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Effect of loops on the mean-square displacement of Rouse-model chromatin
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Chromatin polymer dynamics are commonly described using the classical Rouse model. The subsequent
discovery, however, of intermediate-scale chromatin organization known as topologically associating domains
(TADs) in experimental Hi-C contact maps for chromosomes across the tree of life, together with the success
of loop extrusion factor (LEF) model in explaining TAD formation, motivates efforts to understand the effect of
loops and loop extrusion on chromatin dynamics. This paper seeks to fulfill this need by combining LEF-model
simulations with extended Rouse-model polymer simulations to investigate the dynamics of chromatin with
loops and dynamic loop extrusion. We show that loops significantly suppress the averaged mean-square dis-
placement (MSD) of a gene locus, consistent with recent experiments that track fluorescently labeled chromatin
loci. We also find that loops reduce the MSD’s stretching exponent from the classical Rouse-model value of
1/2 to a loop-density-dependent value in the 0.45–0.40 range. Remarkably, stretching exponent values in this
range have also been observed in recent experiments [Weber et al., Phys. Rev. Lett. 104, 238102 (2010); Bailey
et al., Mol. Biol. Cell 34, ar78 (2023)]. We also show that the dynamics of loop extrusion itself negligibly affects
chromatin mobility. By studying static “rosette” loop configurations, we also demonstrate that chromatin MSDs
and stretching exponents depend on the location of the locus in question relative to the position of the loops and
on the local friction environment.

DOI: 10.1103/PhysRevE.109.044502

I. INTRODUCTION

The classical Rouse model for the dynamics of a poly-
mer in a viscous fluid depicts the polymer as an array of
overdamped beads, connected together by nearest-neighbor
springs [1]. Each bead actually represents a subpolymer,
whose end-to-end distance follows a Gaussian distribution,
which determines the Rouse model spring stiffness. Despite
its simplicity, in cases where interaction between different
polymers restores N

1
2 -scaling of the polymer end-to-end dis-

tance [2] (N is the number of monomers in the polymer in
question), and where hydrodynamic interactions between dif-
ferent submolecules are screened by other polymers [3], and
where the polymers are shorter than their entanglement length
[4], the Rouse model’s predictions match experimental mea-
surements on many polymer melts [5–7] and solutions [8–10].
Although hydrodynamic interactions are not screened at times
shorter than the Rouse time [11], many applications of the
Rouse model focus on timescales greater than the Rouse time.

Beyond synthetic polymers, the possibility that the Rouse
model might also provide an appropriate description of the
dynamics of chromatin in living cells has emerged from ex-
periments which quantitatively characterize the motion of

*simon.mochrie@yale.edu

a fluorescently labeled gene locus via its mean-square dis-
placement (MSD) [12–25]. In many of these experiments,
the experimentally measured mean-square displacement of a
labeled gene locus behaves similarly to the Rouse-model pre-
diction that the MSD initially increases as t

1
2 with increasing

time, t . However, chromatin, which is comprised of DNA and
its myriad associated proteins, is now understood to possess a
more elaborate spatial organization than the simple random-
walk polymer envisioned in the classical Rouse model. It is
unclear whether the classical Rouse model predictions should
be expected to apply to such a polymer.

Until recently, chromatin organization was well established
only at the two extremes of the genome scale—with DNA
wrapped around histones in a nucleosome at the molecular
scale (hundreds of DNA base pairs) [26–28] and with each
chromosome largely occupying its own space in the nucleus in
chromosome territories (millions of base pairs) [29–31]. How-
ever, the advent of chromatin configuration capture (Hi-C)
methods has now unveiled an inhomogeneous, hierarchical,
domains-within-domains, organization at intermediate scales
(104–106 bps) [32–41]. Gene loci within the same domain
(termed topologically associated domains or TADs) have a
much higher probability to come into contact, even if they are
genomically distant, than do loci from different TADs [42].
High contact probability between two distant loci supports
the idea that the two loci in question are likely to be at the
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base of a chromatin loop, consistent with the long-standing
hypothesis that loops are a fundamental organizing principle
for chromatin [43–45].

The loop extrusion factor (LEF) model has emerged as the
preferred candidate mechanism for TAD formation [46–54].
In this model, LEFs bind to chromatin and then initiate
dynamic loop extrusion, until they either stall when they
encounter another LEF or at specific boundary elements [usu-
ally identified as a CCCTC-binding factor (CTCF) bound to
its cognate binding site], which mark TAD boundaries, or
until they unbind. Thus, a population of LEFs establishes
a dynamic steady state, which largely recapitulates contact
probabilities determined by experimental Hi-C maps [55]. On
the experimental side, the structural maintenance of chro-
mosomes (SMC) complexes, cohesin and condensin, have
been identified as possible LEFs, with TADs disappearing
from Hi-C maps in the absence of cohesin [56,57]. At larger,
subchromosomal scales, phase separation of different regions
has been proposed to further organize chromatin into chro-
matin “compartments” [31,58–61].

Although a number of modifications to the classical Rouse
model have been proposed to better describe chromatin dy-
namics [24,25,62], to-date how polymer loops might affect
the predictions of the Rouse model have not been described, to
our knowledge. In this paper, motivated by the LEF model, we
consider a modified version of the Rouse model that includes
loops to investigate how loops may affect chromatin MSDs.
Specifically, we augment the classical nearest-neighbor Rouse
model by adding an additional spring (of the same spring
constant) between the pair of monomers at the base of each
loop. The number, sizes, and locations of these additional
springs evolve according to LEF model simulations. Because
the additional springs lead to far-from-diagonal terms in the
Rouse-model dynamical matrix, our modified Rouse model
is no longer analytically tractable. Nevertheless, it is straight-
forward to simulate in an exact manner as follows. First, we
diagonalize the modified dynamical matrix numerically, based
on the current loop configuration, and find its eigenvalues and
eigenvectors, which define the coordinate transformation to
normal coordinates. The time evolution of each independent
normal coordinate is then simulated, using a version of the
method described in Ref. [63], assuming equipartition with
an effective temperature. Next, the bead positions versus time
are recovered by the inverse coordinate transformation. The
above steps are repeated for each different loop configuration
to obtain the time series of bead positions. Finally, the MSD
of each bead, representing the MSD of the corresponding gene
locus, is determined from the time series of bead positions.

This method applied to the classical Rouse model re-
produces the well-known analytical results for the behavior
of the MSD: At early times, the 1D MSD varies as 2Dtα

with the stretching exponent α, taking on the predicted value
of α = 1/2 and the amplitude, D, taking on the predicted
value of D = kBT/

√
πκζ , where κ is the effective spring

constant between subpolymers and ζ is the friction coeffi-
cient for each subpolymer; at long times the MSD achieves
a (boundary-condition dependent) limiting value. By contrast,
for the Rouse model with loops, the MSD is significantly
reduced. In addition, it shows a noticeably reduced and subtly
time-dependent stretching exponent with values that clearly

fall below one-half. Interestingly, these results are reminiscent
of recent experimental results, that examine the dynamics of
gene loci in living cells [14–16,64].

Beyond the LEF model, our approach is applicable to
any polymer configuration involving loops, by appropriately
picking the locations of the additional springs in the Rouse-
model dynamical matrix. Another loop configuration that has
attracted attention is a “rosette,” in which similarly sized loops
emanate from an organizing center. For example, rosettes
are believed to be relevant to the Escherichia coli nucleoid
[65,66]. Examining a fixed-loop-configuration rosette facili-
tates investigation of the MSDs for several distinct genomic
locations, relative to the loops. Thus, we find that the tip of
a loop exhibits the largest mobility, at early times appearing
unconstrained by loops, while the mobility at the base of
a loop is constrained the most. The mobility of loci on the
polymer backbone, between loops, resembles that of the tips
at early times but approaches the mobility of the loop bases at
longer times.

Our approach also allows us to assign different friction
coefficients to individual beads, granting us the ability to
investigate polymer dynamics in environments with inhomo-
geneous viscosity. Extending the Rouse model to embrace
nonuniform friction environments is motivated by the ob-
servation that chromatin itself is locally heterogeneous. We
assign each bead a fixed friction coefficient drawn from a
lognormal distribution with mean μ0 and standard deviation
of σ0 = μ0 and calculate the MSDs and stretching exponents
for each bead. The averaged MSD and stretching exponent
over 60 uniformly spaced beads are calculated as well. We
find that although the MSD and stretching exponent for each
individual bead vary in a wide interval from bead to bead,
the 60-bead-averaged MSD and stretching exponent shows
insignificant deviation from the averaged MSD and stretching
exponent for the polymer with uniform friction coefficient
of μ0. So-called replication factories may provide another
example, where inhomogeneous friction is important. In a
replication factory, chromatin is hypothesized to be folded
into a rosettelike structure, at whose center transcription fac-
tors and SMCs form a phase-separated droplet and assist the
simultaneous replication of the rosette loops [67–74]. Plausi-
bly, the phase separation gives rise to a locally high viscosity.
For this scenario, unsurprisingly, we find that the mobility
of chromatin loci within the high-friction central cluster is
significantly reduced compared to the case when the friction
is the same for all beads, suggesting a potential role for locus
dynamics in elucidating phase separation within the nucleus
[75–77].

