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Statistical field theory of polarizable polymer chains with nonlocal dipolar interactions
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The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific
interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical
approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete
monomer models. In these models, accounting for the interactions between the induced dipoles on monomers
is challenging due to the nonlocality of these interactions. On the other hand, the framework of statistical field
theory provides a continuous description of polymer chains that potentially enables a tractable way to account
for these interactions. However, prior formulations using this framework have been restricted to the case of weak
anisotropy of the monomer polarizability. This paper formulates a general approach based in the framework of
statistical field theory to account for the nonlocal nature of the dipolar interactions without any restrictions on
the anisotropy or nonlinearity of the polarizability of the monomer. The approach is based on three key elements:
(1) the statistical field theory framework, in which the discrete monomers are regularized to a continuous
dipole distribution, (2) a replacement of the nonlocal dipole-dipole interactions by the local electrostatics partial
differential equation with the continuous dipole distribution as the forcing, and (3) the use of a completely general
relation between the polarization and the local electric field. Rather than treat the dipole-dipole interactions
directly, the continuous description in the field theory enables the computationally tractable nonlocal-to-local
transformation. Further, it enables the use of a realistic statistical-mechanical ensemble wherein the average
far-field applied electric field is prescribed, rather than prescribing the applied field at every point in the polymer
domain. The model is applied, using the finite element method, to study the electromechanical response of a
polymer chain in the ensemble with fixed far-field applied electric field and fixed chain stretch. The nonlocal
dipolar interactions are found to increase, over the case where dipole-dipole interactions are neglected, the
magnitudes of the polarization and electric field by orders of magnitude as well as significantly change their
spatial distributions. Next, the effect of the relative orientation between the applied field and the chain on the
local electric field and polarization is studied. The model predicts that the elastic response of the polymer chain
is linear, consistent with the Gaussian approximation, and largely unchanged by the orientation of the applied
electric field, though the polarization and local electric field distributions are significantly impacted.

DOI: 10.1103/PhysRevE.109.044501

I. INTRODUCTION

Stimuli-responsive polymeric soft matter is central to actu-
ators and sensors in applications such as soft robotics [1–11],
stretchable electronics [12–15], energy harvesting [16–19],
health care [20–24], and functional systems broadly [25–35].
Electro-responsive polarizable polymers such as dielectric
elastomers are naturally soft, lightweight, and compliant and
can undergo large deformation under an applied electric field,
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making them promising candidate materials. However, there
are also shortcomings with currently available polymerics
materials, e.g., they often need highly applied electric fields to
achieve a meaningful level of actuation [36]. A fundamental
understanding of the physics of polymers subjected to elec-
tric fields is essential to improve existing, and discover new,
polarizable polymeric materials, e.g., in the case of statistical
mechanics applied to soft matter flexoelectricity [37–42].

The physics of polarizable polymeric soft matter is gov-
erned by the polymer chain entropy, the interaction between
the applied electric field and the induced dipoles, and the
nonlocal dipolar interactions between the polymer segments
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FIG. 1. A polarizable polymer chain in an externally applied far-
field electric field E0 has induced dipoles in the polymer segments.
The dipole-dipole interactions are long range—they decay as the
inverse third power of the distance—and lead to nonlocal effects that
cannot be truncated without very large error [71]. These, in turn,
affect the configuration of the chain and the mechanical response.
We show in this paper that neglecting the dipole-dipole interactions
and accounting only for the applied field-dipole interactions, as in
prior work, leads to large errors.

(Fig. 1). Existing models for electro-responsive polymeric
soft matter can be broadly divided into two categories:
continuum-based approaches, e.g., [43–51], and statistical
mechanics-based approaches, e.g., [37,52–58].

Continuum approaches typically formulate the free energy
density by coupling established rubber elasticity models to
continuum electrostatics. These approaches are useful in en-
abling the study of electro-responsive polymers in complex
and realistic geometries and boundary conditions. However,
these approaches cannot provide predictive insights that are
based in the response of the individual monomers.

