ferrite particles
the bias field almost does not affect the extrapolation point at
which the diagrams intersect the abscissa axis. In opposite,
its effect on the high-frequency response (sections of the dia-
grams to the left of the maximum point) of magnetite particles
with relatively small anisotropy constant is significant. This is
in a qualitative agreement with results of the above analysis
(compare Figs. 14 and 15 with Fig. 13).

VI. CONCLUSION

A kinetic theory of the linear magnetic response of single-
domain uniaxial particles suspended in a fluid is presented.
On that basis, possible types of frequency dependence of
the longitudinal dynamic susceptibility of such particles are
outlined. It is shown that the ratio of anisotropy energy
to thermal energy should not be considered as the exclu-
sive measure of superparamagnetism: for the same value

of the specified quantity, the signal from particles with
strong (e.g., cobalt ferrite) and weak or moderate (e.g., mag-
netite) anisotropy is qualitatively different if a bias field is
applied.

The proposed description is extended to polydisperse sus-
pensions of noninteracting nanoparticles with a finite strength
of the magnetic anisotropy. It is shown that generally super-
paramagnetic effects in the magnetic response of such systems
are not vanished away and completely disappear only in the
case of quasistatic remagnetization. The internal diffusion of
the magnetic moment of particles leads at least to quanti-
tative changes of the dynamic magnetic susceptibility. The
estimates of these corrections in different frequency bands are
performed for suspensions of strongly anisotropic particles.
However, for polydisperse ensembles of particles with weak
or moderate anisotropy, the internal degrees of freedom of
the magnetic moment can cause a splitting of the absorp-
tion spectrum. In principle, for ensembles of particles with
strong anisotropy, this effect is also possible but the particle-
size distribution must satisfy quite serious restrictions. It is
confirmed that at any finite value of the particle anisotropy
constant and for any type of the polydispersity, the dynamic
magnetic susceptibility of a ferrofluid at high (100 kHz �
f � 10 GHz) frequencies is expected to be nonzero even
if gyration of the magnetic moment is not taken into
account.

The significant effect of the bias field on the magnetic
response of the system is shown. First, it can induce an ad-
ditional maximum in the frequency sweep of the imaginary
part of the dynamic magnetic susceptibility and this effect
does not at all require that all particles have the same size.
Second, it allows us to evaluate how important it is to consider
superparamagnetism of particles, namely, without a biasing,
the frequency spectra of the dynamic magnetic susceptibility
for ensembles of strongly and weakly anisotropic particles
may be of the same type due to a polydispersity. However, the
effect of the dc field will be stronger for particles with smaller
anisotropy and thereby have more pronounced superparamag-
netic properties.

The developed computational scheme does not include the
interparticle dipole-dipole interactions and, strictly speaking,
it is usable for dilute ferrofluids only. However, the estimates
allow us to infer that for the interacting particles as well as for
the noninteracting ones, the high-frequency response should
be significant and the effect of the bias field should be more
noticeable, the stronger the thermal fluctuations of the mag-
netic moment inside particles. This conclusion qualitatively
agrees with experimental data.
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