This paper is organized as follows. In Sec. II A, we ex-
amine theoretically the dynamics of N-coupled beads, subject
to a random force, for general, symmetric, dynamical and
friction coefficient matrices in terms of the appropriate normal
coordinates. In Sec. II B, we use the equipartition theorem of
statistical mechanics to express the mean-square amplitude
of each normal coordinate in terms of an effective tempera-
ture and an eigenvalue of the dynamical matrix. Section II C
applies the results of Secs. II A and II B to the classical
Rouse model with free ends (free boundary conditions), repro-
ducing the well-known analytic results for the Rouse-model
MSD. Section II D provides instructions and illustrations for
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incorporating chromatin loops based on the classical Rouse
model. Section II E reviews the scaling of κ , ζ , and D with
the size of the subpolymers and explains how experimental
measurements of D and literature estimates of the chromatin
persistence length and of the number of DNA base pairs per
unit chromatin contour length allow us to estimate appropriate
values of κ and ζ for our polymer simulations. Section III A
describes two slightly different versions of the LEF model,
which we call the random loop model and the CTCF model,
respectively, and which are the basis of our loop extrusion
factor (LEF) simulations. Section III B explains how we carry
out Rouse model simulations, incorporating loops and loop
extrusion. In Sec. IV, we present our results. Section IV A
examines the simulated dynamics of the chromatin polymer
with dynamic loops, driven by the LEF model. Comparison
between polymers with and without loops reveals that loops
significantly reduce chromatin mobility, as measured by the
mean-square displacement (MSD). Loops also reduce the
stretching exponent α from a plateau value of 0.5 without
loops to a plateau value lying between about 0.45 and 0.4, de-
pending on the density of loops. By examining the behavior of
polymers with loops but without loop extrusion, i.e., polymers
with static loops, Sec. IV A also reveals that the dynamics of
loop extrusion itself has a minimal effect on the dynamics of
the chromatin polymer, as measured by both the MSD and
stretching exponent, suggesting that although LEFs actively
extrude loops, their dynamics do not dictate how chromatin
polymers move. Section IV B shows the static properties of
chromatin polymers. By examining the distributions of chro-
matin loop size and backbone segment size, both of which are
approximately exponentially distributed at large length scales,
we demonstrate that Rouse-model chromatin polymers with
loops are not fractals. Section IV B also examines the squared
end-to-end distance and the mean monomer density as func-
tions of chromatin polymer contour length, both of which
approach the theoretical scaling law for large contour lengths.
Section IV C examines the simulated dynamics of static loops
in a rosette, revealing that mobility is reduced near the base
of a loop in comparison to the mobility at the tip of a loop. In
Sec. IV D, we examine Rouse-model polymers without loops,
when the beads’ friction coefficients are randomly distributed
according to a lognormal distribution. We calculate the MSDs
and stretching exponents for individual beads as well as the
averaged MSD and stretching exponent for 60 of these beads,
uniformly distributed along the polymer. Comparing these av-
eraged results to those for a polymer with uniform friction, we
find that there are insignificant differences for both MSD and
stretching exponent between the nonuniform-friction and the
uniform-friction case. Section IV E shows that polymers with
rosette structures subject to locally high friction at the central
cluster, mimicking replication factories, exhibit significantly
reduced MSDs in the high-friction region (rosette bases) but
exhibit similar MSDs at the tips of loops, where the friction
environment is unchanged. Finally, we conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Dynamics of N-coupled beads

The Rouse model describes a polymer as N subpolymers
connected together into a chain. Each subpolymer is con-

ceived to be sufficiently long that its end-to-end distance is
a Gaussian random variable. Consequently, each subpolymer
acts as a Hooke’s-law spring with a spring constant equal to
κ = dkBT/〈R2

EE 〉, where kB is the Boltzmann constant, T is
the effective temperature, d is the number of spatial dimen-
sions, and 〈R2

EE 〉 is the mean-square end-to-end distance of a
subpolymer [78]. It is often convenient to conceive the center
of mass of each subpolymer as a bead. This picture leads
to a chain comprised of N beads, each with friction coeffi-
cient, ζ , and connected to its neighbors via springs of spring
constant, κ .

The equations of motion for N beads, coupled together
by springs, in the low-Reynolds-number, overdamped regime,
may be expressed as the matrix equation

ZẊ = −KX + F, (1)

where X is the vector of bead coordinates, Z is the friction
matrix, K is the dynamical matrix, and F is a vector of
stochastic forces. To ensure that our discussion is applicable
to a Rouse polymer with loops, we envision K and Z to be
as general as possible. Nevertheless, Newton’s Third Law re-
quires that K and Z are both symmetric; in addition, Z must be
positive definite to ensure dissipation, and K must be positive
semi-definite to ensure that the minimum potential energy
corresponds to zero displacements relative to the center of
mass. It is convenient to introduce dimensionless versions of Z
and K , namely J and A, respectively, via Z = ζJ and K = κA.
In terms of J and A, Eq. (1) reads

dX

dt
= −κ

ζ
J−1AX + 1

ζ
J−1F. (2)

To proceed, we diagonalize Eq. (2) (assuming that J−1A is di-
agonalizable). Supposing that S is the matrix that diagonalizes
J−1A, i.e., S−1J−1AS = D1, where D1 is a diagonal matrix,
then Eq. (2) becomes

dX

dt
= −κ

ζ
SD1S−1X + 1

ζ
J−1F. (3)

Introducing the normal coordinates, X = S−1X , we obtain

dX
dt

= −κ

ζ
D1X + 1

ζ
F̃ , (4)

where F̃ = S−1J−1F . Thus, N coupled equations of motion
decouple into N independent equations of normal coordinates,
Xm, which satisfies, for each m,

dXm

dt
= −κ

ζ
�mXm + 1

ζ
F̃m, (5)

where �m is the mth eigenvalue of J−1A. Equation (5) leads
to the following results:

〈Xm(t → ∞)〉 = 〈Xm〉 = 0, (6)〈
X 2

m(t → ∞)
〉 = σ 2

Xm
, (7)

and

〈Xm(t + s)Xm(s)〉s→∞ = σ 2
Xm

e− κ
ζ
�mt

, (8)

where 〈....〉 denotes an ensemble average, and σ 2
Xm

and 〈Xm〉
are the variance and mean of eigenmode m at steady state [63].
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B. Equipartition and theoretical MSD for N-coupled beads

To calculate σ 2
Xm

, we turn to statistical mechanics, assum-
ing an effective temperature, T . To this end, first, we express
the N-bead potential energy, U , in terms of the normal coor-
dinates:

U = 1

2
X T KX

= κ

2
X T ST ASX

= κ

2
X T (ST AS)X . (9)

Evidently, the N-bead potential energy is a quadratic form
of the normal coordinates. Because S was chosen to diago-
nalize J−1A, not A, it is not obvious from Eq. (9) that the
potential energy is a function of Xm

2-terms only. However,
if we can prove ST AS is diagonal, then the potential energy is
guaranteed to decouple in the normal coordinates X , and we
can straightforwardly calculate σ 2

Xm
, using the equipartition

theorem. Because A is positive semi-definite and symmetric,
we may write

ST AS = (
A

1
2 S

)T
A

1
2 S. (10)

Equation (10) informs us that for ST AS to be diagonal requires
that {A 1

2 vm} are orthogonal vectors, where {vm} are the eigen-
vectors of J−1A and constitute the columns of S. To show that
{A 1

2 vm} are orthogonal, we start with the eigenvalue equation:

J−1Avm = �mvm. (11)

Multiplying both sides of Eq. (11) by A
1
2 , we find

A
1
2 J−1A

1
2
(
A

1
2 vm

) = �m
(
A

1
2 vm

)
. (12)

Thus, we see that A
1
2 vm is an eigenvector of the matrix,

A
1
2 J−1A

1
2 , with eigenvalue, �m. The matrix, A

1
2 J−1A

1
2 , is sym-

metric because A and J are symmetric and raising a matrix
to a power commutes with transposing the matrix. Because a
symmetric matrix is guaranteed to possess orthogonal eigen-
vectors, it follows that {A 1

2 vm} are indeed orthogonal. (In the
case of two equal eigenvalues, it is always possible to pick
orthogonal eigenvectors in that eigen-subspace.) Defining the
diagonal matrix D2 = ST AS, we thus have

U = κ

2
X T D2X = κ

2

∑
m

λmX 2
m, (13)

where λm is the mth eigenvalue (diagonal entry) of D2 =
ST AS. Thus, for nonzero λm’s, the equipartition theorem gives〈

X 2
m

〉 = σ 2
Xm

= kBT

κλm
, (14)

and Eqs. (7) and (8) become〈
X 2

m(t )
〉 = kBT

κλm
(15)

and

〈Xm(t )Xm(0)〉 = kBT

κλm
e− κ

ζ
�mt

, (16)

respectively. For λm = 0, we set the corresponding normal
coordinate, Xm, which is proportional to the polymer’s center

of mass, to zero, which eliminates the overall drift, mimicking
chromatin’s confinement within the nucleus.

X (t ) may be expressed in terms of X (t ):

Xn(t ) =
N∑

m=1

SnmXm(t ). (17)

Using the fact that different normal coordinates are uncorre-
lated, it immediately follows that

〈
X 2

n (t )
〉 =

N∑
m=1

N∑
p=1

SnmSnp〈Xm(t )Xp(t )〉

=
N∑

m=1

S2
nm

kBT

κλm
, (18)

and

〈Xn(t )Xm(0)〉 =
N∑

m=1

N∑
p=1

SnmSnp〈Xm(t )Xp(0)〉

=
N∑

m=1

S2
nm〈Xm(t )Xm(0)〉

=
N∑

m=1

S2
nm

kBT

κλm
e− κ

ζ
�mt

. (19)

The MSD of bead n is, therefore,

〈[Xn(t ) − Xn(0)]2〉 = 2
〈
X 2

n (0)
〉 − 2〈Xn(t )Xn(0)〉

= 2kBT

κ

N∑
m=1

S2
nm

λm

(
1 − e− κ

ζ
�mt)

. (20)

These results are applicable in general when K and Z (or A and
J) are both symmetric, K (or A) is positive semi-definite and
Z (or J) is positive-definite. We also require that J−1A is diag-
onalizable. An important special case is when J is the identity
matrix. In this instance, since D2 = ST AS = ST SS−1J−1AS =
ST SD1 = D1, λm reduces to �m. Our approach is similar
in spirit to Refs. [79–81]. References [82,83] also presented
solutions when the friction matrix, J , is diagonal, but not
proportional to the identity matrix.

C. Classical Rouse model

For the classical nearest-neighbor Rouse model of N-beads
with free ends, the dynamical matrix, K , is given by

K = κA = κ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
0 −1 2 · · · · · · 0
...

...
...

. . .
. . .

...
...

...
...

. . . 2 −1
0 0 0 · · · −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (21)
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and the friction matrix, Z , is diagonal,

Z = ζJ = ζ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

...
...

. . .
. . .

...
...

...
...

. . . 1 0
0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

In this case, K , A, and J−1A are diagonalized by the orthogo-
nal matrix, S, given by

S =
√

2

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/
√

2 cos 1π/2
N cos 1π

N · · ·
1/

√
2 cos 3π/2

N cos 3π
N · · ·

1/
√

2 cos 5π/2
N cos 5π

N · · ·
...