The statistical mechanics-based approaches for polymers,
on the other hand, are capable of accounting for the molec-
ular details of the polymer chain. Statistical mechanics has
been employed for several decades to study the mechanical
response of polymers and their networks, e.g., [59–63]. In the
context of electro-responsive polymers, the first works that
applied statistical mechanics appear to be [52,53]. Broadly,
their work derives an approximate expression for the most
probable density of monomer orientations that is exact when
the polymer chain is not stretched. Building on this, a sta-
tistical mechanics-based discrete monomer model for an
electro-responsive polarizable polymer chain was presented
in [54,57]. Using the maximum term approximation assump-
tion, they evaluated the most probable density of monomer
orientation and the free energy of polymer chain applicable
at large stretches. Although these theoretical approaches for
electro-responsive polymers provide valuable insights, they
all ignore the nonlocal dipolar interactions; they model only
the interaction between the applied electric field and the in-
duced dipoles. A key reason for this limitation is that all these
approaches use a discrete description of the polymer chain,
and it is computationally very expensive to account for all
pairs of interactions.

In contrast, a statistical field theoretic formulation [64–66]
for polarizable polymer chains in an external electric field was
presented in [67] that accounts for the dipolar interactions. A

key feature of the field theoretic approach is that the polymer
is described as a continuous—rather than discrete—object,
enabling the replacement of dipole-dipole interaction sums by
integrals [68–70]. However, the formulation in [67] is limited
to the setting of weak anisotropy of the polymer polarizabil-
ity. Also, in the field theoretic formulation, it is challenging
to account for realistic electrical boundary conditions, i.e.,
typically the statistical mechanics ensemble assumes that the
applied field is given at every point, rather than only the
far-field or average value which is more realistic.

To overcome the limitations of the existing models for po-
larizable polymeric soft matter, we have developed a statistical
field theoretic framework for polarizable polymer chains that
enables us to account for the nonlocal dipole-dipole interac-
tions among the polymer segments. The approach is based on
three elements.

First, the statistical field theory framework, in which the
polymer chain is regularized to a continuous description. We
model the polarizable flexible polymer chain using a worm-
like chain (WLC) model with field-induced dipoles along
the length of the chain. The continuous description enables
us to avoid treating individual interactions between discrete
dipoles, but instead as a tractable continuous polarization dis-
tribution.

Second, the continuous polarization description enables us
to replace the nonlocal dipole-dipole interactions—an inte-
gral operation—by the local electrostatics partial differential
equation (PDE), which accounts for the interactions through
the local electric field set up by the dipoles. To compute the
effective bound charge, we introduce a polarization operator
for a polymer chain and derive an expression for the thermo-
dynamically averaged induced polarization.

Third, we use a completely general dielectric response
function that relates the induced polarization to the local elec-
tric field. While we use a linear anisotropic relation between
the polarization and the electric field for the numerical calcu-
lations, the method is directly applicable to general nonlinear
response functions. Further, the dielectric response is neces-
sarily nonlinear in the orientation to satisfy frame invariance.
These elements provide a self-consistent field theoretic for-
mulation to obtain the properties of the polymer chain—such
as segment density, polarization distribution, and local electric
field distribution around the polymer chain—under an exter-
nally applied electric field.

A significant aspect of our formulation is that we apply
the external electric field only on the boundary of the spa-
tial domain that includes the polymer chain as well as free
space. This corresponds to a thermodynamic ensemble with
specified far-field or average applied electric field [54], which
is realistic in terms of experimental configurations. The local
electric field is obtained self-consistently through solving for
the electrostatic equation that accounts for the polarization
distribution. By using the finite element method (FEM) with
an unstructured discretization, we are able to efficiently solve
by refining the mesh around the polymer chain where varia-
tions are large and keeping it coarse in the free space away
from the chain.