...
...

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

i.e.,

Snm =

⎧⎪⎨⎪⎩
√

2
N cos

[
π(n+ 1

2 )m
N

]
m �= 0,√

1
N m = 0,

(24)

given the matrix index range as {n, m} ∈ {0, 1, 2, . . . , N − 1},
and N as the number of beads [84,85]. Matrix S diagonalizes
A, i.e., S−1AS = D1. The resultant diagonal matrix D1 con-
tains the eigenvalues of A on its diagonal:

D1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · ·
0 2 − 2 cos π

N 0 · · ·
0 0 2 − 2 cos 2π

N · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦, (25)

i.e.,

�m = 2 − 2 cos
mπ

N
. (26)

Using these results (and setting the normal coordinate with
zero eigenvalue to zero), Eqs. (18) and (20) become〈

X 2
n (0)

〉 = 〈
X 2

n (t )
〉

= kBT

κN

N−1∑
m=1

cos2

[
π

(
n + 1

2

)
m

N

]
1[

1 − cos
(

mπ
N

)]
= kBT

κN

[(
n − 1

2
(N − 1)

)2

+ 1

12
(N2 − 1)

]
(27)

and

〈[Xn(t ) − Xn(0)]2〉
= MSDn(t )

= 2kBT

κN

N−1∑
m=1

cos2

[
π

(
n + 1

2

)
m

N

]
1 − e− 2κ

ζ
(1−cos( mπ

N ))|t |

1 − cos
(

mπ
N

) ,

(28)

respectively. The index of the first bead starts from n = 0. At
early times, Eq. (28) may be shown to be well-described by

MSDn(t ) = 〈[Xn(t ) − Xn(0)]2〉 = 2Dt
1
2 , (29)

FIG. 1. Simplified illustration of a (free-boundary-condition)
Rouse polymer with LEFs and its corresponding dynamical matrix
A. The two LEFs are modeled as non-nearest-neighbor springs and
color-coded as red (dark) and green (light), and their effects on the
dynamical matrix are color-coded accordingly. The subpolymers are
numbered from left to right.

with

D = kBT√
πζκ

, (30)

where D plays a role similar to a diffusion coefficient [86].
Conventionally, one defines the polymer timescale to be the
quantity, τp = ζ/(4κ ), which is proportional to the inverse
of the largest eigenvalue and proportional to the shortest re-
laxation time. The one-dimensional MSD thus can also be
expressed as

MSDn(t ) = 〈[Xn(t ) − Xn(0)]2〉 = kBT√
πκ

√
t

τp
. (31)

The form of Eq. (28) depends on the boundary conditions
[see Eqs. (B11) and (C7) for periodic and fixed boundary
conditions]. By contrast, Eq. (31) turns out to be independent
of boundary conditions.

D. Rouse model with loops

To incorporate chromatin loops into our Rouse simulation,
we model each loop base as an additional spring that connects
the two loci to which it is bound. For simplicity, we choose
the additional springs to have spring constants equal to those
of the usual nearest-neighbor springs. We then modify the
dynamical matrix, K , accordingly, as illustrated in Fig. 1.
Because K remains symmetric upon adding loops, the theory
in Sec. II A remains applicable.

044502-5



TIANYU YUAN et al. PHYSICAL REVIEW E 109, 044502 (2024)

E. Parameter scaling

There is considerable laxity in how to pick the subpolymers
(and, therefore, N). However, the Rouse model parameters
are constrained by the following scaling: If the size of the
subpolymer is chosen a factor f larger, then the number
of subpolymers becomes N

f , the spring constant of the new
subpolymer becomes κ

f , the friction coefficient of the new
subpolymer becomes f ζ , and the characteristic polymer time
of the Rouse polymer becomes f 2τp [86]. Under this scaling D
is invariant [see Eq. (30)], as must be the case for a measurable
quantity.

We chose to model 6 Mb regions of the mouse genome
using N = 600 beads, corresponding to subpolymers of size
N1 = 10 kb. The spring constant between these beads may be
expressed as

κ = d
kBT

(N1/C)lk
, (32)

where C is the number of base pairs per unit chromatin con-
tour length (so that N1

C is the contour length of a subpolymer)
and lk is the chromatin Kuhn length. The chromatin is consid-
ered as a freely jointed chain of Kuhn segments of length, lk .
Combining Eqs. (30) and (32) yields

ζ =
N1
C lkkBT

dπD2
. (33)

Reference [87] estimates C = 50 bp nm−1 and lk = 138 nm,
while D is measured to be roughly D 	 4.1×10−3 µm2 s− 1

2

for d = 2 [64]. These results lead to the following numerical
estimates for a chromatin Rouse polymer built from sub-
polymers comprising 10 kb of DNA: κ

kBT 	 7.25×10−5 nm−2,
ζ

kBT 	 2.61×10−4 nm−2 s, and τp = ζ/(4κ ) = 0.9 s. We used
these numerical values in the simulations shown below in
Sec. IV.

III. METHODS

A. LEF model simulations

To generate dynamic loop configurations, we carried out
simulations of the loop extrusion factor (LEF) model, closely
following Refs. [46–50], where the LEF model is introduced
and described in detail. In our implementation, the chro-
matin polymer is conceived as a linear array of LEF binding
sites. Each LEF possesses two legs, and binds at random,
initially occupying two empty, neighboring binding sites.
Subsequently, the LEF starts to extrude a loop. Each loop
extrusion event moves a site that was previously a backbone
site into a loop. Only outward steps, that grow the loop, are
permitted, with growth to the left or to the right occurring
randomly and independently with equal probability. A LEF
cannot occupy a site that is already occupied by another LEF.
Therefore, LEF binding and loop extrusion are blocked by
other LEFs. A LEF can also unbind, dissipating its loop. In our
simulations, a LEF immediately rebinds after dissociation, so
that the overall number of bound LEFs remains fixed through-
out our simulations.

We implemented two versions of the LEF model. One is
just as described in the previous paragraph, which we call the
random loop model. The second, we call the CTCF model.

TABLE I. LEF simulation parameters. Each lattice site repre-
sents 10 kb. The loop extrusion rate given here is for both ends
of a LEF combined; for each end of a LEF, the extrusion rate is
60 bps/s. The mean LEF separation values given here are defined
by the ratio of total simulated genomic length over total number of
LEFs.

LEF simulation parameter Typical value

Number of LEFs 24, 48, 72, 144
Simulated chromatin length 6 Mb (600 sites)
Loop extrusion rate 120 bps/s (0.012 sites/s)
Loop dissociation rate 0.0005 s−1

LEF processivity 240 kb
Mean LEF separation 250 kb, 125 kb, 83 kb, 42 kb

In the CTCF model, loop extrusion is partially blocked at
specific locations along the genome, where CCCTC-binding
factors (CTCFs) bind to specific DNA sequences. As shown
in the simulations of Ref. [48], this model is able to reproduce
several of the key features seen in chromosome conforma-
tion capture (Hi-C) experiments, including, in particular, TAD
boundaries, separating different genomic regions of high self
contact probability. By construction, the random loop model
does not exhibit TAD boundaries.

To incorporate CTCF-related TAD boundaries in simula-
tions, following Ref. [48], we binned the experimental mouse
CTCF ChIP-Seq coverage data from Ref. [55], in 10-kb bins,
and summed over the coverage data in each bin. In our sim-
ulations, each such bin is located between neighboring LEF
binding sites, so that CTCF abundance scales down the loop
extrusion rate from one LEF binding sites to the next by
multiplying a factor

p(x) = 1

1 + ex/x0−μ
, (34)

where x is the experimental CTCF ChIP-Seq coverage of the
bin, x0 = 20, and μ = 3, based on values given in Ref. [48].
In this paper, we chose to focus on three regions of the mouse
genome, namely 32-38 Mb on Chromosome 12, 4.8–10.8
Mb on Chromosome 13, and 52–58 Mb on Chromosome 18.
These three genomic regions have 58, 41, and 62 CTCF peaks
with varying strengths, respectively, based on the peak-calling
protocol described in Ref. [55].

We simulated these LEF models via a Gillespie-type algo-
rithm [88], implemented in MATLAB. For each possible next
event, say event k, a random variable is generated representing
the time tk , at which event k would occur. In each case, tk is
drawn from an exponential distribution characterized by the
appropriate rate for the event in question, given the current
loop configuration. Which of these possible next events is
actually realized is the one with the smallest value of tk , say,
tk̃ , advancing the simulation by a time tk̃ . This process is
repeated for the duration of the simulation. The parameters of
our simulations are presented in Table I. We picked the loop
extrusion velocity in either left or right direction to be 60 bp/s,
giving a total loop extrusion velocity of 120 bp/s, which is
equal or comparable to the velocities of 100 bp/s estimated in
Ref. [52] and 125 bp/s in Ref. [89], respectively. We picked
the number of LEFs and the loop dissociation rate to make
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FIG. 2. Time evolution of polymer compaction by loops. Com-
paction is defined as the ratio of mean-squared radius of gyration
〈R2

G〉 [Eq. (35)] of a looped polymer to that of a Gaussian polymer
without loop. The colored (nonsolid) lines represent CTCF loop
extrusion simulations run on three different genomic regions using:
blue (dashed), 32–38 Mb of Chr 12; green (dotted), 4.8–10.8 Mb of
Chr 13; red (dash-dotted), 52–58 Mb of Chr 18. The parameters used
in the CTCF LEF simulations are given in Table I, and each polymer
has 48 LEFs bound to it. The solid black line represents the loop
extrusion simulation using the random loop model. The light, thin
lines represent independent simulation runs. The dark, thick lines are
the averages of five independent simulation runs. The medium-thick
curves are exponential fits to the averages, which give steady-state
〈R2

G〉 values of 0.44, 0.40, 0.43, and 0.28 for blue (dashed), green
(dotted), red (dash-dotted), and black (solid), respectively. The fitted
decay times are: blue (dashed), 1126 s; green (dotted), 1030 s; red
(dash-dotted), 718 s; black (solid), 876 s.

corresponding processivity and loop density to lie near the
center of the ranges that are given in Ref. [48].