The FEM implementation is applied to study the elec-
tromechanical response of a polymer chain in the ensemble
with fixed far-field applied electric field and fixed chain

044501-2



STATISTICAL FIELD THEORY OF POLARIZABLE … PHYSICAL REVIEW E 109, 044501 (2024)

FIG. 2. Kinematic quantities used to describe the polymer chain.

stretch. We find that the nonlocal dipolar interactions are
found to increase, over the case where dipole-dipole inter-
actions are neglected, the magnitudes of the polarization and
electric field by orders of magnitude as well as change signif-
icantly their spatial distributions. Next, we study the effect of
the relative orientation between the applied field and the chain
on the local electric field and polarization. When the applied
electric field is aligned with the chain end-to-end vector, the
larger values of the polarization and electric field are primarily
concentrated near the constrained chain ends. In contrast,
when the applied field is orthogonal to the chain end-to-end
vector, the larger values of the polarization and electric field
are distributed along the chain. However, we observe that
despite these differences in the polarization and local field, the
elastic response of the chain is linear and largely unchanged
by the different orientations of the applied electric field.

Section II presents our approach, Sec. III presents the
numerical method, and Sec. IV presents results from our
calculations.

II. FORMULATION

This section presents the formulation of the framework for
a polarizable polymer chain under a far-field applied electric
field. First, we summarize the standard self-consistent statisti-
cal field theoretic description of the polymer chain, following
[66]. Next, we introduce the polarization operator and its
thermodynamic average for the polarizable polymer chain,
and describe the coupling between electrostatics and polymer
chain description.

A. Self-consistent statistical field theory description
of a polymer chain

We use a wormlike chain (WLC) model in this paper with
a small but nonzero value for the persistence length. The
chain has N coarse-grained polarizable polymer segments,
each with length a; Lc = aN is the total contour length of
the chain. The persistence length is denoted by λ, i.e., the
distance along the polymer chain contour over which the
orientational correlations decay. The ratio λ/Lc determines the
flexibility of the chain: λ/Lc � 1 gives a very flexible poly-
mer chain, whereas λ/Lc � 1 gives a rigid rodlike polymer
chain. To model a flexible polymer chain in this work, we use
λ/Lc = 10−3.

A coarse-grained configuration of the polymer chain is
represented as a continuous 3D space curve r(s) in Fig. 2,

where s is the chain contour coordinate that is nondimension-
alized with chain contour length Lc such that 0 � s � 1. The
position and orientation of the chain segment with contour co-
ordinate s are given by x = r(s) and u = 1

Lc

dr
ds , respectively.

The chain is assumed to be inextensible, hence u is a unit
vector. The position and orientation at the ends of the chain
are denoted by x0 and u0 at s = 0 and by x1 and u1 at s = 1.

The fundamental statistical mechanics quantity is the par-
tition function, Q[w], which has the expression [66]

Q[w] = 1

4πV

∫
dx

∫
du q(x, u, x0, u0, s)

× q∗(x,−u, x1, u1, 1 − s), (2.1)

where w(x, u) is the potential of the external field, originating
in the interaction between the induced dipole on the poly-
mer segment and the local electric field and whose form is
given in (2.13); q(x, u, x0, u0, s) and q∗(x,−u, x1, u1, 1 − s)
are the partial partition functions of the chain for the two
chain fragments, one from 0 to s and the other from 1 to
s, respectively (Fig. 2); and V = Na2 is the volume of the
polymer chain in two dimensions (we would use V = Na3

for three dimensions). The domain of integration is over the
spatial domain in x and over the unit sphere in u.

The partial partition functions q and q∗ are obtained by
solving the PDEs below [66]:

∂q

∂s
= −w(x, u)q − Lcu · ∇xq + Lc

2λ
∇2

uq, (2.2)

∂q∗

∂s′ = −w(x, u)q∗ − Lcu · ∇xq∗ + Lc

2λ
∇2

uq∗, (2.3)

where s′ = 1 − s varies along the chain contour in the oppo-
site sense as s (Fig. 2).

The corresponding initial conditions are

q(x, u, x0, u0, s)
∣∣
s=0 = V δ(x − x0), (2.4)

q∗(x,−u, x1, u1, s′)
∣∣
s′=0 = V δ(x − x1). (2.5)

The initial conditions in (2.4) and (2.5) specify the physical
constraint that the ends of the chain are fixed at x0 and x1. We
do not constrain the chain orientations at the ends.

The linear PDEs in (2.2) and (2.3) are Fokker–Planck equa-
tions that govern the propagation of correlations in segment
position and orientation for a wormlike polymer chain under
an external field w(x, u). This system of PDEs is derived
using a recursive relation based on the Markov property of
the polymer chain partition function. Physically, these PDEs
imply that the partition function for a chain fragment from
0 to s + �s can be composed of two contributions: first, the
partition function for the chain from 0 to s, and second, the
partition function for a small additional chain segment be-
tween s and s + �s. The partition function for this additional
segment is then written, using a Boltzmann weight, in terms of
the energy that consists of a quadratic contribution from chain
bending and the energy due to the external field w. Taking the
limit �s → 0 leads to the system of PDEs; for the details of
the derivation, we refer to Sec. 2.5 in [66].

The first term on the right sides of (2.2) and (2.3) relate to
the external field acting on the polymer chain. The operator
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∇2
u in the third term on the right side is the rotational diffusion

operator that generates diffusive motion on the unit sphere.
In general, by using the appropriate form for the functional

dependence of w(x, u) on u, these equations can be used to
describe the interaction between wormlike polymer chains
with a broad class of external potentials, including electric and
magnetic fields [66]. Examples include polymer chains with
induced or permanent electric or magnetic dipoles along the
polymer backbone, and anisotropic potential fields that can
model liquid crystalline behavior. In this work we use w(x, u)
to model the electrostatic energy of the dielectric polymer
chain due to induced electric dipoles in the polymer segments
in an externally applied electric field.

B. Spatial dipole distribution

The density operator ρ̂(x, u) for the WLC is defined as [66]

ρ̂(x, u) :=
∫ 1

0
ds δ(x − r(s))δ

(
u − 1

Lc
r′(s)

)
δ(|u| − 1).

(2.6)

The Dirac measures build in the kinematic definitions of x and
u as constraints. The thermodynamically averaged segment
density, 〈ρ̂(x, u)〉, is then obtained as [66]

〈ρ̂(x, u)〉 = 1

4πV Q[w]

∫ 1

0
ds q(x, u, x0, u0, s)

× q∗(x,−u, x1, u1, 1 − s), (2.7)

where 〈·〉 corresponds to the statistical average performed over
all possible conformations of the polymer chain.

Next, we introduce the polarization operator p̂(x, u) as

p̂(x, u) := 4πV
∫ 1

0
ds pseg(x, u) δ(x − r(s))

× δ

(
u − 1

Lc
r′(s)

)
δ(|u| − 1), (2.8)

where pseg(x, u) is the polarization response function, i.e., the
induced polarization at the point (x, u) in configuration space.

Defining 〈p̂(x, u)〉 as the thermodynamically averaged po-
larization of the polymer segment at (x, u) in configuration
space, we write

〈p̂(x, u)〉 =
〈

4πV
∫ 1

0
ds pseg(x, u) δ(x − r(s))

× δ

(
u − 1

Lc
r′(s)

)
δ(|u| − 1)

〉

= 4πV pseg(x, u)

〈 ∫ 1

0
ds δ(x − r(s))

× δ

(
u − 1

Lc
r′(s)

)
δ(|u| − 1)

〉

= 4πV pseg(x, u)〈ρ̂(x, u)〉, using (2.6) and (2.7).
(2.9)

We define p(x), the polarization at the spatial location x, as
the average over u at the location x:

p(x) := 1

4π

∫
du 〈p̂(x, u)〉 = V

∫
du pseg(x, u)〈ρ̂(x, u)〉.

(2.10)

This final quantity p(x) will appear in the electrostatic equa-
tion in the bound charge density.

C. Electrostatics

We next obtain the electric field through the local electro-
statics PDE, which is tractable numerically since the charge
distribution described through p(x) does not involve singular
dipole distributions. This also lets us directly apply realistic
boundary conditions—i.e., specified potential on the bound-
ary of the domain, corresponding to a given far-field applied
electric field—without having to compute the Green’s func-
tion for a given geometry. As shown in the Appendix of
[54], this ensemble is equivalent to prescribing the average
field over the domain. The interior field within the domain
is a superposition of the electrostatic interaction between the
applied field and the induced dipole response of the polymer
segments as well as the nonlocal dipole-dipole interactions
among the induced dipoles. The usual electrostatics PDE ac-
counts automatically for all of these interactions.