A key question for any simulation is the time needed to
reach a steady state. To assess how long it takes our LEF simu-
lations to reach steady state, we exploited the observation that
treating chromatin as a Gaussian polymer permits us to de-
termine the polymer’s mean-squared radius of gyration, 〈R2

G〉,
directly from the time-dependent loop configuration (assum-
ing that the polymer time is sufficiently small that each loop
configuration is sufficiently explored by the polymeric de-
grees of freedom). Under these conditions, the mean-squared
radius of gyration between sites A and B along the genome is
given by

〈
R2

G

〉 = l2
k

2N (N + 1)

B∑
i, j=A

(Neff )i j, (35)

where (Neff )i j is the effective genomic distance between lo-
cation i and j, which can be determined directly from LEF
simulations. Appendix A presents a derivation of Eq. (35) and
a detailed explanation of (Neff )i j .

Figure 2 shows the polymer compaction as a function of
time as measured by the relaxation of 〈R2

G〉, normalized to

the 〈R2
G〉 for a Gaussian polymer without loops, for four dif-

ferent LEF simulations. Each simulation starts with 48 LEFs
bound to neighboring lattice sites and ready to undergo loop
extrusion. The solid black lines show the relaxation of the
normalized 〈R2

G〉 for a chromatin polymer with loops extrud-
ing according to the random loop model. The light, thin,
black lines show the relaxation of the normalized 〈R2

G〉 for
five independent LEF simulations, while the thick black line
shows their average. The blue (dashed), green (dotted), and
red (dash-dotted) lines show the relaxation behaviors of the
normalized 〈R2

G〉, according to the CTCF model, for three dif-
ferent genomic regions, namely 32–38 Mb of Chr 12, 4.8–10.8
Mb of Chr 13, and 52–58 Mb of Chr 18, respectively.

By fitting each mean relaxation curve to a single exponen-
tial function, shown as the smooth curves in the figure, we
find that the best-fit relaxation times for the three genomic
regions, 32–38 Mb of Chr 12, 4.8–10.8 Mb of Chr 13, and
52–58 Mb of Chr 18, are 1126, 1030, and 718 s, respectively,
while the relaxation time in the case of the random loop model
is 876 s. The corresponding steady-state compaction factors
for the three different genomic regions are 0.44, 0.40, and
0.43, respectively, while the steady-state compaction factor
in the case of the random loop model is 0.28. Evidently, in
every case, the simulations achieve a steady state within a few
thousand seconds. Accordingly, because the loop extrusion
simulations are computationally inexpensive, to ensure a loop
extrusion steady state prior to starting data collection, we run
all of our LEF simulations until the total elapsed time exceeds
2×104 s, prior to data collection.

Figure 3 shows abstract representations of three randomly
chosen, steady-state loop configurations from CTCF-model
simulations of mouse chromosome 12, 13, and 18, and one
from the LEF simulation using random loop model, all using
parameters in Table I. The loop configuration originated from
the random loop model shows a higher level of compaction
by possessing denser and bigger loops along the backbone.
We ascribe the reduced steady-state radius of gyration in the
random loop model, in comparison to the CTCF model, to the
absence of limitations on loop extrusion, provided by CTCF
boundary elements.

B. Rouse model simulations

For a random variable obeying Eq. (5), Gillespie [63]
showed that

Xm(t + 
t ) = N
(
Xm(t )e− κ

ζ
�m
t

, σ 2
Xm

(
1 − e−2 κ

ζ
�m
t))

= N
(
Xm(t )e− κ

ζ
�m
t

,
kBT

κλm

(
1 − e−2 κ

ζ
�m
t))

= Xm(t )e− κ
ζ
�m
t + N(0, 1)

√
kBT

κλm

(
1−e− 2κ

ζ
�m
t)

,

(36)

where N(μ, σ 2) is the Gaussian distribution with mean μ and
variance σ 2, and where we used Eq. (14) after the second
equality. Equation (36) provides a prescription for how to
simulate a Rouse-model polymer, either with or without loops.
We chose to simulate Rouse-model polymers containing 600
beads, matching the number of beads to the number of LEF
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FIG. 3. Abstract representations, following Ref. [90], of three randomly chosen snapshots of loop configurations (a), (b), and (c) in the
steady-state regime taken from three independent CTCF LEF simulations of a 6 Mb region of mouse Chr 12 (32–38 Mb), Chr 13 (4.8–10.8 Mb),
and Chr 18 (52–58 Mb), respectively, and (d) taken from the LEF simulation using random loop model. The loop extrusion simulations are
done on 600 lattice sites, each representing 10 kb of genomic length. The black, horizontal line represents stretched-out chromatin; each
semicircle represents a loop extruded on the chromatin polymer by connecting monomers at the base of the loop. There are 48 loops in each
loop configuration.

binding sites in the LEF simulations. The parameters used in
our Rouse-model simulations are given in Table II.

To progress a simulation of a Rouse-model polymer from
time t1, to time t2, we first determine the transformation matrix
from bead positions to normal coordinates, using the loop
configuration at t1. Using the bead positions at t1, X (t1), we
then use this t1-transformation matrix to determine the normal
coordinates at t1, X (t1). As long as there is no change in the
loop configuration between t1 and t2, we evolve the normal
coordinates according to Eq. (36) to get normal coordinates
at t2, X (t2). To then determine the bead positions at t2, X (t2),
we calculate the inverse of the t1-transformation matrix, and
apply it to X (t2). Alternatively, if there is a change in the loop
configuration at time t3, intermediate between t1 and t2, we
progress the simulation as just described from t1 to t3. We then
recalculate the t3-transformation matrix, based on the new
loop configuration. Using this new t3-transformation matrix,
we then progress the simulation from t3 to t2.

During each simulation, the dynamical matrix is repeat-
edly updated to reflect the current loop configuration, and a
new corresponding set of eigenvalues and normal coordinates
are repeatedly calculated. Thus, the entire Rouse simulation
is separated by loop extrusion events, into subsimulations,
each with its own stochastic update formula specified by
the eigensystem of the current loop configuration. For any
two consecutive subsimulations, the former’s final conditions
serve as the latter’s initial conditions, ensuring continuity of
the entire Rouse simulation. As noted in Ref. [63], this pro-
cedure represents an “exact” simulation, with no small-time
approximation in the sense that there is no constraint on the
size of time steps used (t2 − t1 or t3 − t1 or t2 − t3), provided

TABLE II. Rouse simulation parameters.

Rouse simulation parameter Typical value

Friction coefficient, ζ 1.08×10−6 Ns/m
Spring constant, κ 3×10−7 N/m
Temperature, T 300 K
Polymer time, τp = ζ/4κ 0.9 s
Update time step 1 s
Simulation length ∼104 s

each different loop configuration is properly included and
accounted for.

The Rouse simulation is run for loop configurations that
have already relaxed to steady state (Fig. 2). Specifically, as
discussed above, we used loop configurations from beyond
2×104 s into each loop extrusion simulation. The starting
bead positions in the Rouse simulation are initialized by trans-
forming the initial normal coordinates, which are randomly
drawn from the normal distribution given in Eq. (36), with
Xm(t = 0) = 0 and 
t = ∞. The initial bead positions cal-
culated in this way are guaranteed to follow the statistics
at the equilibrium, subject to a center of mass of zero. We
chose the update time step in our Rouse simulations to be
1 s, comparable to the Rouse polymer time, and we ran each
Rouse-model simulation for 104 s (Table II).

One possible caveat to our approach is that it is possible
to envisage the development of out-of-equilibrium values of
the Rouse model spring potential energy, if the increase in
potential energy as a result of loop extrusion outpaces Rouse-
model energy relaxation and dissipation. To investigate this
possibility, in Fig. 4, we plot examples of the potential en-
ergy versus time for several different situations. The dashed
red line represents the potential energy from simulations of
a classical, two-dimensional Rouse-model polymer without
loops, where we find that the potential energy fluctuates
about a mean value of 603 kBT . In comparison, the theo-
retically expected value, from the equipartition theorem, is
(600 beads)×(2 dimensions)×( 1

2 kBT ) = 600 kBT . The solid
black line is the potential energy time-series for a random-
loop-model Rouse polymer, corresponding to the simulation
parameters given in Tables I and II. In this case, we see that
the potential energy fluctuates about a mean value of 598 kBT ,
also near the theoretical expectation. This observation indi-
cates that for the loop extrusion and Rouse parameters used
in our simulations, Rouse-model polymers with loops remain
in thermal equilibrium at temperature, T . We also carried out
simulations for which all of the rates in the loop extrusion
simulations were increased by a factor of either ten or one
hundred. The resulting potential energy versus time traces are
shown in blue (dotted) and green (dash-dotted), respectively.
The corresponding mean potential energies are 600 and 599
kBT , respectively. Thus, we see that even for loop extrusion
that is one hundred times faster than estimated, the potential
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FIG. 4. Time series of Rouse polymers’ potential energy for dif-
ferent loop extrusion rates. The red (dashed) line shows the simulated
spring potential energy versus time for a free Rouse polymer without
loops, using the parameters given in Table II. The black (solid)
line shows the simulated spring potential energy versus time for a
random-loop-model Rouse polymer, for 48 LEFs and the parameters
given in Tables I and II. The blue (dotted) and green (dash-dotted)
lines show the potential energy versus time for random-loop-model
polymers, populated by 48 LEFs, when all of the loop extrusion rates
given in Table I are increased by a factor of 10 and 100, respectively,
while the polymer parameters give in Table II are held fixed. The
resolution of the line points in the plot is set to 70 s to ensure a clear
view.

energy does not noticeably exceed the value expected from
equipartition.