We start from the electrostatic equation for the electrostatic
potential φ(x):

−ε0∇2φ(x) = −div p on 
, given φ(x) = −E0 · x on ∂
,

(2.11)

where p is obtained from (2.10), −div p is the bound charge
density, E0 is the given average electric field, and 
 is the
region of space with boundary ∂
 over which we solve the
electrostatic problem.

The electric field E(x) is related to φ(x) through the clas-
sical relation:

E(x) = −∇φ(x). (2.12)

In turn, the field w(x, u) is related to E(x) as [66]

w(x, u) = − 4πV

2kBT
pseg(x, u) · E(x). (2.13)

D. Monomer dipole response

We assume that the monomers that compose the chain have
a dielectric response that is linear in the electric field.1 How-
ever, the response is necessarily nonlinear in the orientation u
to satisfy rotation invariance of the monomer.

We define the polarization response of a segment of the
polymer chain as

pseg(x, u) := ε0β(u)E(x), (2.14)

1While we use a dielectric response that is linear in the electric field
for this paper to perform explicit numerical calculations, it is equally
easy to incorporate more general nonlinear responses.
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ALGORITHM 1. Self-consistent iterative algorithm to compute the equilibrium properties of a polymer chain.

while �Q > ε = 10−3 do
Compute p(x) = V

∫
du pseg(x, u)〈ρ̂(x, u)〉 � pseg(x, u) = ε0β(u)E(x)

Solve for φ(x): ∇2φ(x) = 1
ε0

div p(x), given φ(x) = −E0 · x on ∂


Compute E(x) = −∇φ(x)

Compute w(x, u) = − 4πV
2kBT [ε0β(u)E(x)] · E(x)

Compute q and q∗, by solving (2.2) and (2.3), respectively
Compute Q[w] and 〈ρ̂(x, u)〉, using (2.1) and (2.7), respectively

end while
Outputs: Eeq(x), Qeq, 〈ρ̂(x, u)〉eq, peq(x)

where β is related to the molecular polarizability tensor of the
chain segment and depends on the orientation of the chain seg-
ment u. We model the polarizability tensor β as transversely
isotropic [52,53] with the expression

β(u) = β‖u ⊗ u + β⊥(I − u ⊗ u), (2.15)

where β‖ and β⊥ are the polarizabilities of the segment along
the segment orientation and transverse to the segment orienta-
tion, respectively.

E. Model summary

The external field w(x, u) connects to the PDEs for the
partial partition functions q and q∗ in (2.2) and (2.3). The
solutions for q and q∗ in turn relate to the partition function
Q[w] and average segment density 〈ρ̂(x, u)〉 using (2.1) and
(2.7), respectively. Finally, to close the loop, the polarization,
p(x), is related by (2.10) to Q[w], 〈ρ̂(x, u)〉, and pseg.

III. NUMERICAL METHOD

A. Self-consistent iteration

Algorithm 1 shows the iterative procedure in the proposed
self-consistent field theory formulation to obtain the equilib-
rium properties of a polarizable polymer chain.

To initialize, i.e., guess the electric field for the initial step,
we simply use φ(x) = −E0 · x, and use this to compute p from
(2.14). To continue the numerical iteration from step n to step
n + 1, we use pn(x), the polarization at iteration step n, to
obtain the electric potential at the next iteration step, φn+1(x),
using

∇2φn+1(x) = 1

ε0
div pn(x) on 
,

given φn+1(x) = −E0 · x on ∂
. (3.1)

φn+1(x) is used to obtain wn+1(x, u) using (2.12) and (2.13).
Using wn+1(x, u), we again solve (2.2) and (2.3) to compute
Q[wn+1] and 〈ρ̂(x, u)〉n+1 using (2.1) and (2.7), respectively.
This in turn lets us compute pn+1(x) using (2.9) and (2.10),
which is used in the equation above to continue the iteration.
The self-consistent iteration procedure is continued until the
energy term −kBT log Q has converged, which we check by
using the change in Q across successive iterations.

B. Finite element formulation

We use FEM to solve the PDEs (2.2) and (2.3) for the
partial partition functions as in [72]. We use FEniCS, an
open-source FEM framework, for the numerical implemen-
tation [73,74]. We work in two spatial dimensions (i.e., x =
(x1, x2) ∈ 
 ⊂ R2) and restrict the unit orientation vector to
the unit circle [i.e., it can be represented as u = (cos φ, sin φ),
where φ ∈ [0, 2π )]. The configuration space in (x, u) is
3D, enabling us to use standard FEM meshing and shape
functions.

In terms of q(x1, x2, φ, s), we can rewrite (2.2) as

∂q

∂s
= −wq − Lc

(
cos φ

∂q

∂x1
+ sin φ

∂q

∂x2

)
+ Lc

2λ

(
∂2q

∂φ2

)
.

(3.2)

The contour coordinate s is treated as a time-like variable.
Derivatives with respect to s in (2.2) and (2.3) are approxi-
mated using a Crank-Nicolson finite difference method. We
discretize in s using a uniform discretization with 100 steps
along the chain contour. We can then write

qi+1 − qi

�s
= f i+1 + f i

2
,

with

f i = −wqi − Lc

(
cos φ

∂qi

∂x1
+ sin φ

∂qi

∂x2

)
+ Lc

2λ

(
∂2qi

∂φ2

)
,

(3.3)

where the superscripts i and i + 1 represent the discretized
quantities along s.

The domain in configuration space is discretized using
first-order Lagrange family finite elements. We use a mesh
with 20×40 finite elements to discretize in x and 30 finite
elements to discretize in φ, which is sufficiently refined that
the quantities of interest are independent of the mesh. The
spatial mesh is finer around the chain ends, and the Dirac
delta functions in (2.4) and (2.5) are approximated as peaked
Gaussians. The mesh is uniform in the u discretization.

Following the usual FEM procedure, we first multiply (3.3)
by a test function v(x1, x2, φ); second, integrate over x and
u; third, use integration-by-parts and the divergence theorem
to convert the second derivatives ∂2q

∂φ2 to a product of first
derivatives; and, fourth, eliminate the boundary terms using
the assumed Neumann boundary condition in (x1, x2, φ) to get
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FIG. 3. The baseline case with dipole-dipole interactions neglected, with externally applied electric field Ẽ0 = ê2. The arrows show the
direction of the vector field, and the background color shows the magnitude. (a) The electric field distribution Ẽ, which is constant in space
and equal to Ẽ0, as expected. (b) The chain segment density ρ̃. (c) The polarization distribution p̃. Both the electric field and polarization
distributions are close to zero on the scale of the plot, which is chosen to allow comparison with the results when dipole-dipole interactions are
included.

the FEM weak form:∫
x̃,φ

(
qi+1v + �s

2
wqi+1v + �s

2
cos φ

∂qi+1

∂ x̃1
v

+ �s

2
sin φ

∂qi+1

∂ x̃2
v + Lc�s

4λ

∂qi+1

∂φ

∂v

∂φ

)

=
∫

x̃,φ

(
qiv − �s

2
wqiv − �s

2
cos φ

∂qi

∂ x̃1
v

− �s

2
sin φ

∂qi

∂ x̃2
v − Lc�s

4λ

∂qi

∂φ

∂v

∂φ

)
, (3.4)

where x̃ = (x̃1, x̃2) = ( x1
Lc

, x2
Lc

) is the nondimensional spatial
coordinate.

IV. RESULTS AND DISCUSSION

In this section, we apply the model to examine the effect of
dipole-dipole interactions; specifically, we compare the elec-
tric field and dipole distributions with and without accounting
for dipole interactions. Then we examine the effect of the
orientation of the applied electric field, relative to the chain
orientation, on the elastic response, the electric field, and the
dipole distribution.

Various quantities are either nondimensionalized or
rescaled and will then be denoted by an overhead tilde (·̃). The
chain is assumed to have N = 100 polymer segments, each
having length of a = Lc/N . The length scales in the problem
are nondimensionalized by chain contour length Lc. The com-
putational domain is chosen to be −0.1 � x̃1 � 0.1,−0.2 �
x̃2 � 0.2. The electric field and polarization are both rescaled
by dividing by (

√
2kBT

L3
c

), i.e., Ẽ = E√
2kBT

L3
c

and p̃ = p√
2kBT

L3
c

.