IV. RESULTS AND DISCUSSIONS

A. Chromatin mobility in the presence of loops

Figure 5(a) compares the MSDs versus time of a Rouse-
model polymer without loops to the MSDs of Rouse-model
polymers with loops, generated by loop extrusion, all under
free boundary conditions. Shown in red (dashed) are simu-
lated MSDs for the classical Rouse model without loops. The
thin red (dashed) lines show the MSDs, averaged over thirty
independent simulations, for sixty individual beads, equally
spaced along the polymer, while the thicker red (dashed) line
shows these MSDs averaged over all sixty of these beads.
In comparison, the solid black line in Fig. 5(a) shows the
theoretical mean MSD [Eq. (28)]. Evidently, the simulation
closely matches the analytic theory. Shown in blue (dotted)
and green (dash-dotted) are simulated MSDs for the CTCF
model and the random loop model, respectively, both with 48
LEFs, with free boundary conditions, and averaged over thirty
independent simulations. As before, the thin lines show the
MSDs for 60 individual beads, while the thicker lines show the
MSDs averaged over these beads. Importantly, in both cases,
the MSD in the presence of loops is significantly smaller
than the MSD for the classical Rouse model without loops,
indicating that the presence of loops significantly constrains
chromatin mobility. The difference between the MSDs of the
two different loop extrusion models is small, although clearly

FIG. 5. (a) Simulated MSDs of Rouse-model polymers with free
boundary conditions for the classical Rouse model with no loops,
shown in red (dashed), for the CTCF model with loops, shown in
blue (dotted), and for the random loop model, shown in green (dash-
dotted). (b) The corresponding simulated MSD stretching exponent,
α(t ), calculated according to Eq. (37) for no loops (red, dashed),
for the CTCF model (blue, dotted), and for the random loop model
(green, dash-dotted). The solid black line in panel (a) shows the
theoretical mean MSD given by Eq. (28), and then the theoretical
mean stretching exponent is calculated using Eq. (37) and shown in
panel (b). In panels (a) and (b), the thin lines correspond to the results
for 60 individual beads, uniformly distributed along the chromatin.
The thick lines correspond to the average across all 60 beads. Each
thin line is an average over 30 independent simulations with identical
simulation parameters. The LEF and Rouse simulation parameters
used are given in Tables I and II.

the MSDs of the random loop model are more reduced than
the MSDs of the CTCF model.

MSDs versus time are often described using a “stretching
exponent.” Figure 5(b) shows the time-dependent stretch-
ing exponent, α(t ), corresponding to the MSDs shown in
Fig. 5(a), defined as

α(t ) = log [MSD(t + 
t )] − log [MSD(t )]

log(t + 
t ) − log(t )
, (37)
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where 
t is the time step of the Rouse simulations. For ranges
of time over which α(t ) is constant, the MSD approximates
power law behavior versus time. For the classical Rouse
model without loops (dashed red curves), with increasing
time, α(t ) decreases from a value of 1 at the earliest times
(data not shown) to achieve a plateau value close to 0.5 for
times greater than a few tens of τp. This is consistent with
the theoretically predicted α(t ), shown as the solid black
line in Fig. 5(b), which was calculated from Eq. (28). For
Rouse polymers with loops (dotted blue and dash-dotted green
curves), interestingly the stretching exponent falls signifi-
cantly below the value for the Rouse polymer without loops.
In the case of the CTCF model simulations, for times beyond
a few tens of τp, α achieves a plateau value close to α = 0.45.
For the random loop model simulations, α appears to decrease
continuously with time from a value near 0.45 at 30 τp to a
value near 0.4 for 103 τp.

The simulations of Fig. 5 correspond to polymers with
free boundary conditions. We also carried out comparable
simulations for both closed polymer rings (periodic boundary
conditions) and polymers with fixed ends (fixed boundary
conditions). A comparison of the mean MSDs for each possi-
ble boundary condition is shown in Fig. 6(a) for different loop
models. It is clear from this figure that the MSDs for different
boundary conditions are very similar to each other over the
range of times studied. Figure 6(b) shows the corresponding
mean stretching exponents, which are also very similar to
each other over the range of times studied. Solutions to the
classical Rouse model, subject to periodic and fixed boundary
conditions, are given in Appendices B and C, respectively.

How MSD depends on the number of LEFs is illustrated
in Fig. 7, which depicts MSDs [Fig. 7(a)] and stretching
exponents [Fig. 7(b)] for CTCF-model polymers with 0 LEF,
shown as the red (upper solid) line, 24 LEFs, shown as the
cyan (dotted) line, 48 LEFs, shown as the blue (dash-dotted)
line, 72 LEFs, shown as the magenta (middle solid) line, and
144 LEFs, shown as the green (lower thick) line. It is clear
from this figure that the MSDs are progressively repressed as
the number of LEFs increases. Figure 7(b) displays the corre-
sponding stretching exponents for different numbers of LEFs,
revealing that the stretching exponent also initially decreases
progressively as the number of LEFs increases. Interestingly,
the stretching exponent at intermediate times appears to show
a limiting value of 0.43 for large number of LEFs.

LEFs actively extrude loops along the chromatin. There-
fore, although chromatin mobility is reduced overall by the
introduction of loops, it is interesting to investigate the extent
to which the dynamics of loop extrusion might make a positive
contribution to chromatin mobility. To identify any possible
contribution to chromatin dynamics from LEF dynamics, we
investigated Rouse polymers with randomly located static
loops, for which there are no LEF dynamics. Each static loop
configuration studied corresponds to one randomly picked
time point from the steady state of the CTCF model with 48
LEFs on 32–38 Mb of mouse Chr 12. For each such static
loop configuration, a Rouse simulation was then carried out
to determine its MSDs and stretching exponents. Finally, we
averaged the MSDs and stretching exponents from 30 differ-
ent static loop configurations. The resultant mean MSDs and
stretching exponents for looped polymers with random, static

FIG. 6. (a) Comparison between the simulated MSDs of Rouse-
model polymers with free, periodic and fixed boundary conditions,
shown as the solid, dashed, and dotted lines, respectively, for the clas-
sical Rouse polymer with no loops, shown in red (upper cluster), for
the CTCF model with 48 LEFs, shown in blue (middle cluster), and
for the random loop model with 48 LEFs, shown in green (bottom
cluster). (b) Comparison between the corresponding simulated MSD
stretching exponent, α(t ), calculated according to Eq. (37) for no
loops (red, upper cluster), for the CTCF model with 48 LEFs (blue,
middle cluster), and for the random loop model with 48 LEFs (green,
bottom cluster), each considered separately with the three different
boundary conditions. In panels (a) and (b), each line is averaged over
30 independent simulations and averaged over 60 individual beads,
which are uniformly distributed along the chromatin.

loops (dash-dotted orange) are compared in Fig. 8 to the simu-
lated MSDs and stretching exponents of looped polymers with
dynamic loops (dotted blue), that evolve in time according to
the CTCF model with 48 LEFs in the same genomic region.
The MSDs of individual beads, equally separated along the
polymer, shown as thin lines in Fig. 8(a), show similar distri-
butions and trends for both the static and dynamic loops. The
stretching exponents in the case of static and dynamic loops,
shown in Fig. 8(b), also behave similarly to each other. It is
apparent from this comparison that the MSDs and stretching
exponents of polymers with dynamic, on the one hand, and
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FIG. 7. (a) Simulated MSDs of Rouse-model polymers with
periodic boundary conditions for the CTCF model with different
numbers of LEFs, shown in red (upper solid), cyan (dotted), blue
(dash-dotted), magenta (middle solid), and green (bottom thick), cor-
responding to 0 (classical Rouse model), 24, 48, 72, and 144 LEFs,
respectively. (b) The corresponding simulated MSD stretching expo-
nent, α(t ), for the CTCF models with 0 (red, upper solid), 24 (cyan,
dotted), 48 (blue, dash-dotted), 72 (magenta, middle solid), and 144
(green, lower thick) LEFs. The dashed black line in panel (a) shows
the theoretical mean MSD given by Eq. (B11). The dashed black
line in panel (b) is the corresponding theoretical mean stretching
exponent, calculated using Eq. (37), applied to Eq. (B11). In panels
(a) and (b), each line is averaged over 30 independent simulations and
averaged over 60 individual beads, which are uniformly distributed
along the chromatin.

static loops, on the other hand, show insignificant differences
over the range of times studied, suggesting in turn that loop
extrusion dynamics do not contribute significantly to chro-
matin dynamics, at least for the chosen parameter values.

Our simulational results clearly demonstrate that the pres-
ence of loops significantly reduces chromatin mobility. We
believe this behavior follows from the additional, positional
constraints that loops impose, specifically that the two beads
at the base of each loop must necessarily lie close to each
other. Notably, the simulational results, presented in this pa-

FIG. 8. (a) Comparison between the MSDs versus time of poly-
mers under periodic boundary conditions with 48 randomly located
static loops (orange, dash-dotted) and periodic polymers with dy-
namic loops, evolving according to the CTCF model with 48 LEFs
(blue, dotted). The dashed red lines represent MSDs of the polymer
under periodic boundary conditions for the classical Rouse model
with no loops. (b) The corresponding time-dependent stretching ex-
ponents. The LEF and Rouse simulation parameters used are given
in Tables I and II. In panels (a) and (b), the thin lines correspond
to results of 60 individual beads, uniformly distributed along the
polymer; the thicker lines are averages over the 60 beads. The result
for each individual bead is averaged over 30 independent simulations
with identical simulation parameters.

per, are consistent with our recent experimental measurements
of the MSDs of gene loci in fission yeast, described in
Ref. [64], where we found that fluorescently labeled gene loci
in yeast strains with absent or functionally compromised ver-
sions of the putative LEFs, cohesin and condensin, exhibited
larger MSDs than the same gene loci in wild-type strains with
properly functioning cohesin and condensin. Thus, Ref. [64],
in conjunction with the results of this paper, provides clear
experimental support for the idea that loops reduce chromatin
mobility, as characterized by the MSD of a gene locus.