For the polarizability tensor, we use β‖ = 1 and β⊥ = 0.5

following [52]. The angle between the applied electric field
E0 with ê1 is denoted by θE0 .

A. Field and dipole distributions: Comparing
with and without dipole-dipole interaction

We fix the chain end-to-end vector length to 1.5aN1/2 by
fixing the chain ends at ±0.075 e2 as shown in Fig. 3(b). We
apply a far-field electric field Ẽ0 = ê2 by using the appropri-
ate electric potential on the boundaries of the computational
domain.

Figure 3 shows the electric field, chain segment density,
and polarization for the baseline case when the dipole-dipole
interactions are neglected. We observe that the average seg-
ment density of the chain is highest at the constrained ends,
and largely concentrated along the chain end-to-end vector.
We also observe that the induced dipoles are essentially all
oriented along Ẽ0.

Figure 4 shows a direct comparison of the polarization,
p̃, obtained without and with the dipole-dipole interactions
for the extreme cases of the relative orientation between the
applied field and the chain orientation. We observe that the
polarization with the interactions considered is at least an
order of magnitude higher than the case that neglects the
interactions. Further, when the interactions are not considered,
essentially all of the dipoles are oriented along Ẽ0, whereas
there are much more complex dipole distributions when the
interactions are considered. When Ẽ0 is aligned with the
chain end-to-end vector, the polarization is largely concen-
trated around the chain ends. However, when Ẽ0 is orthogonal
to the chain end-to-end vector, the polarization is relatively
uniformly distributed along the chain.

We conclude that the dipole-dipole interactions not only
increase the polarization by orders of magnitude, but also
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FIG. 4. Comparison of the polarization distribution p̃, comparing without and with accounting for dipole-dipole interactions for different
orientations of the applied electric field (a) θE0 = 0 and (b) θE0 = π/2, both with |Ẽ0| = 1. In both (a) and (b), the left panel is without
accounting for the interactions and the right panel is with accounting for the interactions. The polarization is at least one order of magnitude
larger when dipole-dipole interactions are accounted for. The arrows show the direction of the vector field, and the background color shows
the magnitude.

changes the distribution and depends strongly on the relative
orientation of the applied electric field.

B. Effect of the orientation of the electric field relative
to the chain

Next, we study the effect of the orientation of the ap-
plied electric field on the properties of the polymer chain.
As in the earlier section, we fix the chain ends and fix
the magnitude of the applied electric field |Ẽ0| = 1, and
study the effect of the field being orthogonal to the chain
orientation compared to being aligned parallel to the chain
orientation.

Figure 5 shows the electric potential, the electric field,
and the polarization for θE0 = 0 and θE0 = π/2. When the
applied electric field is orthogonal to the chain end-to-end
vector (θE0 = 0), we observe that the dipole distribution is
approximately uniformly distributed along the chain. How-
ever, when the applied electric field is aligned with the chain
end-to-end vector (θE0 = π/2), the dipole distribution is pri-
marily concentrated near the chain ends. The electric field
distribution follows from the electric potential. Further, we
observe that when the applied electric field is orthogonal to
the chain end-to-end vector, the electric field is roughly uni-
formly distributed along the chain. However, when the applied
electric field is aligned with the chain end-to-end vector, the
electric field is largely concentrated near the chain ends. We
also observe that the local strength of the electric potential, the
electric field, and the polarization is higher when the applied
electric field is orthogonal to the chain end-to-end vector as
compared to when it is aligned.

C. Elastic response

To study the effect of chain stretch, we vary the length
of the chain end-to-end vector, denoted by L. The total free
energy of the polymer chain at equilibrium, F , is obtained as

[75]

F = −kBT log Q[w] − kBT

2

∫
dx du w(x, u)〈ρ̂(x, u)〉.