A less expected result to emerge from our simulations is
the observation that the stretching exponent in polymers with
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FIG. 9. (a) Loop size distribution, (b) backbone segment length distribution, and (c) chromatin compaction distribution (as measured by the
backbone length ratio) for the CTCF loop extrusion model with different numbers of LEFs of 24 (cyan, solid), 48 (blue, dashed), 72 (magenta,
dotted), and 144 (green, dash-dotted). The CTCF loop extrusion parameters are given in Table I. Distributions in panels (a) and (b) are plotted
using a log-linear scale. The mean loop size in panel (a) are 107.0 (solid cyan, 24 LEFs), 90.7 (dashed blue, 48 LEFs), 77.9 (dotted magenta, 72
LEFs), and 51.8 (dash-dotted green, 144 LEFs) kb, with standard deviations of 82.6, 68.6, 57.8, and 37.0 kb, respectively. The mean backbone
segment length in panel (b) are 237.3, 120.2, 80.1, and 39.9 kb, respectively, with standard deviations of 211.6, 103.4, 65.2, and 25.6 kb,
respectively. The mean backbone length ratios (measuring the chromatin compaction) are 0.6254, 0.4301, 0.3243, and 0.2172, respectively,
with standard deviations of 0.0524, 0.0486, 0.0404, and 0.0218, respectively. Each distribution shown is obtained from the loop configurations
corresponding to 30 000 time-points (30 independent LEF simulations and 1000 time-points from each independent simulation).

loops is noticeably smaller than that for the classical Rouse
model without loops. Strikingly, however, in our own mea-
surements of the MSDs of fluorescently labeled gene loci in
fission yeast, we also observed stretching exponents with val-
ues smaller than 0.5 (about 0.45), further connecting our sim-
ulations and experiments [64]. Our simulational results also
recall the experimental observation in Ref. [14] that the MSD
of fluorescently labeled gene loci in E. coli shows a stretch-
ing exponent of about α = 0.4. In Ref. [14], this value was
explained by envisioning the bacterial genome to be an un-
looped Rouse-model polymer within a viscoelastic medium.
The calculations of Ref. [62] showed that such a viscoelastic
background could reduce the classical Rouse model stretching
exponent from 0.5 to the observed value. However, a popula-
tion of loops across the E. coli genome would also contribute
to a smaller stretching exponent than 0.5 in this case too.
Polymer simulations of chromosome regions with high com-
paction show stretching exponents of around 0.3 [9,91], which
may also partly originate from a population of loops.

B. Static properties of chromatin polymers

Figure 9 shows the distributions of chromatin loop sizes,
backbone segment lengths, and compaction fractions (as
measured by the backbone length ratio) for chromatin
polymers with different numbers of bound LEFs, which
extrude loops according to the CTCF model. For each number
of LEFs considered, the loop sizes and backbone segment
lengths show distributions that manifest a shoulder at small
length scales and are approximately exponential at large
length scales, evident from the linearity of the distributions
in the log-linear plots of Figs. 9(a) and 9(b) at large length
scales. These observations indicate that chromatin loops
generated by our loop extrusion approach possess one or
more characteristic length scales and therefore do not exhibit
fractal characteristics. As expected, the compaction fraction
presented in Fig. 9(c) shows that higher compaction of the

chromatin (lower backbone length ratio) is achieved by
having a larger number of bound LEFs.

To further examine the static properties of the chromatin
polymer, Fig. 10(a) presents the squared end-to-end distance,
R2

EE , versus polymer contour length, measured in units of
lattice number, N , for chromatin polymers with different num-
bers of bound LEFs (extruding loops according to the CTCF
model). The top black line is the theoretical R2

EE versus N
curve for a Gaussian polymer without loops, which shows a
linear scaling with the largest slope, while the colored (non-
top) lines correspond to R2

EE for chromatin polymers with
different numbers of LEFs, showing progressively smaller
overall slopes for progressively larger number of LEFs. The
sublinear growth at short length scale for all colored (nontop)
curves indicate of the presence of loops, which decrease the
squared end-to-end distance between loci within a loop. At
longer length scales, the slopes of the R2

EE versus N curves are
proportional to the overall compaction of the chromatin poly-
mer. The short, dashed lines correspond to slopes calculated
from the mean compaction fractions given in Fig. 9(c) relative
to the free Gaussian polymer (which has compaction fraction
of 1). Thus, the scaling of squared end-to-end distance, R2

EE ,
of a chromatin polymer versus N is well predicted by the
overall degree of chromatin compaction by loops.

Figure 10(b) shows the mean monomer density in 3D (as
measured by N/R3

G) versus N for chromatin polymers with
different numbers of LEFs (obeying the CTCF model), plotted
on log-log axes. At large N , the behavior of monomer density
versus N approaches a power-law with an exponent of −1/2
in all cases, showing that RG is proportional to N1/2 in the
limit of large N . Such a scaling behavior is expected because
of the linearity shown in Fig. 10(a) in the large N limit. The
bottom black line shows the theoretical scaling of N/R3

G with
N for a free Gaussian polymer, which admits a power law of
power −1/2 as expected. At smaller N , the behavior versus N
is more complicated, because of the presence of loops.
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FIG. 10. (a) Squared end-to-end distance, R2
EE , plotted as a func-

tion of polymer contour length, measured in units of lattice number,
N , for chromatin polymers with 24 (cyan, middle solid), 48 (blue,
dashed), 72 (magenta, dotted), and 144 (green, dash-dotted) LEFs,
which extrude loops according to the CTCF model. The solid black
(top) line shows the theoretical scaling of R2

EE for the Gaussian
polymer without loops. The short, dashed lines plotted next to the
colored (nontop) lines indicate the theoretical scalings of R2

EE for
the looped polymers based on the compaction fraction estimated
in Fig. 9(c). R2

EE between any two loci, i and j, is calculated by
Eq. (A4). (b) Mean monomer density, as measured by N/R3

G, plotted
as a function of polymer contour length, N , for chromatin polymers
with 24 (cyan, middle solid), 48 (blue, dashed), 72 (magenta, dotted),
and 144 (green, dash-dotted) LEFs. The black (bottom, solid) line
indicates the theoretical scaling of the 3D mean monomer density for
the Gaussian polymer without loops, admitting a power law of power
−1/2. Each colored (nonbottom) curve presented is an averaged of
300 loop configurations from 30 independent LEF simulations (10
configurations from each LEF simulation).

C. Locus dynamics around a chromatin rosette

Our Rouse simulation method is applicable to any con-
figuration of loops. As noted in the introduction, genomic
rosettes have been suggested to be an important motif for
E. coli nucleoids [65,66] and replication factories [67–73].

FIG. 11. The rosette configuration investigated in Sec. IV C.
Shown in blue line is the chromatin polymer itself; loop bases are
highlighted as the brown circles. Each loop is 17 lattice sites long,
and each backbone segment between neighboring loops is 8 lattice
sites long. Thus, the fraction of the chromatin polymer inside loops
is 0.68 in this configuration. There are 24 repetitions of the loop-
backbone structure within the periodic chromatin polymer, making
a total of 600 lattice sites, representing a genome of 6 Mb. The
dashed blue line represents repetitions of the identical loop-backbone
structures. Examples of each family of locus locations are labeled tip
(yellow dot), base (magenta dot) and backbone (cyan dot).

Accordingly, we have investigated the MSDs and stretching
exponents for the static, rosette configuration, illustrated in
Fig. 11, in which 24 loops are periodically and equally spaced
about a closed chromatin polymer. For our simulations, each
loop contains 17 beads, and is separated from its neighboring
loops by a segment of the backbone containing 8 beads. By
symmetry, we can expect the mean dynamics within different
repeating units of the rosette to be identical. Thus, because
we can average the behavior of corresponding loci in different
repeating units, the rosette facilitates investigating the dynam-
ics at the midpoint of a loop, at the base of a loop, and at the
midpoint of a backbone region, for example. Each family of
locations is illustrated and labeled as examples in Fig. 11.

In Fig. 12, shown in yellow (dashed), magenta (dash-
dotted), and cyan (dotted), respectively, are the MSDs and
stretching exponents for beads at the tip of the loops, base of
the loops, and midpoint of the backbone. By symmetry of the
rosette structure, beads belonging to the same family are sta-
tistically equivalent. Therefore, the yellow (dashed), magenta
(dash-dotted), and cyan (dotted) lines shown in Fig. 12 are
averaged results of 720 independent simulations for the tip,
base, and backbone families, respectively, indifferent about
the loop index. The theoretical MSD and stretching exponent
of a periodic Rouse-model polymer without loops, calculated
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FIG. 12. (a) Simulated MSDs of the Rouse-model polymer with
the rosette structure illustrated in Fig. 11 for three different fami-
lies of locations: tip (yellow, dashed), base (magenta, dash-dotted),
and backbone (cyan, dotted). (b) The corresponding simulated
MSD stretching exponent for different families of locations on
the rosette-structured polymer: tip (yellow, dashed), base (magenta,
dash-dotted), and backbone (cyan, dotted). In panels (a) and (b),
each line shows the averaged result of 720 independent simulations
for beads in each family. The solid black lines in panels (a) and
(b) show the theoretical MSD and stretching exponent, respectively,
of a Rouse-model polymer without loops, with periodic boundary
conditions, as given in Eqs. (B11) and (37).

by Eqs. (B11) and (37), are shown as the solid black lines in
Figs. 12(a) and 12(b), respectively.

It is clear from Fig. 12(a) that loop bases exhibit the small-
est mean MSD at all times studied, taking on a value that
is approximately one-half the theoretical MSD for periodic
Rouse-polymer without loops, while loop tips show the largest
MSDs. At early times, the mean MSD for backbone beads
show similar behavior to the mean MSD for loop tip beads.
However, with increasing time, the mean MSD for backbone
beads deviate (at about 50 τp) to smaller values to eventually
achieve (by about 1000 τp) similar behavior to the mean MSD
for the base beads. The mean MSD for loop tips closely follow

the theoretical MSD for a polymer without loops until about
500 τp, when it deviates below the theoretical MSD.

The corresponding stretching exponents, shown in
Fig. 12(b), also reveal elaborate behavior. The loop tips
in the rosette structure exhibit the same mean stretching
exponent as the theoretical stretching exponent for polymers
without loops at early times, until about 200 τp. During
this early time period, the mean stretching exponent for the
loop tips decrease from value of 1 at the earliest time (not
shown), to a level of roughly 0.5. At times larger than 200
τp, the mean stretching exponent for the loop tips starts to
deviate to a lower level compared to the theory. The mean
stretching exponent for the backbone beads has similar values
to that for the loop tips and the theoretical value for polymers
without loops; however, it starts to deviate to a lower level
much earlier, at about 10 τp, and decreases to a much reduced
value of about 0.3 at a few hundred τp, at which it starts to
recover and increase back to 0.4 at very late times. The mean
stretching exponent for the loop bases reside between 0.4
and 0.45 at earlier times, before t = 100 τp, then increase
beyond the 0.5 level at around 500 τp, and finally drop back
to the level around 0.5, similar to the theoretical stretching
exponent for polymers without loops at the very later times.
It is clear from the results shown in this figure that the
dynamics of a locus are dictated by its position relative to the
loops. This behavior does not emerge in the case of dynamic
loops, because commonly in a loop extrusion steady state
any particular locus randomly alternates between being in the
backbone, being at a loop base, being at a loop tip, etc.

D. Rouse polymer with nonuniform friction

The theory described in Sec. II A also allows us to study
polymers with friction coefficients that vary from bead to
bead. Accordingly, we first examined a linear Rouse polymer
with each bead’s friction coefficients drawn from a lognormal
distribution. We use a lognormal distribution proportional to
Lognormal(0,log(2)), so that the ratio of the standard devi-
ation and the mean is 1, and scale it to have a mean of ζ ,
which is the friction coefficient in Table II. Each bead is
assigned a fixed friction coefficient drawn from such a scaled
lognormal distribution. Figure 13(a) compares the MSDs
of a periodic Rouse polymer with friction coefficients dis-
tributed according to the specified lognormal distribution to
the MSDs of a periodic Rouse polymer with uniform fric-
tion coefficient. There are no loops in both cases. The thin
lines show the MSDs for 60 individual beads, equally spaced
along the polymer, while the thicker lines show the averaged
MSDs over all sixty of these beads. Each thin line is also
an average of 30 independent simulations. The mean MSDs
for the uniform friction coefficient and lognormal-distributed
friction coefficient are very similar across all timescales con-
sidered here, with a small discrepancy that the mean MSD
for the nonuniform-friction case is slightly higher than that
for the uniform-friction case at all timescales considered.
Figure 13(b) shows the corresponding stretching exponents,
and the mean stretching exponents for the two cases are, again,
almost identical. Both mean stretching exponents decreases
from 1, at the earliest time (not shown here), to around 0.5, at
100 τp, with the small discrepancy between the two cases such
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FIG. 13. (a) Comparison between the MSDs of periodic poly-
mers without loops, subject either to uniform friction, shown in red
(solid), or to lognormal-distributed (nonuniform) friction, shown in
green (dashed). For the polymer subject to lognormal-distributed
nonuniform friction, each bead has a fixed friction coefficient, drawn
from the scaled Lognormal(0, log(2)) with mean of ζ , given in
Table II. (b) The corresponding MSD stretching exponents, calcu-
lated according to Eq. (37), for the uniform friction case (red, solid)
and the lognormal-distributed (nonuniform) case (green, dashed). In
panels (a) and (b), thin lines represent 60 individual beads uniformly
distributed along the polymer, and each thin line is an average of
30 independent simulations. Each thicker line is an average of its
corresponding thin lines.

that the stretching exponent for the polymer with nonuniform
friction is slightly lower than the stretching exponent for the
uniform-friction polymer. After 100 τp, the stretching expo-
nent for the nonuniform-friction polymer fluctuates around
the 0.5 level while the stretching exponent for the uniform-
friction polymer continues to decrease to a level below 0.45 at
100 τp. Even though the mean MSDs and stretching exponents
are similar for polymers with uniform and nonuniform fric-
tion, the MSDs and stretching exponents of individual beads
in the nonuniform-friction polymer show a greater spread than
those of uniform friction case. This is consistent with the
simulation setup in which each bead experiences a different
but fixed friction coefficient drawn from the lognormal dis-

FIG. 14. The hypothetical replication factory configuration dis-
cussed in Sec. IV E. The shaded region is where the friction
coefficient is 10 times higher than in the unshaded region. Loci
experiencing higher friction coefficients are all located at the bases
of the loops. The midpoints of each loop are labeled as “tip,” and the
bases of each loop are labeled as “base.” Total number of LEFs is 24.
Each loop has size of 24. The backbone length between neighboring
loops is 1, which is the minimal length a backbone can form given
that the LEFs will block each other at distance 1. The dashed line
represents repetitions of the identical loop structure.

tribution. The above results indicate that fluctuations in the
friction coefficient do not strongly affect the mean MSD and
mean stretching exponent, at least up to the spread of the
beads’ friction coefficients considered here.

E. Dynamics of a rosette that models a replication factory

In a replication factory, chromatin is hypothesized to be
folded into a rosettelike structure, at whose center transcrip-
tion factors and SMCs may form a phase-separated droplet
and assist the simultaneous replication of the DNA within
the loops [67–73]. A simple version of such an organiza-
tion is illustrated in Fig. 14. The blue line shown represents
the chromatin polymer with periodic boundary conditions,
and the brown circles represent the putative SMCs, cohesin
or condensin molecules, that establish the replication-factory
configuration. In our simulations, we model a replication fac-
tory as consisting of 24 loops, each of which contains 24
beads. Plausibly, the phase-separated droplet, shown as the
grey region in this figure, which covers the loop bases, may
give rise to a high local viscosity. In this case, we model
the high viscosity region by using a ten-fold higher friction
coefficient for the loop bases than for the beads in the loops.
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FIG. 15. (a) Shown in blue (dotted) and green (dash-dotted) lines
are the mean MSDs for the loop tips and bases, respectively, of
a rosette polymer in the nonuniform-friction environment, as illus-
trated in Fig. 14. Shown in red (solid) and magenta (dashed) lines
are the mean MSDs for the loop tips and bases, respectively, of the
same rosette polymer, but in a uniform-friction envioronment, i.e.
without the region of ten-fold friction shown in Fig. 14. Each line
is an average of 720 independent simulations for the tip beads or
base beads, indifferent about the loop repetitions to which each bead
belongs, as a result of symmetry. (b) The corresponding averaged
stretching exponents.

Figure 15 compares the averaged (a) MSDs and (b)
stretching exponents for the loop tips and bases in the
replication-factory configuration (Fig. 14) with a uniform-
friction or with a nonuniform-friction environment. Because
each loop repetition is statistically equivalent, the simulation
is indifferent to the loop repetition each loop tip or base
belongs to. Therefore, for each line in Fig. 15, we take an
average of 720 independent simulations, regardless of the loop
index. The time axis in the plot is measured in units of τp, cal-
culated using an unmodified friction coefficient (1.08×10−6

Ns/m). In Fig. 15(a), the MSDs for the replication-factory
polymer with uniform friction are shown in red (solid) and
magenta (dashed), for the loop tips and bases, respectively.

In comparison, the MSDs for the replication-factory polymer
with ten-fold higher friction at the loop bases are shown
in blue (dotted) and green (dash-dotted), for loop tips and
bases, respectively. Unsurprisingly, the difference between the
mean MSDs at loop tips for the two cases is small, with
the mean MSDs nearly identical at early times (�400 τp).
The loop tips in the replication-factory polymer admitting
nonuniform friction have slightly lower mean MSD than those
in a uniform-friction polymer, for times beyond about 400 τp.
Also unsurprisingly, the MSDs at loop bases are significantly
smaller when the loop bases experience enhanced friction,
than when they do not.

Figure 15(b) shows the corresponding stretching expo-
nents. The mean stretching exponents for the loop tips in
uniform (red, solid) and nonuniform (blue, dotted) friction
environments show similar behaviors across the entire range
of times studied. From the earliest time (not shown) to about
10 τp, both stretching exponents decrease from 1 to the level
around 0.5 and maintain that level of 0.5 until 100 τp. From
100 τp to 1000 τp, both start to decrease, in a similar manner,
from the level around 0.5 to the level between 0.2 and 0.3. By
contrast, the stretching exponent for the loop bases appears
very differently for the two cases: in the uniform friction case,
the loop bases display a stretching exponent that decreases
from 0.4 to ∼0.25 as the time increases from a few τp to
∼100 τp. It then appears to reverse this trend, recovering to
0.35 for times �300τp. For loop bases with ten-fold higher
friction, the stretching exponent for the loop bases decreases
from 0.85 at early times (a few τp) to reach 0.4 (for times
�300 τp) where it appears to plateau. We can understand
the initial decrease of the stretching exponent from a large
value in the enhanced friction case by first recognizing that in
actuality all stretching exponents start from 1 at the earliest
times. This behavior usually occurs at smaller values of the
time than we plot. However, because the polymer time of
the loop bases is effectively increased by a factor of 10, as
a result of the ten-fold higher friction that they experience,
it follows that the evolution of the stretching exponent from
1 to smaller values now occurs within the range of times
covered by our simulations. According to Eq. (30), the diffu-
sion coefficient, and thus the MSD amplitude, is proportional
to 1/

√
ζ . Therefore, in theory, when the friction coefficient

is increased by a factor of 10, the MSD amplitude should
decrease by a factor of about 3. By examining the discrepancy
between the mean MSD for loop bases with normal friction
coefficient ζ (magenta, dashed) and the mean MSD for loop
bases with friction coefficient of 10 ζ (green, dash-dotted) in
Fig. 15(a), we see that at very early times, from 0 τp to around
50 τp, the mean MSD for loop bases with friction ζ is about
3 times greater than that with friction 10 ζ , coinciding with
the theoretical prediction. However, the dependence of MSD
amplitude on the friction coefficient becomes less significant
for times greater than 50 τp, and the two MSD amplitudes only
differ by about 20% at 2000 τp.

V. CONCLUSIONS

We have incorporated loops and loop extrusion into the
Rouse model of polymer dynamics in a fashion that per-
mits exact simulations of the resultant looped polymer. By
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carrying out simulations for polymers whose loop configu-
ration evolves in time according to the loop extrusion factor
(LEF) model, we have demonstrated that chromatin loops in
a dynamic steady state reduce chromatin mobility, as mea-
sured by the time- and ensemble-averaged MSDs of gene loci.
We have also shown that this reduction in mobility increases
with increasing LEF density. Also, in contrast to the classical
Rouse model stretching exponent, α, which admits the value
of 1/2 in the absence of loops, we have shown that loops
reduce the stretching exponent at early times. The reduction
in the stretching exponent also increases with increasing LEF
density, but achieves a value near 0.45 for best-estimate loop
densities, estimated from an analysis of Hi-C experiments.
Remarkably, the simulated stretching exponent of 0.45 is
consistent with the value measured in our own recent exper-
iments that study the MSDs of several fluorescently labeled
gene loci in living fission yeast. Active loop extrusion via the
LEF model automatically ensures that our simulations sample
across an ensemble of different loop configurations. How-
ever, by finding indistinguishable results, when we explicitly
average MSDs over an ensemble of different static loop
configurations, we can infer that LEF dynamics themselves
contribute negligibly to the polymer dynamics of chromatin.
This is because the polymer relaxation time is much shorter
than the timescale at which loop configuration changes, as
evident from the values provided in Tables I and II.