(4.1)

The first term is the free energy of the noninteracting polymer
chain in the external field w(x, u), which double counts the
electrical energy due to dipole-dipole interactions. The second
term in (4.1) corrects for this double counting. We define the
elastic force in the polymer chains by f := ∂F

∂L .
Figures 6 and 7 show the elastic force as a function of L for

the applied electric field orthogonal and parallel to the chain
orientation, respectively. The insets in the figures show the
electric field Ẽ and polarization p̃. We observe that the elastic
response is linear, which is consistent with the Gaussian na-
ture of the polymer chain, even with the applied electric field
at different orientations. Further, the elastic force response is
essentially unchanged even when we change the orientation
of the applied electric field. However, the distributions of the
electric field and polarization change very significantly with
the direction of the applied electric field. When the applied
electric field is orthogonal to the chain end-to-end vector
(θE0 = 0, Fig. 6), we observe that as the chain is stretched,
the distributions of the electric field and polarization remain
roughly uniformly distributed along the chain, but are increas-
ingly concentrated along the chain end-to-end vector with
increasing stretch. However, when the applied electric field is
aligned with the chain end-to-end vector (θE0 = π/2, Fig. 7),
the electric field and the polarization are primarily concen-
trated near the chain ends, with the concentration changing
with increasing stretch.

V. CONCLUDING REMARKS

We have developed a statistical field theory framework
for polarizable polymer chains that overcomes key limita-
tions of existing approaches in accounting for the nonlocal
dipole-dipole interactions between polymer segments. Our
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FIG. 5. Effect of orientation θE0 of the applied electric field Ẽ0, with full accounting of the dipole-dipole interactions. We use |Ẽ0(x)| = 1.
Panels (a) and (d) plot the electric potential, (b) and (e) plot the electric field, and (c) and (f) plot the polarization, for θE0 = 0 and θE0 = π/2
respectively. The arrows show the direction of the vector field, and the background color shows the magnitude.

approach is applicable to general nonlinear polarization-
electric field responses, by reformulating the nonlocal dipole-
dipole interactions through the local PDE of electrostatics.
Regardless of the nonlinearity of the polarization-field re-
sponse, the PDE constraint is linear and directly amenable
to efficient numerical methods, such as boundary element
methods that can account for unbounded domains [76] or very
efficient Fourier methods [77]. Our approach also enables the

use of a more realistic ensemble that corresponds to a far-field
applied electric field.

There are several possibilities for further development.
An immediate direction of study is to incorporate general
nonlinear polarization-electric field responses that go beyond
the linear anisotropic model studied here. Another interesting
direction would be to apply the framework developed here
to study cross-linked polymer networks, e.g., following [78].

FIG. 6. Elastic response (force against stretch) of the polymer chain for θE0 = 0. The insets show the electric field Ẽ and polarization p̃ for
L = aN1/2, 2aN1/2, 3aN1/2. The arrows show the direction of the vector field, and the background color shows the magnitude.
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FIG. 7. Elastic response (force against stretch) of the polymer chain for θE0 = π/2. The insets show the electric field Ẽ and polarization p̃
for L = aN1/2, 2aN1/2, 3aN1/2. The arrows show the direction of the vector field, and the background color shows the magnitude.

This can provide key physical insights into the effects of
interchain dipole-dipole interactions on the response of elec-
tromechanical polymer networks such as dielectric elastomers
under external fields. Yet another interesting possibility is to
study polymers in confined settings with polarizable ambi-
ent media, which have been shown in other contexts to lead
to unusual effects, e.g., [79,80]. Further, by including ex-
cluded volume interactions, it is possible to study the interplay
between repulsive excluded volume interactions and attractive
dipole-dipole interactions to tailor the functional properties of
polymeric soft matter. Furthermore, an important aspect that
we have not accounted for in our formulation is the role of
fluctuations; recent developments in the statistical field theory
provide tools to make progress in this direction [81]. Finally,
the dipole response can be generalized to account for screen-
ing, rapid variations of the electric field, and so on [67]. In

principle, these can be accounted for in our model—screening
by using the screened Poisson equation, for instance, and
using gradients of the electric field in the monomer dipole
response to account for quadrupole and higher moments—but
it is important to demonstrate these in practice.

The code developed for this work and the associated data
are available at [82].
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