By studying a static rosette configuration (Fig. 11), we have
shown that the MSD for loop bases is significantly suppressed
compared to that of loop tips, which, at early times, behave
akin to a polymer without loops. The chromatin backbone
resembles the loop tips at early times and resemble the loop
bases at later times, in terms of both MSD and stretching
exponent.

Our exact simulation method also allows us to examine
Rouse models with nonuniform friction. By assigning each
bead of an unlooped polymer a fixed friction coefficient drawn
from a scaled lognormal distribution, we have shown that a
nonuniform friction environment does not affect the averaged
dynamics predicted by the Rouse model. We have also shown
that chromatin mobility at the center of a replication factory is
much reduced if a high-friction environment is present at the
center.

In spite of its simplifications—incorporating loops via
additional springs and neglecting volume exclusion and
hydrodynamics—our Rouse model nevertheless accurately
captures the measured dynamics of chromatin loci in single-
molecule tracking experiments. More generally, we hope that
this approach will provide valuable predictions for the dy-
namics of chromatin more broadly, such as, for example, the
prediction of first passage times for contact between distal
chromatin loci in the presence of chromatin loops or other
genomic organizations [92–94].

The MATLAB code for running the Rouse model simula-
tions is provided on GitHub [95].
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APPENDIX A: MEAN-SQUARED RADIUS OF GYRATION

The mean-squared radius of gyration of a chromatin poly-
mer segment, that extends from genomic location A to
genomic location B, given the equivalent definition of radius
of gyration from Ref. [96], can be represented as

〈
R2

G

〉 = 1

2N (N + 1)

B∑
i=A

B∑
j=A

〈(ri − r j )
2〉, (A1)

where ri and r j are the position vectors of genomic location
i and j, respectively. At length scales longer than the Kuhn
length, lk , we treat chromatin as a Gaussian polymer, so that
the probability distribution of separation vector between i and
j in d-dimension, namely ri j , is given by

P (ri j ) =
(

d

2πNi j l2
k

)d/2

e−dr2
i j/2Ni j l2

k , (A2)

where Ni j is the number of Kuhn segments between i and j,
and the mean-squared separation between i and j is given by

〈(ri − r j )
2〉 = Ni j l

2
k . (A3)

Due to the existence of loops, and thus a change of chromatin
polymer topology, the separation between any two locations
i and j could be reduced by intervening loops such that their
separation vector follows a probability distribution given in
Eq. (A2) but with a smaller Ni j value, or the effective genomic
distance (Neff )i j . The effective genomic distance can be calcu-
lated given only the loop configuration of the polymer and is
expressed in the unit of number of Kuhn segments here [97].
Therefore, the mean-squared separation between i and j with
loop configuration is given by

〈(ri − r j )
2〉 = (Neff )i j l

2
k , (A4)

and the mean-squared radius of gyration in Eq. (A1) reads as

〈
R2

G

〉 = l2
k

2N (N + 1)

B∑
i=A

B∑
j=A

(Neff )i j . (A5)

In the absence of loops, (Neff )i j reduces to Ni j = |i − j|.
Therefore, Eq. (A5) becomes

〈
R2

G

〉 = l2
k

2N (N + 1)

N∑
i=1

N∑
j=1

|i − j| (A6)

= l2
k

2N (N + 1)

(N − 1)N (N + 1)

3
(A7)

= (N − 1)l2
k

6
, (A8)

which exactly recovers the mean radius of gyration of a
Gaussian polymer with N-beads (N − 1 segments) and Kuhn
length lk .

APPENDIX B: ROUSE MODEL FOR PERIODIC
BOUNDARY CONDITIONS

In this case, the two ends of the polymer are connected
together via a nearest-neighbor spring, and the matrix A
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(N-by-N) becomes

Aperiodic =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · · · · −1
−1 2 −1 · · · · · · 0
0 −1 2 · · · · · · 0
...

...
...

. . .
. . .

...
...

...
...

. . . 2 −1
−1 0 0 · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B1)

which is a circulant matrix. The eigenvectors of circulant
matrices contain entries of solutions of N th root of unity; more
precisely, the complex eigenvector matrix of Eq. (B1) is given
by

Ujk = e
2π i
N jk, j, k ∈ {0, 1, . . . , N − 1}. (B2)

Since Eq. (B1) is real, the real and imaginary parts of U
each gives a set of eigenvectors, although neither of them is
complete, due to the parities of sine and cosine. However,
a linear combination of the real and imaginary parts breaks
the parity and thus forms a set of linearly independent and
complete eigenvectors. Here we choose a symmetric linear
combination of cosine and sine, which results in the real
eigenvector matrix:

Ujk = N0

2

(√
2 cos

(
2π jk

N

)
+

√
2 sin

(
2π jk

N

))
(B3)

= N0 sin

(
2π jk

N
+ π

4

)
(B4)

=
√

2

N
sin

(
2π jk

N
+ π

4

)
, (B5)

where the normalization constant N0 =
√

2
N ensures unitarity

of U . The eigenvalue corresponding to kth column of U (the
kth eigenvector) is given by

λk =
N−1∑
j=0

A0 jUjk =
N−1∑
j=0

A0 je
2π i
N jk (B6)

= A00 + A01e
2π i
N k + A0,N−1e

2π i
N k(N−1) (B7)

= 2 − e
2π i
N k − e− 2π i

N k (B8)

= 2 − 2 cos

(
2πk

N

)
. (B9)

Using the above results, Eqs. (18) and (20) become〈
X 2

n (0)
〉 = 〈

X 2
n (t )

〉
= kBT

κN

N−1∑
k=1

sin2

(
2πnk

N
+ π

4

)
1[

1 − cos
(

2πk
N

)]
= kBT

12κN
(N2 − 1), (B10)

and

〈[Xn(t ) − Xn(0)]2〉

= 2kBT

κN

N−1∑
k=1

sin2

(
2πnk

N
+ π

4

)
1 − e− 2κ

ζ
(1−cos( 2πk

N ))|t |[
1 − cos

(
2πk
N

)] ,

(B11)

FIG. 16. (a) Simulated MSDs of Rouse-model polymers with
fixed boundary conditions for the classical Rouse model with no
loops, shown in red (dashed), for the CTCF model with loops,
shown in blue (dotted), and for the random loop model, shown in
green (dash-dotted). (b) The corresponding simulated MSD stretch-
ing exponent, α(t ), calculated according to Eq. (37) for no loops
(red, dashed), for the CTCF model (blue, dotted), and for the
random loop model (green, dash-dotted). The solid black line in
panel (a) shows the theoretical mean MSD given by Eq. (C7), and
then the theoretical mean stretching exponent is calculated using
Eq. (37) and shown in panel (b). In panels (a) and (b), the thin
lines correspond to the results for 60 individual beads, uniformly
distributed along the chromatin. The thick lines correspond to the
average across all 60 beads. Each thin line is an average over 30
independent simulations with identical simulation parameters. The
LEF and Rouse simulation parameters used are given in Tables I
and II.

respectively. The first bead starts with index n = 0. Note
that the mean-squared position 〈X 2

n (0)〉 (relative to Rouse
polymer’s center of mass) of the beads under periodic bound-
ary conditions does not depend on the bead index, which
makes intuitive sense since the position of one bead rel-
ative to the others in the Rouse chain is identical for all
beads.
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APPENDIX C: ROUSE MODEL FOR FIXED
BOUNDARY CONDITIONS

In this case, the two ends of the polymer are attached to
two fixed location via additional springs and the matrix A (N-
by-N) becomes

Afixed =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · · · · 0

−1 2 −1 · · · · · · 0

0 −1 2 · · · · · · 0

...
...

...
. . .

. . .
...

...
...

...
. . . 2 −1

0 0 0 · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C1)

The eigenvector matrix is given by

S =
√

2

N + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin π
N+1 sin 2π

N+1 sin 3π
N+1 · · ·

sin 2π
N+1 sin 4π

N+1 sin 6π
N+1 · · ·

sin 3π
N+1 sin 6π

N+1 sin 9π
N+1 · · ·

...
...

...
...

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C2)

i.e.,

Smn =
√

2

N + 1
sin

mnπ

N + 1
. (C3)

S diagonalizes A, i.e., S−1AS = D1. The resultant diagonal
matrix D1 contains the eigenvalues of A on its diagonal:

� =

⎡⎢⎢⎢⎣
2 − 2 cos π

N+1 0 0 · · ·
0 2 − 2 cos 2π

N+1 0 · · ·
0 0 . . . · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦, (C4)

i.e.,

�m = 2 − 2 cos
mπ

N + 1
. (C5)

Using these results, Eqs. (18) and (20) become〈
X 2

n (0)
〉 = 〈

X 2
n (t )

〉
= kBT

(N + 1)κ

N∑
k=1

sin2

(
nkπ

N + 1

)
1[

1 − cos
(

kπ
N+1

)]
= kBT

κ
n

(
1 − n

N + 1

)
(C6)

and
〈[Xn(t ) − Xn(0)]2〉

= 2kBT

(N + 1)κ

N∑
k=1

sin2

(
nkπ

N + 1

)
1 − e− 2κ

ζ
(1−cos( kπ

N+1 ))|t |[
1 − cos

(
kπ

N+1

)] ,

(C7)

respectively. Note that the bead indexing n starts from 1 to N
in this case.

Figure 16 shows the simulated MSD and stretching expo-
nent of a Rouse-model polymer with loops and without loops,
under fixed boundary conditions. The solid black lines show
the theoretical mean MSD and stretching exponent calculated
using Eqs. (C7) and (37), as a comparison to the simulation
results for classical Rouse polymer under fixed boundary con-
ditions.
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